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HIGH-FREQUENCY APPROXIMATION OF THE INTERIOR

DIRICHLET-TO-NEUMANN MAP AND APPLICATIONS TO THE

TRANSMISSION EIGENVALUES

GEORGI VODEV

Abstract. We study the high-frequency behavior of the Dirichlet-to-Neumann map for an
arbitrary compact Riemannian manifold with a non-empty smooth boundary. We show that far
from the real axis it can be approximated by a simpler operator. We use this fact to get new
results concerning the location of the transmission eigenvalues on the complex plane. In some
cases we obtain optimal transmission eigenvalue-free regions.

1. Introduction and statement of results

Let (X,G) be a compact Riemannian manifold of dimension n = dimX ≥ 2 with a non-
empty smooth boundary ∂X and let ∆X denote the negative Laplace-Beltrami operator on
(X,G). Denote also by ∆∂X the negative Laplace-Beltrami operator on (∂X,G0), which is a
Riemannian manifold without boundary of dimension n− 1, where G0 is the Riemannian metric
on ∂X induced by the metric G. Given a function f ∈ Hm+1(∂X), let u solve the equation

{ (
∆X + λ2n(x)

)
u = 0 in X,

u = f on ∂X,
(1.1)

where λ ∈ C, 1 ≪ |Imλ| ≪ Reλ and n ∈ C∞(X) is a strictly positve function. Then the
Dirichlet-to-Neumann (DN) map

N (λ;n) : Hm+1(∂X) → Hm(∂X)

is defined by
N (λ;n)f := ∂νu|∂X

where ν is the unit inner normal to ∂X. One of our goals in the present paper is to approximate
the operator N (λ;n) when n(x) ≡ 1 in X by a simpler one of the form p(−∆∂X) with a suitable
complex-valued function p(σ), σ ≥ 0. More precisely, the function p is defined as follows

p(σ) =
√
σ − λ2, Re p < 0.

Our first result is the following

Theorem 1.1. Let 0 < ǫ < 1 be arbitrary. Then, for every 0 < δ ≪ 1 there are constants
Cδ, Cǫ,δ > 1 such that we have

‖N (λ; 1)− p(−∆∂X)‖L2(∂X)→L2(∂X) ≤ δ|λ| (1.2)

for Cδ ≤ |Imλ| ≤ (Reλ)1−ǫ, Reλ ≥ Cǫ,δ.

Note that this result has been previously proved in [11] in the case when X is a ball in Rd

and the metric being the Euclidean one. In fact, in this case we have a better approximation
of the operator N (λ; 1). In the general case when the function n is arbitrary the DN map
can be approximated by h − ΨDOs, where 0 < h ≪ 1 is a semi-classical parameter such that
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Re (hλ)2 = 1. To describe this more precisely let us introduce the class of symbols Skδ (∂X),
0 ≤ δ < 1/2, as being the set of all functions a(x′, ξ′) ∈ C∞(T ∗∂X) satisfying the bounds

∣∣∣∂αx′∂
β
ξ′a(x

′, ξ′)
∣∣∣ ≤ Cα,βh

−δ(|α|+|β|)〈ξ′〉k−|β|

for all multi-indices α and β with constants Cα,β independent of h. We let OPSkδ (∂X) denote

the set of all h−ΨDOs, Oph(a), with symbol a ∈ Skδ (∂X), defined as follows

(Oph(a)f) (x
′) = (2πh)−n+1

∫

T ∗∂X
e−

i
h
〈x′−y′,ξ′〉a(x′, ξ′)f(y′)dy′dξ′.

It is well-known that for this class of symbols we have a very nice pseudo-differential calculus
(e.g. see [2]). It was proved in [15] that for |Imλ| ≥ |λ|1/2+ǫ, 0 < ǫ≪ 1, the operator hN (λ;n)
is an h−ΨDO of class OPS1

1/2−ǫ(∂X) with a principal symbol

ρ(x′, ξ′) =
√
r0(x′, ξ′)− (hλ)2n0(x′), Re ρ < 0, n0 := n|∂X ,

r0 ≥ 0 being the principal symbol of −∆∂X . Note that it is still possible to construct a semiclas-
sical parametrix for the operator hN (λ;n) when |Imλ| ≥ |λ|ǫ, 0 < ǫ ≪ 1, if one supposes that
the boundary ∂X is strictly concave (see [16]). This construction, however, is much more com-
plex and one has to work with symbols belonging to much worse classes near the glancing region
Σ = {(x′, ξ′) ∈ T ∗∂X : r♯(x

