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Abstract. An upper dominating set in a graph is a minimal (with re-
spect to set inclusion) dominating set of maximum cardinality. The prob-
lem of finding an upper dominating set is NP-hard for general graphs
and in many restricted graph families. In the present paper, we study
the computational complexity of this problem in monogenic classes of
graphs (i.e. classes defined by a single forbidden induced subgraph) and
show that the problem admits a dichotomy in this family. In particular,
we prove that if the only forbidden induced subgraph is a P, or a 2K (or
any induced subgraph of these graphs), then the problem can be solved
in polynomial time. Otherwise, it is NP-hard.

1 Introduction

In a graph G = (V, E), a dominating set is a subset of vertices D C V such that
any vertex outside of D has a neighbour in D. A dominating set D is minimal
if no proper subset of D is dominating. An upper dominating set is a minimal
dominating set of maximum cardinality. The UPPER DOMINATING SET problem
(i.e. the problem of finding an upper dominating set in a graph) is known to be
NP-hard [2]. On the other hand, in some restricted graph families, the problem
can be solved in polynomial time, which is the case for bipartite graphs [3],
chordal graphs [8], generalized series-parallel graphs [7] and graphs of bounded
clique-width [4].

In the present paper, we study the complexity of the problem in monogenic
classes of graphs, i.e. classes defined by a single forbidden induced subgraph.
Our main result is that the problem admits a dichotomy in this family: for each
class in the family the problem is either NP-hard or can be solved in polynomial
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time. Up to date, a complete dichotomy in monogenic classes was available only
for VERTEX COLORING [11], MINIMUM DOMINATING SET [10] and MAXIMUM CUT
[9].

The organization of the paper is as follows. In Section 2, we introduce basic
definitions and notations related to the topic of the paper and prove some pre-
liminary results about minimal dominating sets. In Sections 3 and 4, we prove
some NP-hardness and polynomial-time results, respectively. In Section 5, we
summarize our arguments in a final statement.

2 Preliminaries

All graphs in this paper are simple, i.e. undirected, without loops and multiple
edges. The girth of a graph G is the length of a shortest cycle in G. As usual, we
denote by K,, P, and C),, a complete graph, a chordless path and a chordless
cycle with n vertices, respectively. Also, 2K is the disjoint union of two copies
of K5 and a staris a connected graph in which all edges are incident to the same
vertex, called the center of the star.

Let G = (V, E) be a graph with vertex set V' and edge set E, and let v and v
be two vertices of G. If u is adjacent to v, we write uv € E and say that v and v
are neighbours. The neighbourhood of a vertex v € V' is the set of its neighbours;
it is denoted by N(v). The degree of v is the size of its neighbourhood. If the
degree of each vertex of G equals 3, then G is called cubic.

The complement of a graph G, denoted G, is the graph with the same vertex
set in which two vertices are adjacent if and only if they are not adjacent in G. A
subgraph of G is induced if two vertices of the subgraph are adjacent if and only
if they are adjacent in G. If a graph H is isomorphic to an induced subgraph of
a graph G, we say that G contains H. Otherwise we say that G is H-free.

In a graph, a clique is a subset of pairwise adjacent vertices, and an indepen-
dent set is a subset of vertices no two of which are adjacent. A graph is bipartite
if its vertices can be partitioned into two independent sets. It is well-known that
a graph is bipartite if and only if it is free of odd cycles.

We say that an independent set I is mazimal if no other independent set
properly contains I. The following simple lemma connects the notion of a max-
imal independent set and that of a minimal dominating set.

Lemma 1. Every mazimal independent set is a minimal dominating set.

Proof. Let G = (V, E) be a graph and let I be a maximal independent set in G.
Then every vertex u € I has a neighbour in I (else I is not maximal) and hence T
is dominating.

The removal of any vertex v € I from I leaves u undominated. Therefore, I
is a minimal dominating set. a

Definition 1. Given a dominating set D and a vertex x € D, we say that a
vertex y & D is a private neighbour of x if x is the only neighbour of y in D.



Lemma 2. Let D be a minimal dominating set in a graph G. If a vertex x € D
has a neighbour in D, then it also has a private neighbour outside of D.

Proof. If avertex z € D is adjacent to a vertex in D and has no private neighbour
outside of D, then D is not minimal, because the set D —{z} is also dominating.
O

Lemma 3. Let G be a connected graph and D a minimal dominating set in G.
If there are vertices in D that have no private neighbour outside of D, then D
can be transformed in polynomial time into a minimal dominating set D' with
|D’| < |D| in which every vertex has a private neighbour outside of D’.

