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A dichotomy for upper domination in monogenic classes

An upper dominating set in a graph is a minimal (with respect to set inclusion) dominating set of maximum cardinality. The problem of finding an upper dominating set is NP-hard for general graphs and in many restricted graph families. In the present paper, we study the computational complexity of this problem in monogenic classes of graphs (i.e. classes defined by a single forbidden induced subgraph) and show that the problem admits a dichotomy in this family. In particular, we prove that if the only forbidden induced subgraph is a P4 or a 2K2 (or any induced subgraph of these graphs), then the problem can be solved in polynomial time. Otherwise, it is NP-hard.

Introduction

In a graph G = (V, E), a dominating set is a subset of vertices D ⊆ V such that any vertex outside of D has a neighbour in D. A dominating set D is minimal if no proper subset of D is dominating. An upper dominating set is a minimal dominating set of maximum cardinality. The upper dominating set problem (i.e. the problem of finding an upper dominating set in a graph) is known to be NP-hard [START_REF] Cheston | On the computational complexity of upper fractional domination[END_REF]. On the other hand, in some restricted graph families, the problem can be solved in polynomial time, which is the case for bipartite graphs [START_REF] Cockayne | Contributions to the theory of domination, independence and irredundance in graphs[END_REF], chordal graphs [START_REF] Jacobson | Chordal graphs and upper irredundance, upper domination and independence[END_REF], generalized series-parallel graphs [START_REF] Hare | Linear-time computability of combinatorial problems on generalized-series-parallel graphs[END_REF] and graphs of bounded clique-width [START_REF] Courcelle | Linear time solvable optimization problems on graphs of bounded clique-width[END_REF].

In the present paper, we study the complexity of the problem in monogenic classes of graphs, i.e. classes defined by a single forbidden induced subgraph. Our main result is that the problem admits a dichotomy in this family: for each class in the family the problem is either NP-hard or can be solved in polynomial time. Up to date, a complete dichotomy in monogenic classes was available only for vertex coloring [START_REF] Král | Complexity of coloring graphs without forbidden induced subgraphs, Graph-theoretic concepts in computer science[END_REF], minimum dominating set [START_REF] Korobitsyn | On the complexity of determining the domination number in monogenic classes of graphs Diskretnaya[END_REF] and maximum cut [START_REF] Kamiński | MAX-CUT and containment relations in graphs[END_REF].

The organization of the paper is as follows. In Section 2, we introduce basic definitions and notations related to the topic of the paper and prove some preliminary results about minimal dominating sets. In Sections 3 and 4, we prove some NP-hardness and polynomial-time results, respectively. In Section 5, we summarize our arguments in a final statement.

Preliminaries

All graphs in this paper are simple, i.e. undirected, without loops and multiple edges. The girth of a graph G is the length of a shortest cycle in G. As usual, we denote by K n , P n and C n a complete graph, a chordless path and a chordless cycle with n vertices, respectively. Also, 2K 2 is the disjoint union of two copies of K 2 and a star is a connected graph in which all edges are incident to the same vertex, called the center of the star.

Let G = (V, E) be a graph with vertex set V and edge set E, and let u and v be two vertices of G. If u is adjacent to v, we write uv ∈ E and say that u and v are neighbours. The neighbourhood of a vertex v ∈ V is the set of its neighbours; it is denoted by N (v). The degree of v is the size of its neighbourhood. If the degree of each vertex of G equals 3, then G is called cubic.

The complement of a graph G, denoted G, is the graph with the same vertex set in which two vertices are adjacent if and only if they are not adjacent in G. A subgraph of G is induced if two vertices of the subgraph are adjacent if and only if they are adjacent in G. If a graph H is isomorphic to an induced subgraph of a graph G, we say that G contains H. Otherwise we say that G is H-free.

In a graph, a clique is a subset of pairwise adjacent vertices, and an independent set is a subset of vertices no two of which are adjacent. A graph is bipartite if its vertices can be partitioned into two independent sets. It is well-known that a graph is bipartite if and only if it is free of odd cycles.

We say that an independent set I is maximal if no other independent set properly contains I. The following simple lemma connects the notion of a maximal independent set and that of a minimal dominating set. Lemma 1. Every maximal independent set is a minimal dominating set.