′, ξ′) = 1}, where r♯ = n−1
0 r0. On the other hand, it seems that no

parametrix construction near Σ is possible in the important region 1 ≪ Const ≤ |Imλ| ≤ |λ|ǫ.
Therefore, in the present paper we follow a different approach which consists of showing that, for
arbitrary manifold X, the norm of the operator hN (λ;n)Oph(χ

0
δ) is O(δ) for every 0 < δ ≪ 1

independent of λ, provided |Imλ| and Reλ are taken big enough (see Proposition 3.3 below).
Here the function χ0

δ ∈ C∞
0 (T ∗∂X) is supported in {(x′, ξ′) ∈ T ∗∂X : |r♯(x′, ξ′)− 1| ≤ 2δ2} and

χ0
δ = 1 in {(x′, ξ′) ∈ T ∗∂X : |r♯(x′, ξ′)− 1| ≤ δ2} (see Section 3 for the precise definition of χ0

δ).
Theorem 1.1 is an easy consequence of the following semi-classical version.

Theorem 1.2. Let 0 < ǫ < 1 be arbitrary. Then, for every 0 < δ ≪ 1 there are constants
Cδ, Cǫ,δ > 1 such that we have

∥∥hN (λ;n)−Oph(ρ(1− χ0
δ) + hb)

∥∥
L2(∂X)→H1

h
(∂X)

≤ Cδ (1.3)

for Cδ ≤ |Imλ| ≤ (Reλ)1−ǫ, Reλ ≥ Cǫ,δ, where C > 0 is a constant independent of λ and δ,
and b ∈ S0

0(∂X) is independent of λ and the function n.

Here H1
h(∂X) denotes the Sobolev space equipped with the semi-classical norm (see Section

3 for the precise definition). Thus, to prove (1.3) (resp. (1.2)) it suffices to construct semi-
classical parametrix outside a δ2- neighbourhood of Σ, which turns out to be much easier and
can be done for an arbitrary X. In the elliptic region {(x′, ξ′) ∈ T ∗∂X : r♯(x

′, ξ′) ≥ 1 + δ2}
we use the same parametrix construction as in [15] with slight modifications. In the hyperbolic
region {(x′, ξ′) ∈ T ∗∂X : r♯(x

′, ξ′) ≤ 1 − δ2}, however, we need to improve the parametrix
construction of [15]. We do this in Section 4 for 1 ≪ Const ≤ |Imλ| ≤ |λ|1−ǫ. Then we show
that the difference between the operator hN (λ;n) microlocalized in the hyperbolic region and

its parametrix is O
(
e−β|Imλ|

)
+ Oǫ,M

(
|λ|−M

)
, where β > 0 is some constant and M ≥ 1 is

arbitrary. So, we can do it small by taking |Imλ| and |λ| big enough.
This kind of approximations of the DN map are important for the study of the location

of the complex eigenvalues associated to boundary-value problems with dissipative boundary
conditions (e.g. see [9]). In particular, Theorem 1.2 leads to significant improvements of the
eigenvalue-free regions in [9]. In the present paper we use Theorem 1.2 to study the location
of the interior transmission egenvalues (see the next section). We improve most of the results
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in [15] as well as those in [11], [16], and provide a simpler proof. In some cases we get optimal
transmission eigenvalue-free regions (see Theorem 2.1). Note that for the applications in the
anisotropic case it suffices to have an weaker analogue of the estimate (1.3) with the space H1

h

replaced by L2, in which case the operator Oph(hb) becomes negligible. In the isotropic case,
however, it is essential to have in (1.3) the space H1

h and that the function b does not depend
on the refraction index n.

Note finally that Theorem 1.2 can be also used to study the location of the resonances for the
exterior transmission problems considered in [1] and [3]. For example, it allows to simplify the
proof of the resonance-free regions in [1] and to extend it to more general boundary conditions.

2. Applications to the transmission eigenvalues

Let Ω ⊂ Rd, d ≥ 2, be a bounded, connected domain with a C∞ smooth boundary Γ = ∂Ω.
A complex number λ ∈ C, Reλ ≥ 0, will be said to be a transmission eigenvalue if the following
problem has a non-trivial solution:





(
∇c1(x)∇ + λ2n1(x)

)
u1 = 0 in Ω,

(
∇c2(x)∇ + λ2n2(x)

)
u2 = 0 in Ω,

u1 = u2, c1∂νu1 = c2∂νu2 on Γ,

(2.1)

where ν denotes the Euclidean unit inner normal to Γ, cj , nj ∈ C∞(Ω), j = 1, 2 are strictly
positive real-valued functions. We will consider two cases:

c1(x) ≡ c2(x) ≡ 1 in Ω, n1(x) 6= n2(x) on Γ, (isotropic case) (2.2)

(c1(x)− c2(x))(c1(x)n1(x)− c2(x)n2(x)) 6= 0 on Γ. (anisotropic case) (2.3)