Proof. Assume D contains a vertex x which has no private neighbours outside
of D. Then z is isolated in D (i.e. it has no neighbours in D) by Lemma 2. On
the other hand, since G is connected, x must have a neighbour y outside of D.
As y is not a private neighbour of x, it is adjacent to a vertex z in D. Consider
now the set Dy = (D — {z}) U {y}. Clearly, it is a dominating set. If it is a
minimal dominating set in which every vertex has a private neighbour outside
of the set, then we are done. Otherwise, it is either not minimal, in which case
we can reduce its size by deleting some vertices, or it has strictly fewer isolated
vertices than D. Therefore, by iterating the procedure, in at most |V(G)| steps
we can transform D into a minimal dominating set D’ with |D’| < |D| in which
every vertex has a private neighbour outside of the set. ad

3 NP-hardness results

Theorem 1. The UPPER DOMINATING SET problem restricted to the class of
planar graphs with mazimum vertex degree 6 and girth at least 6 s NP-hard.

Proof. We use a reduction from the MAXIMUM INDEPENDENT SET problem (IS
for short) in planar cubic graphs, where IS is NP-hard [6]. The input of the
decision version of IS consists of a simple graph G = (V, E) and an integer k
and asks to decide if G contains an independent set of size at least k.

Let G = (V, E) and an integer k be an instance of IS, where G is a planar
cubic graph. We denote the number of vertices and edges of G by n and m,
respectively. We build an instance G’ = (V’, E’) of the UPPER DOMINATING SET
problem by replacing each edge e = uv € E with two induced paths u—ve —ue—v
and v — v, — u., — v, as shown in Figure 1.

Clearly, G’ can be constructed in time polynomial in n. Moreover, it is not
difficult to see that G’ is a planar graph with maximum vertex degree 6 and
girth at least 6.

We claim that G contains an independent set of size at least k if and only
if G’ contains a minimal dominating set of size at least k + 2m.

Suppose G contains an independent set .S with |S| > k and without loss of
generality assume that S is maximal with respect to set-inclusion (otherwise, we
greedily add vertices to S until it becomes a maximal independent set). Now we
consider a set D C V' containing
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Fig. 1. Replacement of an edge by two paths

— all vertices of S,

— vertices v, and v/, for each edge e = uv € E with v € S,

— exactly one vertex in {u., ve} (chosen arbitrarily) and exactly one vertex in
{ul,v.} (chosen arbitrarily) for each edge e = uv € F with u,v & S.

er e

It is not difficult to see that D is a maximal independent, and hence, by Lemma 2,
a minimal dominating, set in G’. Moreover, |D| = |S| + 2m > k + 2m.

To prove the inverse implication, we first observe the following:

— Every minimal dominating set in G' contains either exactly two vertices or

no verter in the set {ue,ve,ul, v} for every edge e = uv € E. Indeed,

e’ e
assume a minimal dominating set D in G’ contains at least three vertices
in {Ue, Ve, ul, v}, SAY Ue, Ve, ul,. But then D is not minimal, since u, can be
removed from the set. If D contains one vertex in {ue,ve, ul, v.}, say ue,
then both w and v must belong to D (otherwise it is not dominating), in
which case it is not minimal (u. can be removed).
— If a minimal dominating set D in G’ contains exactly two vertices in the set
{te, Ve, ul, vl }, then
e one of them belongs to {ue,v.} and the other to {ul,v.}. Indeed, if both
vertices belong to {u.,v.}, then both u and v must also belong to D
(to dominate u/,v.), in which case D is not minimal (u. and v, can be
removed).
e at most one of u and v belongs to D. Indeed, if both of them belong to
D, then D is not minimal dominating, because u and v dominate the set
{te, ve,ul,,v.} and any vertex of this set can be removed from D.

er e

Now let D C V'’ be a minimal dominating set in G’ with |D| > k + 2m. If D
contains exactly two vertices in the set {ue, ve, uL, v.} for every edge e = uv € E,
then, according to the discussion above, the set D NV is independent in G and
contains at least k vertices, as required.