Proof. Let G = (V, E) be a graph and let I be a maximal independent set in G. Then every vertex u ∈ I has a neighbour in I (else I is not maximal) and hence I is dominating.

The removal of any vertex u ∈ I from I leaves u undominated. Therefore, I is a minimal dominating set. 

NP-hardness results

Theorem 1. The upper dominating set problem restricted to the class of planar graphs with maximum vertex degree 6 and girth at least 6 is NP-hard.

Proof. We use a reduction from the maximum independent set problem (IS for short) in planar cubic graphs, where IS is NP-hard [START_REF] Garey | Some Simplified NP-Complete Graph Problems[END_REF]. The input of the decision version of IS consists of a simple graph G = (V, E) and an integer k and asks to decide if G contains an independent set of size at least k.

Let G = (V, E) and an integer k be an instance of IS, where G is a planar cubic graph. We denote the number of vertices and edges of G by n and m, respectively. We build an instance G = (V , E ) of the upper dominating set problem by replacing each edge e = uv ∈ E with two induced paths u-v e -u e -v and u -v e -u e -v, as shown in Figure 1.

Clearly, G can be constructed in time polynomial in n. Moreover, it is not difficult to see that G is a planar graph with maximum vertex degree 6 and girth at least 6.

We claim that G contains an independent set of size at least k if and only if G contains a minimal dominating set of size at least k + 2m. Suppose G contains an independent set S with |S| ≥ k and without loss of generality assume that S is maximal with respect to set-inclusion (otherwise, we greedily add vertices to S until it becomes a maximal independent set). Now we consider a set D ⊂ V containing Proof. We use a reduction from the minimum dominating set problem, which is known to be NP-hard [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. The input of the decision version of this problem consists of a simple graph G = (V, E) and an integer k. The problem asks to determine if G contains a dominating set of size at most k.

Assume an instance of the minimum dominating set problem is given by a graph G = (V, E) with n vertices and m edges and an integer k ≤ n -3. Without loss of generality, we may further assume that G is connected. We build an instance G = (V , E ) of the upper dominating set problem where G is the complement of a bipartite graph as follows.

-V = V ∪ V E ∪ {a, b}, where V E = {v e : e ∈ E}; -V ∪{a} and V E ∪{b} are cliques. Also, a vertex v ∈ V is connected to a vertex v e ∈ V E if and only if v is incident to e ∈ E in G. Finally, a is connected to every vertex of V E ∪ {b}.
Clearly, this construction can be done in time polynomial in n. We claim that there is a dominant set in G of size at most k if and only if there is a minimal dominating set in G of size at least n -k.

Suppose G contains a dominating set D with |D| ≤ k. Without loss of generality, we assume that D is a minimal dominating set (otherwise we can remove some vertices from D to make it minimal). Moreover, we will assume that D satisfies Lemma 3, i.e. every vertex of D has a private neighbour outside of the set. Since D is a dominating set, for every vertex u outside of D, there is an edge e u connecting it to a vertex in D. We claim that the set D = {v eu : u ∈ D} is a minimal dominating set in G . By construction, D dominates V E ∪ {a, b} ∪ (V -D). To show that it also dominates D, assume by contradiction that a vertex w ∈ D is not dominated by D in G . By Lemma 3 we know that w has a private neighbour u outside of D. But then the edge e = uw is the only edge connecting u to a vertex in D. Therefore, v e belongs to D and hence it dominates w, contradicting our assumption. In order to show that D is a minimal dominating set, we observe that if we remove from D a vertex v eu with e u = uv, u ∈ D, v ∈ D, then u becomes undominated in G . Finally, since

|D | = n -|D|, we conclude that |D | ≥ n -k.
Conversely, let D ⊆ V be a minimal dominating set in G with |D | ≥ n -k and n -k ≥ 3 (by assumption k ≤ n -3). Then D cannot intersect both V ∪ {a} and V E ∪ {b}, since otherwise it contains exactly one vertex in each of these sets (else it is not minimal, because each of them is a clique), in which case |D | = 2. Also, D cannot be a subset of V ∪ {a}, since otherwise it contains a (because a is the only vertex of V ∪ {a} dominating b) and hence it coincides with {a} (else it is not minimal, because a dominates the graph), in which case |D | = 1. Therefore, D ⊆ V E ∪ {b}. Also, b ∈ D , since otherwise D is not minimal (i.e. b can be removed from D ). Therefore, there exists a subset of edges F ⊆ E such that D = {v e : e ∈ F }. Let us denote the subgraph of G formed by the edges of F (and all their endpoints) by G F and prove the following: 