In Section 6 we will prove the following

Theorem 2.1. Assume either the condition (2.2) or the condition

(c1(x)− c2(x))(c1(x)n1(x)− c2(x)n2(x)) < 0 on Γ. (2.4)

Then there exists a constant C > 0 such that there are no transmission eigenvalues in the region

{λ ∈ C : Reλ > 1, |Imλ| ≥ C} . (2.5)

Remark. It is proven in [15] that under the condition (2.2) (as well as the condition (2.6)

below) there exists a constant C̃ > 0 such that there are no transmission eigenvalues in the
region {

λ ∈ C : 0 ≤ Reλ ≤ 1, |Imλ| ≥ C̃
}
.

This is no longer true under the condition (2.4) in which case there exist infinitely many trans-
mission eigenvalues very close to the imaginary axis.

Note that the eigenvalue-free region (2.5) is optimal and cannot be improved in general.
Indeed, it follows from the analysis in [7] (see Section 4) that in the isotropic case when the
domain Ω is a ball and the refraction indices n1 and n2 constant, there may exist infinitely
many transmission eigenvalues whose imaginary parts are bounded from below by a positive
constant. Note also that the above result has been previously proved in [11] in the case when
the domain Ω is a ball and the coefficients constant. In the isotropic case the eigenvalue-free
region (2.5) has been also obtained in [14] when the dimension is one. In the general case of
arbitrary domains transmission eigenvalue-free regions have been previously proved in [5], [6]



4 G. VODEV

and [12] (isotropic case), [15] and [16] (both cases). For example, it has been proved in [15] that,
under the conditions (2.2) and (2.4), there are no transmission eigenvalues in

{
λ ∈ C : Reλ > 1, |Imλ| ≥ Cε (Reλ)

1

2
+ε
}
, Cε > 0,

for every 0 < ε ≪ 1. This eigenvalue-free region has been improved in [16] under an additional
strict concavity condition on the boundary Γ to the following one

{λ ∈ C : Reλ > 1, |Imλ| ≥ Cε (Reλ)
ε} , Cε > 0,

for every 0 < ε≪ 1. When the function in the left-hand side of (2.3) is strictly positive, parabolic
eigenvalue-free regions have been proved in [15] for arbitrary domains, which however are worse
than the eigenvalue-free regions we have under the conditions (2.2) and (2.4). In Section 7 we
will prove the following

Theorem 2.2. Assume the conditions

(c1(x)− c2(x))(c1(x)n1(x)− c2(x)n2(x)) > 0 on Γ (2.6)

and
n1(x)

c1(x)
6= n2(x)

c2(x)
on Γ. (2.7)

Then there exists a constant C > 0 such that there are no transmission eigenvalues in the region

{λ ∈ C : Reλ > 1, |Imλ| ≥ C log(Reλ+ 1)} . (2.8)

Note that in the case when (2.6) is fulfilled but (2.7) is not, the method developed in the
present paper does not work and it is not clear if improvements are possible compared with the
results in [15]. To our best knowledge, no results exist in the degenerate case when the function
in the left-hand side of (2.3) vanishes without being identically zero.

It has been proved in [10] that the counting function N(r) = #{λ − trans. eig. : |λ| ≤ r},
r > 1, satisfies the asymptotics

N(r) = (τ1 + τ2)r
d +Oε(r

d−κ+ε), ∀ 0 < ε≪ 1,

where 0 < κ ≤ 1 is such that there are no transmission eigenvalues in the region
{
λ ∈ C : Reλ > 1, |Imλ| ≥ C (Reλ)1−κ

}
, C > 0,

and

τj =
ωd

(2π)d

∫

Ω

(
nj(x)

cj(x)

)d/2
dx,

ωd being the volume of the unit ball in Rd. Using this we obtain from the above theorems the
following

Corollary 2.3. Under the conditions of Theorems 2.1 and 2.2, the counting function of the
transmission eigenvalues satisfies the asymptotics

N(r) = (τ1 + τ2)r
d +Oε(r

d−1+ε), ∀ 0 < ε≪ 1. (2.9)

This result has been previously proved in [16] under an additional strict concavity condition
on the boundary Γ. In the present paper we remove this additional condition to conclude that
in fact the asymptotics (2.9) holds true for an arbitrary domain. We also expect that (2.9) holds
with ε = 0, but this remains an interesting open problem. In the isotropic case asymptotics for
the counting function N(r) with remainder o(rd) have been previously obtained in [4], [8], [13].
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3. A priori estimates in the glancing region

Let λ ∈ C, Reλ > 1, 1 < |Imλ| ≤ θ0Reλ, where 0 < θ0 < 1 is a fixed constant, and set
h = µ−1, where

µ = Reλ

√

1−
(
Imλ

Reλ

)2

∼ Reλ ∼ |λ|.