Assume now that there are edges e = uv € E for which the set {ue, ve, ul,, v,
contains no vertex of D. We call such edges D-clean. Obviously, both endpoints
of a D-clean edge belong to D, since otherwise this set is not dominating. To
prove the theorem in the situation when D-clean edges are present, we trans-
form D into another minimal dominating set D’ with no D’-clean edges and with
|D’| > |D|. To this end, we do the following. For each vertex v € V incident to
at least one D-clean edge, we first remove u from D, and then for each D-clean



edge e = wv € F incident to u, we introduce vertices v.,v, to D. Under this
transformation vertex v may become redundant (i.e. its removal may result in
a dominating set), in which case we remove it. It is not difficult to see that the
set D’ obtained in this way is a minimal dominating set with no D’-clean edges
and with |D’| > |D|. Therefore, D’ NV is an independent set in G of cardinality
at least k. ad

Theorem 2. The UPPER DOMINATING SET problem restricted to the class of
complements of bipartite graphs is NP-hard.

Proof. We use a reduction from the MINIMUM DOMINATING SET problem, which
is known to be NP-hard [5]. The input of the decision version of this problem
consists of a simple graph G = (V, F) and an integer k. The problem asks to
determine if G contains a dominating set of size at most k.

Assume an instance of the MINIMUM DOMINATING SET problem is given by
a graph G = (V, E) with n vertices and m edges and an integer k < n — 3.
Without loss of generality, we may further assume that G is connected. We build
an instance G’ = (V' E’) of the UPPER DOMINATING SET problem where G’ is
the complement of a bipartite graph as follows.

- V' =V UVgU{a,b}, where Vg = {v, : e€ E};

— VU{a} and V5 U{b} are cliques. Also, a vertex v € V is connected to a vertex
ve € Vg if and only if v is incident to e € F in G. Finally, a is connected to
every vertex of Vg U {b}.

Clearly, this construction can be done in time polynomial in n. We claim that
there is a dominant set in G of size at most k if and only if there is a minimal
dominating set in G’ of size at least n — k.

Suppose G contains a dominating set D with |D| < k. Without loss of gen-
erality, we assume that D is a minimal dominating set (otherwise we can re-
move some vertices from D to make it minimal). Moreover, we will assume
that D satisfies Lemma 3, i.e. every vertex of D has a private neighbour out-
side of the set. Since D is a dominating set, for every vertex w outside of D,
there is an edge e, connecting it to a vertex in D. We claim that the set
D' ={v., : u¢ D} is a minimal dominating set in G’. By construction, D’
dominates Vg U {a,b} U (V — D). To show that it also dominates D, assume by
contradiction that a vertex w € D is not dominated by D’ in G'. By Lemma 3 we
know that w has a private neighbour u outside of D. But then the edge e = uw
is the only edge connecting u to a vertex in D. Therefore, v, belongs to D’ and
hence it dominates w, contradicting our assumption. In order to show that D’
is a minimal dominating set, we observe that if we remove from D’ a vertex v,
with e, = uv, u € D, v € D, then u becomes undominated in G’. Finally, since
|D’| = n — |D|, we conclude that |D'| > n — k.

Conversely, let D’ C V' be a minimal dominating set in G’ with |D’| > n —k
and n—k > 3 (by assumption & < n—3). Then D’ cannot intersect both VU{a}
and Vg U {b}, since otherwise it contains exactly one vertex in each of these sets



(else it is not minimal, because each of them is a clique), in which case |D’| = 2.
Also, D’ cannot be a subset of V' U {a}, since otherwise it contains a (because a
is the only vertex of V' U {a} dominating b) and hence it coincides with {a}
(else it is not minimal, because a dominates the graph), in which case |D’| = 1.
Therefore, D' C Vg U {b}. Also, b ¢ D', since otherwise D’ is not minimal (i.e. b
can be removed from D’). Therefore, there exists a subset of edges F' C E such
that D' = {v. : e € F'}. Let us denote the subgraph of G formed by the edges
of F' (and all their endpoints) by G and prove the following:

— G is a spanning forest of G, because F covers V (else D’ is not dominating)
and G is acyclic (else D’ is not minimal).

— G is Py-free, i.e. each connected component of Gp is a star, since otherwise
D’ is not minimal, because any vertex of D’ corresponding to the middle edge
of a Py in G can be removed from D’.

Let D be the set of the centers of the stars of Gg. Then D is dominating
in G (since F covers V) and |D| =n — |F| =n — |D’| < k, as required. O

4 Polynomial-time results

As we have mentioned in the introduction, the UPPER DOMINATING SET problem
can be solved in polynomial time for bipartite graphs [3], chordal graphs [8] and
generalized series-parallel graphs [7]. It also admits a polynomial-time solution
in any class of graphs of bounded clique-width [4]. Since Pj-free graphs have
clique-width at most 2 (see e.g. [1]), we make the following conclusion.