-G F is a spanning forest of G, because F covers V (else D is not dominating) and G F is acyclic (else D is not minimal). -G F is P 4 -free, i.e. each connected component of G F is

Polynomial-time results

As we have mentioned in the introduction, the upper dominating set problem can be solved in polynomial time for bipartite graphs [START_REF] Cockayne | Contributions to the theory of domination, independence and irredundance in graphs[END_REF], chordal graphs [START_REF] Jacobson | Chordal graphs and upper irredundance, upper domination and independence[END_REF] and generalized series-parallel graphs [START_REF] Hare | Linear-time computability of combinatorial problems on generalized-series-parallel graphs[END_REF]. It also admits a polynomial-time solution in any class of graphs of bounded clique-width [START_REF] Courcelle | Linear time solvable optimization problems on graphs of bounded clique-width[END_REF]. Since P 4 -free graphs have clique-width at most 2 (see e.g. [START_REF] Brandstädt | Clique-width for 4-vertex forbidden subgraphs[END_REF]), we make the following conclusion. In what follows, we develop a polynomial-time algorithm to solve the problem in the class of 2K 2 -free graphs.

We start by observing that the class of 2K 2 -free graphs admits a polynomialtime solution to the maximum independent set problem (see e.g. [START_REF] Lozin | Independent sets in extensions of 2K2-free graphs[END_REF]). By Lemma 2 every maximal (and hence maximum) independent set is a minimal dominating set. These observations allow us to restrict ourselves to the analysis of minimal dominating sets X such that -X contains at least one edge,

-|X| > α(G),
where α(G) is the independence number, i.e. the size of a maximum independent set in G.

Let G be a 2K 2 -free graph and let ab an edge in G. Assuming that G contains a minimal dominating set X containing both a and b, we first explore some properties of X. In our analysis we use the following notation. We denote by -N the neighbourhood of {a, b}, i.e. the set of vertices outside of {a, b} each of which is adjacent to at least one vertex of {a, b}, -A the anti-neighbourhood of {a, b}, i.e. the set of vertices adjacent neither to a nor to b, We also derive a number of other helpful claims.

-Y := X ∩ N , -Z := N (Y ) ∩ A, i.
Claim 2. Z ∩ X = ∅ and A -Z ⊆ X.
Proof. Assume a vertex z ∈ Z belongs to X. Then X -{z} is a dominating set, because z does not dominate any vertex of A (since A is independent) and it is dominated by its neighbor in Y . This contradicts the minimality of X and proves that Z ∩ X = ∅. Also, by definition, no vertex of A -Z has a neighbour in Y ∪ {a, b}. Therefore, to be dominated A -Z must be included in X. Proof. Let y 1 , y 2 be two vertices in Y and let z 1 , z 2 be two vertices in Z which are private neighbours of y 1 and y 2 , respectively.

Assume a is not adjacent to y 1 , then b is adjacent to y 1 (by definition of Y ) and a * is adjacent to z 1 , since otherwise the vertices a, a * , y 1 , z 1 induce a 2K 2 in G. Also, a * is adjacent to z 2 , since otherwise a 2K 2 is induced by a * , z 1 , y 2 , z 2 . But now the vertices a * , z 2 , b, y 1 induce a 2K 2 . This contradiction shows that a is adjacent to y 1 . Since y 1 has been chosen arbitrarily, a is adjacent to every vertex of Y , and by symmetry, b is adjacent to every vertex of Y . Proof. Assume by contradiction that a * is adjacent to a vertex z 1 ∈ Z. By Claim 3, z 1 is a private neighbour of a vertex y 1 ∈ Y . Since |Y | > 1, there exists another vertex y 2 ∈ Y with a private neighbor z 2 ∈ Z. From Claim 4, we know that b is adjacent to y 2 . But then the set {b, y 2 , a * , z 1 } induces a 2K 2 . This contradiction shows that a * has no neighbours in Z. By symmetry, b * has no neighbours in in Z.