Clearly, we have Re (hλ)2 = 1 and

λ2 = µ2(1 + izh), z = 2µ−1ImλReλ ∼ 2Im λ.

Given an integer m ≥ 0, denote by Hm
h (X) the Sobolev space equipped with the semi-classical

norm
‖v‖Hm

h
(X) =

∑

|α|≤m

h|α| ‖∂αx v‖L2(X) .

We define similarly the Sobolev space Hm
h (∂X). It is well-known that

‖v‖Hm
h
(∂X) ∼ ‖Oph(〈ξ′〉m)v‖L2(∂X) ∼ ‖v‖L2(∂X) + ‖Oph((1 − η)|ξ′|m)v‖L2(∂X)

for any function η ∈ C∞
0 (T ∗∂X) independent of h. Hereafter, 〈ξ′〉 = (1 + |ξ′|2)1/2.

Given functions V ∈ L2(X) and f ∈ L2(∂X), we let the function u solve the equation
{ (

∆X + λ2n(x)
)
u = λV in X,

u = f on ∂X,
(3.1)

and set g = h∂νu|∂X . We will first prove the following

Lemma 3.1. There is a constant C > 0 such that the following estimate holds

‖u‖H1
h
(X) ≤ C|Imλ|−1‖V ‖L2(X) + C|Imλ|−1/2‖f‖1/2

L2(∂X)
‖g‖1/2

L2(∂X)
. (3.2)

Proof. By Green’s formula we have

Im (λ2)‖n1/2u‖2L2(X) = Im 〈λV, u〉L2(X) + Im 〈∂νu|∂X , f〉L2(∂X)

which implies
|Imλ|‖u‖2L2(X) . ‖V ‖L2(X)‖u‖L2(X) + ‖f‖L2(∂X)‖g‖L2(∂X). (3.3)

On the other hand, we have

‖∇Xu‖2L2(X) − Re (λ2)‖n1/2u‖2L2(X) = −Re 〈λV, u〉L2(X) − Re 〈∂νu|∂X , f〉L2(∂X)

which yields

‖h∇Xu‖2L2(X) . ‖u‖2L2(X) +O(h2)‖V ‖2L2(X) +O(h)‖f‖L2(∂X)‖g‖L2(∂X). (3.4)

Since h . |Imλ|−1, the estimate (3.2) follows from (3.3) and (3.4). 2

We now equip X with the Riemannian metric nG. We will write the operator n−1∆X in
the normal coordinates (x1, x

′) with respect to the metric nG near the boundary ∂X, where
0 < x1 ≪ 1 denotes the distance to the boundary and x′ are coordinates on ∂X. Set Γ(x1) =
{x ∈ X : dist(x, ∂X) = x1}, Γ(0) = ∂X. Then Γ(x1) is a Riemannian manifold without
boundary of dimension n − 1 with a Riemannian metric induced by the metric nG, which
depends smoothly in x1. It is well-known that the operator n−1∆X writes as follows

n−1∆X = ∂2x1 +Q(x1) +R

where Q(x1) = ∆Γ(x1) is the negative Laplace-Beltrami operator on Γ(x1) and R is a first-
order differential operator. Clearly, Q(x1) is a second-order differential operator with smooth
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coefficients and Q(0) = ∆
(n)
∂X is the negative Laplace-Beltrami operator on ∂X equipped with

the Riemannian metric induced by the metric nG.
Let χ ∈ C∞

0 (R), 0 ≤ χ(t) ≤ 1, χ(t) = 1 for |t| ≤ 1, χ(t) = 0 for |t| ≥ 2. Given a parameter
0 < δ1 ≪ 1 independent of λ and an integer k ≥ 0, set φk(x1) = χ(2−kx1/δ1). Given integers
0 ≤ s1 ≤ s2 we define the norm ‖u‖s1,s2,k by

‖u‖2s1,s2,k = ‖u‖2
H

s1
h

(X)
+

s1∑

ℓ1=0

s2−ℓ1∑

ℓ2=0

∫ ∞

0
‖(h∂x1)ℓ1(φku)(x1, ·)‖2Hℓ2

h
(∂X)

dx1.

Clearly, we have
‖u‖Hs1

h
(X) ≤ ‖u‖s1,s2,k . ‖u‖Hs2

h
(X).