Proposition 1. The UPPER DOMINATING SET problem can be solved for Py-free
graphs in polynomial time.

In what follows, we develop a polynomial-time algorithm to solve the problem
in the class of 2K5-free graphs.

We start by observing that the class of 2K5-free graphs admits a polynomial-
time solution to the MAXIMUM INDEPENDENT SET problem (see e.g. [12]). By
Lemma 2 every maximal (and hence maximum) independent set is a minimal
dominating set. These observations allow us to restrict ourselves to the analysis
of minimal dominating sets X such that

— X contains at least one edge,
= |X]>a(G),

where a(G) is the independence number, i.e. the size of a maximum independent
set in G.

Let G be a 2Ks-free graph and let ab an edge in G. Assuming that G contains
a minimal dominating set X containing both a and b, we first explore some
properties of X. In our analysis we use the following notation. We denote by

— N the neighbourhood of {a,b}, i.e. the set of vertices outside of {a,b} each
of which is adjacent to at least one vertex of {a,b},



— A the anti-neighbourhood of {a,b}, i.e. the set of vertices adjacent neither
to a nor to b,

—Y:=XnNN,

— Z:=N(Y)NA, ie. the set of vertices of A each of which is adjacent to at
least one vertex of Y.

Since a and b are adjacent, by Lemma 2 each of them has a private neighbour
outside of X. We denote by

— a* a private neighbour of a,
— b* a private neighbour of b.

By definition, a* and b* belong to N —Y and have no neighbours in Y. Since G
is 2Ks-free, we conclude that

Claim 1. A is an independent set.
We also derive a number of other helpful claims.

Claim2. ZNX =0and A—Z C X.

Proof. Assume a vertex z € Z belongs to X. Then X — {z} is a dominating set,
because z does not dominate any vertex of A (since A is independent) and it
is dominated by its neighbor in Y. This contradicts the minimality of X and
proves that Z N X = (. Also, by definition, no vertex of A — Z has a neighbour
in Y U {a,b}. Therefore, to be dominated A — Z must be included in X. O

Claim 3. If |X| > a(QG), then |Y| = |Z| and every vertex of Z is a private
neighbor of a vertex in Y.

Proof. Since every vertex y in Y belongs to X and has a neighbour in X (a or b),
by Lemma 2 y must have a private neighbor in Z. Therefore, |Z| > |Y|. If |Z] is
strictly greater than |V, then | X| < |[AU{a}| < a(G) (since A is independent),
which contradicts the assumption |X| > «(G). Therefore, |Y| = |Z| and every
vertex of Z is a private neighbor of a vertex in Y. a

Claim 4. If |Y| > 1 and | X| > a(G), then Y C N(a) N N(b).

Proof. Let y1,y2 be two vertices in Y and let z1, 25 be two vertices in Z which
are private neighbours of y; and ys, respectively.

Assume a is not adjacent to y, then b is adjacent to y; (by definition of Y)
and a* is adjacent to z1, since otherwise the vertices a, a*, y1, 21 induce a 2K5 in
G. Also, a* is adjacent to zs, since otherwise a 2K is induced by a*, z1, y2, 22.
But now the vertices a*, z2,b,y; induce a 2Ks. This contradiction shows that
a is adjacent to y;. Since y; has been chosen arbitrarily, a is adjacent to every
vertex of Y, and by symmetry, b is adjacent to every vertex of Y. a

Claim 5. If |[Y| > 1 and | X| > a(G), then a* and b* have no neighbours in Z.



Proof. Assume by contradiction that a* is adjacent to a vertex z; € Z. By
Claim 3, z; is a private neighbour of a vertex y; € Y. Since |Y| > 1, there
exists another vertex yo € Y with a private neighbor 25 € Z. From Claim 4,
we know that b is adjacent to yo. But then the set {b,y2,a*, 21} induces a 2Ks.
This contradiction shows that a* has no neighbours in Z. By symmetry, b* has
no neighbours in in Z. m|

The above series of claims leads to the following conclusion, which plays a
key role for the development of a polynomial-time algorithm.

Lemma 4. If |X| > a(G), then |Y| =1 and Y C N(a) N N(b).