The above series of claims leads to the following conclusion, which plays a key role for the development of a polynomial-time algorithm. In what follows, we describe an algorithm A to find a minimal dominating set M with maximum cardinality in a 2K 2 -free graph G in polynomial time. In the description of the algorithm, given a graph G = (V, E) and a subset U ⊆ V , we denote by A(U ) the anti-neighbourhood of U , i.e. the subset of vertices of G outside of U none of which has a neighbour in U .

Algorithm A

Input: A 2K 2 -free graph G = (V, E). Output: A minimal dominating set M in G with maximum cardinality.

1. Find a maximum independent set M in G.

For each triangle T in G:

-Let M := T ∪ A(T ).

- Proof. Let G be a 2K 2 -free graph with n vertices. In O(n 2 ) time, one can find a maximum independent set M in G (see e.g. [START_REF] Lozin | Independent sets in extensions of 2K2-free graphs[END_REF]). Since M is also a minimal dominating set (see Lemma 1), any solution of size at most α(G) can be ignored.

If X is a solution of size more than α(G), then, by Corollary 1, it consists of a triangle T and its anti-neighbourhood A(T ). For each triangle T , verifying whether T ∪ A(T ) is a minimal dominating set can be done in O(n 2 ) time. Therefore, the overall time complexity of the algorithm can be estimated as O(n 5 ).

Main result

Theorem 4. Let H be a graph. If H is a 2K 2 or P 4 (or any induced subgraph of 2K 2 or P 4 ), then the upper dominating set problem can be solved for H-free graphs in polynomial time. Otherwise the problem is NP-hard for H-free graphs.

Proof. Assume H contains a cycle C k , then the problem is NP-hard for H-free graphs either by Theorem 1 if k ≤ 5, because in this case the class of H-free graphs contains all graphs of girth at least 6, or by Theorem 2 if k ≥ 6, because in this case the class of H-free graphs contains the class of K 3 -free graphs and hence all complements of bipartite graphs.

Assume now that H is acyclic, i.e. a forest. If it contains a claw (a star whose center has degree 3), then the problem is NP-hard for H-free graphs by Theorem 2, because in this case the class of H-free graphs contains all K 3 -free graphs and hence all complements of bipartite graphs.

If H is a claw-free forest, then every connected component of H is a path. If H contains at least three connected components, then the class of H-free graphs contains all K 3 -free graphs, in which case the problem is NP-hard by Theorem 2. Assume H consists of two connected components P k and P t .

-If k + t ≥ 5, then the class of H-free graphs contains all K 3 -free graphs and hence the problem is NP-hard by Theorem 2. -If k + t ≤ 3, then the class of H-free graphs is a subclass of P 4 -free graphs and hence the problem can be solved in polynomial time in this class by Proposition 1. -If k + t = 4, then

• either k = t = 2, in which case H = 2K 2 and hence the problem can be solved in polynomial time by Theorem 3, • or k = 4 and t = 0, in which case H = P 4 and hence the problem can be solved in polynomial time by Proposition 1, • or k = 3 and t = 1, in which case the class of H-free graphs contains all K 3 -free graphs and hence the problem is NP-hard by Theorem 2.
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 12 Fig. 1. Replacement of an edge by two paths

  a star, since otherwise D is not minimal, because any vertex of D corresponding to the middle edge of a P 4 in G F can be removed from D . Let D be the set of the centers of the stars of G F . Then D is dominating in G (since F covers V ) and |D| = n -|F | = n -|D | ≤ k, as required.

Proposition 1 .

 1 The upper dominating set problem can be solved for P 4 -free graphs in polynomial time.

  e. the set of vertices of A each of which is adjacent to at least one vertex of Y . Since a and b are adjacent, by Lemma 2 each of them has a private neighbour outside of X. We denote by a * a private neighbour of a, b * a private neighbour of b. By definition, a * and b * belong to N -Y and have no neighbours in Y . Since G is 2K 2 -free, we conclude that Claim 1. A is an independent set.