Throughout this paper η ∈ C∞
0 (T ∗∂X), 0 ≤ η ≤ 1, η = 1 in |ξ′| ≤ A, η = 0 in |ξ′| ≥ A+ 1, will

be a function independent of λ, where A > 1 is a parameter we may take as large as we want.
We will now prove the following

Lemma 3.2. Let u solve the equation (3.1) with V ∈ Hs−1(X) and f ∈ H2s(∂X) for some
integer s ≥ 1. Then the following estimate holds

‖u‖1,s+1,k . ‖u‖H1
h
(X) + ‖V ‖0,s−1,k+s−1 + ‖Oph(1− η)f‖1/2

H2s
h

(∂X)
‖g‖1/2

L2(∂X)
. (3.5)

Proof. Note that
‖u‖1,s+1,k . ‖u‖H1

h
(X) + ‖us,k‖H1

h
(X)

where the function us,k = Oph((1− η)|ξ′|s)(φku) satisfies the equation
(
h2∂2x1 + h2Q(x1) + 1 + ihz

)
us,k = Us,k

with

Us,k =
[
h2Q(x1),Oph((1− η)|ξ′|s)

]
(φku) + Oph((1− η)|ξ′|s)

[
h2∂2x1 , φk

]
φk+1u

−h2Oph((1− η)|ξ′|s)φkRφk+1u+ h2λOph((1 − η)|ξ′|s)(φkV ).

We also have
fs := us,k|x1=0 = Oph((1 − η)|ξ′|s)f,

gs := h∂x1us,k|x1=0 = Oph((1 − η)|ξ′|s)g♭,
where g♭ := h∂x1u|x1=0. Integrating by parts the above equation and taking the real part, we
get

‖h∂x1us,k‖2L2(X) −
〈
(h2Q(x1) + 1)us,k, us,k

〉
L2(X)

≤
∣∣〈Us,k, us,k〉L2(X)

∣∣+ h
∣∣〈fs, gs〉L2(∂X)

∣∣
. ‖us,k‖H1

h
(X) (‖V ‖0,s−1,k + ‖u‖1,s,k+1)

+
∥∥Oph((1 − η)|ξ′|s)∗Oph((1− η)|ξ′|s)f

∥∥
L2(∂X)

‖g♭‖L2(∂X). (3.6)

The principal symbol r of the operator −Q(x1) satisfies r(x, ξ′) ≥ C ′|ξ′|2, C ′ > 0, on suppφk,
provided δ1 is taken small enough. Therefore, we can arrange by taking the parameter A big
enough that r−1 ≥ C〈ξ′〉 on supp (1−η)φk, where C > 0 is some constant. Hence, by Gärding’s
inequality we have

−
〈
(h2Q(x1) + 1)us,k, us,k

〉
L2(X)

≥ C‖Oph(〈ξ′〉)us,k‖2L2(X) (3.7)

with possibly a new constant C > 0. Since the norms of g and g♭ are equivalent, by (3.6) and
(3.7) we get

‖us,k‖H1
h
(X) . ‖V ‖0,s−1,k + ‖u‖H1

h
(X) + ‖us−1,k+1‖H1

h
(X)
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+ ‖Oph(1− η)f‖1/2
H2s

h
(∂X)

‖g‖1/2
L2(∂X)

. (3.8)

We may now apply the same argument to us−1,k+1. Thus, applying this argument a finite
number of times we can eliminate the term involving us−1,k+1 in the RHS of (3.8) and obtain
the estimate (3.5). 2

Let the functions χj ∈ C∞(R), 0 ≤ χj(t) ≤ 1, j = 1, 2, 3, be such that χ1 + χ2 + χ3 ≡ 1,
χ2 = χ, χ1(t) = 1 for t ≤ −2, χ1(t) = 0 for t ≥ −1, χ3(t) = 0 for t ≤ 1, χ3(t) = 1 for t ≥ 2.
Given a parameter 0 < δ ≪ 1 independent of λ, set

χ−
δ (x

′, ξ′) = χ1((r♯(x
′, ξ′)− 1)/δ2),

χ0
δ(x

′, ξ′) = χ2((r♯(x
′, ξ′)− 1)/δ2),

χ+
δ (x

′, ξ′) = χ3((r♯(x
′, ξ′)− 1)/δ2),

where r♯ = n−1
0 r0 is the principal symbol of the operator −∆

(n)
∂X . Since (r♯ − 1)kχ0

δ = O(δ2k),
we have

(h2∆
(n)
∂X + 1)kOph(χ

0
δ) = O(δ2k) : L2(∂X) → L2(∂X) (3.9)

for every integer k ≥ 0. Clearly, we also have

Oph(χ
0
δ) = O(1) : L2(∂X) → Hm

h (∂X), ∀m ≥ 0,

uniformly in δ. Using (3.9) we will prove the following

Proposition 3.3. Let u solve (3.1) with f ≡ 0 and V ∈ Hs(X) for some integer s ≥ 0. Then
the function g = h∂νu|∂X satisfies the estimate

‖g‖Hs
h
(∂X) ≤ C ′|Imλ|−1/2‖V ‖0,s,s (3.10)

with a constant C ′ > 0 independent of λ.
Let u solve (3.1) with f replaced by Oph(χ

0
δ)f and V ∈ Hs+2(X) for some integer s ≥ 0.