Proof. First, we show that |Y| < 1. Assume to the contrary that |Y| > 1. By
definition of a* and Claim 2, vertex a* has no neighbours in A — Z, and by
Claim 5, a* has no neighbours in Z. Therefore, AU{a*,b} is an independent set
of size | X| = |Y|+|A — Z|+ 2. This contradicts the assumption that |X| > a(G)
and proves that |Y| < 1.

Suppose now that |Y'| = 0. Then, by Claim 3, |Z| = 0 and hence, by Claim 2,
X = AU{a, b}. Also, by definition of a*, vertex a* has no neighbours in A. But
then AU{a*, b} is an independent set of size | X|, contradicting that | X| > a(G).

From the above discussion we know that Y consists of a single vertex, say y.
It remains to show that y is adjacent to both a and b. By definition, y must be
adjacent to at least one of them, say to a. Assume that y is not adjacent to b. By
definition of a*, vertex a* has no neighbours in {y} U (A — Z), and by definition
of Z, vertex y has no neighbours in A — Z. But then (4 — Z) U {a*,b,y} is an
independent set of size | X| = [Y|+ |A — Z| 4 2. This contradicts the assumption
that | X| > a(G) and shows that y is adjacent to both a and b. O

Corollary 1. If a minimal dominating set in a 2Ks-free graph G is larger than
(@), then it consists of a triangle and all the vertices not dominated by the
triangle.

In what follows, we describe an algorithm A to find a minimal dominating
set M with maximum cardinality in a 2Ks-free graph G in polynomial time. In
the description of the algorithm, given a graph G = (V, E) and a subset U C V,
we denote by A(U) the anti-neighbourhood of U, i.e. the subset of vertices of G
outside of U none of which has a neighbour in U.

Algorithm A

Input: A 2Ks-free graph G = (V, E).
Output: A minimal dominating set M in G with maximum cardinality.

1. Find a maximum independent set M in G.
2. For each triangle T in G:

— Let M’ :=T U A(T).

— If M’ is a minimal dominating set and |M’| > |M]|, then M := M’.
3. Return M.



Theorem 3. Algorithm A correctly solves the UPPER DOMINATING SET problem
for 2K5-free graphs in polynomial time.

Proof. Let G be a 2Ko-free graph with n vertices. In O(n?) time, one can find
a maximum independent set M in G (see e.g. [12]). Since M is also a minimal
dominating set (see Lemma 1), any solution of size at most a(G) can be ignored.

If X is a solution of size more than «(G), then, by Corollary 1, it consists
of a triangle T' and its anti-neighbourhood A(T'). For each triangle T, verifying
whether T'U A(T) is a minimal dominating set can be done in O(n?) time.
Therefore, the overall time complexity of the algorithm can be estimated as
O(n). O

5 Main result

Theorem 4. Let H be a graph. If H is a 2Ky or Py (or any induced subgraph of
2K5 or Py), then the UPPER DOMINATING SET problem can be solved for H-free
graphs in polynomial time. Otherwise the problem is NP-hard for H-free graphs.

Proof. Assume H contains a cycle Cy, then the problem is NP-hard for H-free
graphs

— either by Theorem 1 if k£ < 5, because in this case the class of H-free graphs
contains all graphs of girth at least 6,

— or by Theorem 2 if k& > 6, because in this case the class of H-free graphs
contains the class of K3-free graphs and hence all complements of bipartite
graphs.

Assume now that H is acyclic, i.e. a forest. If it contains a claw (a star whose
center has degree 3), then the problem is NP-hard for H-free graphs by Theo-
rem 2, because in this case the class of H-free graphs contains all K 3-free graphs
and hence all complements of bipartite graphs.

If H is a claw-free forest, then every connected component of H is a path. If
H contains at least three connected components, then the class of H-free graphs
contains all K 3-free graphs, in which case the problem is NP-hard by Theorem 2.
Assume H consists of two connected components P, and P;.

— If k+t > 5, then the class of H-free graphs contains all K 3-free graphs and
hence the problem is NP-hard by Theorem 2.

— If £+t < 3, then the class of H-free graphs is a subclass of P,-free graphs
and hence the problem can be solved in polynomial time in this class by
Proposition 1.

— If k+t=4, then

e cither k =t = 2, in which case H = 2K5 and hence the problem can be
solved in polynomial time by Theorem 3,
e or k=4 and t = 0, in which case H = P, and hence the problem can be
solved in polynomial time by Proposition 1,
e or k=3 and ¢t = 1, in which case the class of H-free graphs contains all
K 3-free graphs and hence the problem is NP-hard by Theorem 2.
O
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