Claim 3 .

 3 If |X| > α(G), then |Y | = |Z| and every vertex of Z is a private neighbor of a vertex in Y . Proof. Since every vertex y in Y belongs to X and has a neighbour in X (a or b), by Lemma 2 y must have a private neighbor in Z. Therefore, |Z| ≥ |Y |. If |Z| is strictly greater than |Y |, then |X| ≤ |A ∪ {a}| ≤ α(G) (since A is independent), which contradicts the assumption |X| > α(G). Therefore, |Y | = |Z| and every vertex of Z is a private neighbor of a vertex in Y . Claim 4. If |Y | > 1 and |X| > α(G), then Y ⊆ N (a) ∩ N (b).

Claim 5 .

 5 If |Y | > 1 and |X| > α(G), then a * and b * have no neighbours in Z.

Lemma 4 .Corollary 1 .

 41 If |X| > α(G), then |Y | = 1 and Y ⊆ N (a) ∩ N (b). Proof. First, we show that |Y | ≤ 1. Assume to the contrary that |Y | > 1. By definition of a * and Claim 2, vertex a * has no neighbours in A -Z, and by Claim 5, a * has no neighbours in Z. Therefore, A ∪ {a * , b} is an independent set of size |X| = |Y | + |A -Z| + 2. This contradicts the assumption that |X| > α(G) and proves that |Y | ≤ 1. Suppose now that |Y | = 0. Then, by Claim 3, |Z| = 0 and hence, by Claim 2, X = A ∪ {a, b}. Also, by definition of a * , vertex a * has no neighbours in A. But then A ∪ {a * , b} is an independent set of size |X|, contradicting that |X| > α(G).From the above discussion we know that Y consists of a single vertex, say y. It remains to show that y is adjacent to both a and b. By definition, y must be adjacent to at least one of them, say to a. Assume that y is not adjacent to b. By definition of a * , vertex a * has no neighbours in {y} ∪ (A -Z), and by definition of Z, vertex y has no neighbours in A -Z. But then (A -Z) ∪ {a * , b, y} is an independent set of size |X| = |Y | + |A -Z| + 2. This contradicts the assumption that |X| > α(G) and shows that y is adjacent to both a and b. If a minimal dominating set in a 2K 2 -free graph G is larger than α(G), then it consists of a triangle and all the vertices not dominated by the triangle.

  If M is a minimal dominating set and |M | > |M |, then M := M . 3. Return M . Theorem 3. Algorithm A correctly solves the upper dominating set problem for 2K 2 -free graphs in polynomial time.

  Definition 1. Given a dominating set D and a vertex x ∈ D, we say that a vertex y ∈ D is a private neighbour of x if x is the only neighbour of y in D.Lemma 2. Let D be a minimal dominating set in a graph G. If a vertex x ∈ D has a neighbour in D, then it also has a private neighbour outside of D.Proof. If a vertex x ∈ D is adjacent to a vertex in D and has no private neighbour outside of D, then D is not minimal, because the set D -{x} is also dominating. Lemma 3. Let G be a connected graph and D a minimal dominating set in G. If there are vertices in D that have no private neighbour outside of D, then D can be transformed in polynomial time into a minimal dominating set D with |D | ≤ |D| in which every vertex has a private neighbour outside of D .Proof. Assume D contains a vertex x which has no private neighbours outside of D. Then x is isolated in D (i.e. it has no neighbours in D) by Lemma 2. On the other hand, since G is connected, x must have a neighbour y outside of D. As y is not a private neighbour of x, it is adjacent to a vertex z in D. Consider now the set D 0 = (D -{x}) ∪ {y}. Clearly, it is a dominating set. If it is a minimal dominating set in which every vertex has a private neighbour outside of the set, then we are done. Otherwise, it is either not minimal, in which case we can reduce its size by deleting some vertices, or it has strictly fewer isolated vertices than D. Therefore, by iterating the procedure, in at most |V (G)| steps we can transform D into a minimal dominating set D with |D | ≤ |D| in which every vertex has a private neighbour outside of the set.
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