Then the function g = h∂νu|∂X satisfies the estimate

‖g‖Hs
h
(∂X) ≤ C

(
δ + |Imλ|−1/2

)
‖f‖L2(∂X) + C

(
δ1/2 + |Imλ|−1/4

)
‖V ‖0,s+2,s+2 (3.11)

for 1 < |Imλ| ≤ δ2Reλ, Reλ ≥ Cδ ≫ 1, with a constant C > 0 independent of λ and δ.

Proof. Set w = φ0(x1)u. We will first show that the estimates (3.10) and (3.11) with s ≥ 1
follow from (3.10) and (3.11) with s = 0, respectively. This follows from the estimate

‖g‖Hs
h
(∂X) . ‖g‖L2(∂X) + ‖h∂x1vs|x1=0‖L2(∂X) (3.12)

where the function vs = Oph((1− η)|ξ′|s)w satisfies the equation (3.1) with V replaced by

Vs = nOph((1− η)|ξ′|s)φ0n−1V + λ−1n
[
n−1∆X ,Oph((1− η)|ξ′|s)φ0

]
u.

We can write the commutator as
[
∂2x1 +R,φ0(x1)

]
Oph((1 − η)|ξ′|s)φ1(x1) + φ0

[
Q(x1) +R,Oph((1− η)|ξ′|s)

]
φ1(x1).

Therefore, if f ≡ 0, in view of Lemmas 3.1 and 3.2, the function Vs satisfies the bound

‖Vs‖0,0,0 . ‖V ‖0,s,0 + ‖u‖1,s+1,1

. ‖u‖H1
h
(X) + ‖V ‖0,s,s . ‖V ‖0,s,s. (3.13)

Clearly, the assertion concerning (3.10) follows from (3.12) and (3.13). The estimate (3.11) can
be treated similarly. Indeed, in view of Lemma 3.2, the function Vs satisfies the bound

‖Vs‖0,2,2 . ‖V ‖0,s+2,0 + ‖u‖1,s+3,1
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. ‖u‖H1
h
(X) + ‖V ‖0,s+2,s+2

+‖Oph(1− η)Oph(χ
0
δ)f‖

1/2

H2s+4

h
(∂X)

‖g‖1/2
L2(∂X)

. (3.14)

Taking the parameter A big enough we can arrange that suppχ0
δ ∩ supp (1− η) = ∅. Hence

Oph(1− η)Oph(χ
0
δ) = O(h∞) : L2(∂X) → Hm

h (∂X), ∀m ≥ 0. (3.15)

By (3.14) and (3.15) together with Lemma 3.1 we conclude

‖Vs‖0,2,2 . ‖u‖H1
h
(X) + ‖V ‖0,s+2,s+2 +O(h∞)‖f‖1/2

L2(∂X)
‖g‖1/2

L2(∂X)

. ‖V ‖0,s+2,s+2 +O
(
|Imλ|−1/2 + h∞

)
‖f‖1/2

L2(∂X)
‖g‖1/2

L2(∂X)
.

We now apply (3.11) with s = 0 to the function vs and note that

vs|x1=0 = Oph((1− η)|ξ′|s)Oph(χ
0
δ)f = O(h∞)f.

Hence

‖h∂x1vs|x1=0‖L2(∂X) ≤ O(h∞)‖f‖L2(∂X) +O
(
δ1/2 + |Imλ|−1/4

)
‖Vs‖0,2,2

≤ O
(
δ1/2 + |Imλ|−1/4

)
‖V ‖0,s+2,s+2 +O

(
|Imλ|−1/2 + h∞

)
‖f‖1/2

L2(∂X)
‖g‖1/2

L2(∂X)
. (3.16)

Therefore, the assertion concerning (3.11) follows from (3.12) and (3.16).
We now turn to the proof of (3.10) and (3.11) with s = 0. In view of Lemma 3.1, the function

U := h(n−1∆X + λ2)w = h[n−1∆X , φ0(x1)]u+ hλn−1φ0V

satisfies the bound
‖U‖L2(X) . ‖u‖H1

h
(X) + ‖V ‖L2(X)

. ‖V ‖L2(X) +O
(
|Imλ|−1/2

)
‖f‖1/2

L2(∂X)
‖g‖1/2

L2(∂X)
. (3.17)

Observe now that the derivative of the function

E(x1) = ‖h∂x1w‖2 +
〈(
h2Q(x1) + 1

)
w,w

〉
,

‖ · ‖ and 〈·, ·〉 being the norm and the scalar product in L2(∂X), satisfies

E′(x1) = 2Re
〈(
h2∂2x1 + h2Q(x1) + 1

)
w, ∂x1w

〉
+
〈
h2Q′(x1)w,w

〉

= 2Re 〈(U − izw − hRw) , h∂x1w〉+
〈
h2Q′(x1)w,w

〉
.

If we put g♭ := h∂x1u|x1=0, we have

‖g♭‖2 +
〈(
h2∆

(n)
∂X + 1

)
Oph(χ

0
δ)f,Oph(χ

0
δ)f
〉
= E(0) = −

∫ ∞

0
E′(x1)dx1

.
(
‖U‖L2(X) + |z|‖w‖L2(X) + ‖hRw‖L2(X)

)
‖h∂x1w‖L2(X) + ‖w‖2H1

h
(X)

≤ O(|z|)‖h∂x1w‖L2(X)‖w‖L2(X) +O
(
|Imλ|−1

)
F 2 (3.18)

where we have used Lemma 3.1 together with (3.17) and we have put

F = ‖f‖1/2‖g‖1/2 + ‖V ‖L2(X).

Clearly, (3.10) with s = 0 follows from (3.18) applied with f ≡ 0 and Lemma 3.1. To prove
(3.11) with s = 0, observe that (3.9) and (3.18) lead to

‖g‖ ≤ O(δ)‖f‖ +O
(
|Imλ|−1/2

)
F

+O(|Imλ|1/2)‖h∂x1w‖
1/2
L2(X)

‖w‖1/2
L2(X)

. (3.19)
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We need now to better bound the norm ‖h∂x1w‖L2(X) in the RHS of (3.19) than what the
estimate (3.2) gives. To this end, observe that integrating by parts yields

‖h∂x1w‖2L2(X) −
〈(
h2Q(x1) + 1

)
w,w

〉
L2(X)

= −hRe 〈(U − hRw), w〉L2(X) − hRe 〈f, g♭〉
≤ O(h)‖w‖2H1

h
(X) +O(h)‖U‖2L2(X) +O(h)‖f‖‖g‖ ≤ O(h)F 2. (3.20)

By (3.19) and (3.20) together with Lemma 3.1 we get

‖g‖ ≤ O(δ)‖f‖ +O(|Imλ|1/2)‖w1‖1/4L2(X)
‖w‖3/4

L2(X)

+O(h1/4|Imλ|1/2)F 1/2‖w‖1/2
L2(X)

+O
(
|Imλ|−1/2

)
F

≤ O(δ)‖f‖ +O(|Imλ|1/8)‖w1‖1/4L2(X)
F 3/4

+O
(
|Imλ|−1/2 + h1/4|Imλ|1/4

)
F (3.21)

where we have put w1 :=
(
h2Q(x1) + 1

)
w. We need now the following

Lemma 3.4. The function w1 satisfies the estimate

|Imλ|1/2‖w1‖L2(X) ≤ O
(
δ2 + |Imλ|−1 + h∞

)
‖f‖1/2‖g‖1/2

+O
(
h1/2

)
‖f‖+O

(
|Imλ|−1

)
‖V ‖0,2,2. (3.22)

Let us see that this lemma implies the estimate (3.11) with s = 0. Set

F̃ = ‖f‖1/2‖g‖1/2 + ‖V ‖0,2,2 ≥ F.

By (3.21) and (3.22),

‖g‖ ≤ O(δ)‖f‖+O
(
δ1/2 + |Imλ|−1/4 + h∞

)
F̃

+O(h1/8)(‖f‖+ F ) +O
(
|Imλ|−1/2 + h1/4|Imλ|1/4

)
F

≤ O
(
δ + h1/8

)
‖f‖

+O
(
δ1/2 + |Imλ|−1/4 + h1/8 + h1/4|Imλ|1/4

)
F̃ . (3.23)

Since by assumption h1/4|Imλ|1/4 = O
(
δ1/2

)
, one can easily see that (3.11) with s = 0 follows

from (3.23). 2

Proof of Lemma 3.4. Observe that the function w1 satisfies the equation
(
h2∂2x1 + h2Q(x1) + 1 + ihz

)
w1 = hU1

where
U1 :=

(
h2Q(x1) + 1

)
(U − hRw) + 2h3Q′(x1)∂x1w + h3Q′′(x1)w.

We also have
f1 := w1|x1=0 = (h2Q(0) + 1)Oph(χ

0
δ)f,

g1 := h∂x1w1|x1=0 = (h2Q(0) + 1)g♭ + h2Q′(0)Oph(χ
0
δ)f.

Integrating by parts the above equation and taking the imaginary part, we get

|z|‖w1‖2L2(X) ≤
∣∣〈U1, w1〉L2(X)

∣∣+ |〈f1, g1〉|
≤ ‖U1‖L2(X)‖w1‖L2(X) +O(1)

∥∥(h2Q(0) + 1)2Oph(χ
0
δ)f
∥∥ ‖g‖
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+O(h)
∥∥Oph(χ

0
δ)f
∥∥
H2

h
(∂X)

∥∥(h2Q(0) + 1)Oph(χ
0
δ)f
∥∥

≤ ‖U1‖L2(X)‖w1‖L2(X) +O(δ4)‖f‖‖g‖ +O(h)‖f‖2
where we have used (3.9). Hence

|z|‖w1‖2L2(X) ≤ O
(
|z|−1

)
‖U1‖2L2(X) +O(δ4)‖f‖‖g‖ +O(h)‖f‖2. (3.24)

Recall that the function U is of the form (2h∂x1 + a(x))φ1(x1)u + hλn−1φ0V , where a is some
smooth function. Hence the function U1 satisfies the estimate

‖U1‖L2(X) . ‖u‖1,3,1 + ‖V ‖0,2,0
. ‖u‖H1

h
(X) + ‖V ‖0,2,2 +O(h∞)‖f‖1/2

L2(∂X)
‖g‖1/2

L2(∂X)
(3.25)

where we have used Lemma 3.2 together with (3.15). By (3.24) and (3.25),

|z|‖w1‖2L2(X) ≤ O
(
|z|−1

)
‖u‖2H1

h
(X) +O

(
|z|−1

)
‖V ‖20,2,2

+O(δ4 + h∞)‖f‖‖g‖ +O(h)‖f‖2. (3.26)

Clearly, (3.22) follows from (3.26) and Lemma 3.1. 2

4. Parametrix construction in the hyperbolic region

Let λ be as in Theorems 1.1 and 1.2, and let h, z, δ, r0, n0, r♯, χ and χ−
δ be as in the previous

sections. Set θ = Im (hλ)2 = hz = O(hǫ), |θ| ≫ h, and

ρ(x′, ξ′) =
√
r0(x′, ξ′)− (1 + iθ)n0(x′), Re ρ < 0.

It is easy to see that ρχ−
δ ∈ S0

0(∂X). In this section we will prove the following

Proposition 4.1. There are constants C,C1 > 0 depending on δ but independent of λ such that
∥∥hN (λ;n)Oph(χ

−
δ )−Oph(ρχ

−
δ )
∥∥
L2(∂X)→H1

h
(∂X)

≤ C1

(
h+ e−C|Imλ|

)
. (4.1)

Proof. To prove (4.1) we will build a parametrix near the boundary of the solution to the
equation (1.1) with f replaced by Oph(χ

−
δ )f . Let x = (x1, x

′), x1 > 0, be the normal coordinates
with respect to the metric G, which of course are different from those introduced in the previous
section. In these coordinates the operator ∆X writes as follows

∆X = ∂2x1 + Q̃+ R̃

where Q̃ ≤ 0 is a second-order differential operator with respect to the variables x′ with co-

efficients depending smoothly on x and R̃ is a first-order differential operator with respect to
the variables x with coefficients depending smoothly on x. Let (x0, ξ0) ∈ suppχ−

δ and let

U ⊂ T ∗∂X be a small open neighbourhood of (x0, ξ0) contained in {r♯ ≤ 1 − δ2/2}. Take

a function ψ ∈ C∞
0 (U). We will construct a parametrix ũ−ψ of the solution of (1.1) with

ũ−ψ |x1=0 = Oph(ψ)f in the form ũ−ψ = φ(x1)K−f , where φ(x1) = χ(x1/δ1), 0 < δ1 ≪ 1 be-

ing a parameter independent of λ to be fixed later on depending on δ, and

(K−f)(x) = (2πh)−n+1

∫ ∫
e

i
h
(〈y′,ξ′〉+ϕ(x,ξ′,θ))a(x, ξ′, λ)f(y′)dξ′dy′.

The phase ϕ is complex-valued such that ϕ|x1=0 = −〈x′, ξ′〉 and satisfies the eikonal equation
mod O(θM):

(∂x1ϕ)
2 + 〈B(x)∇x′ϕ,∇x′ϕ〉 = (1 + iθ)n(x) + θMRM (4.2)

where M ≫ 1 is an arbitrary integer, the function RM is bounded uniformly in θ, and B is a
matrix-valued function such that r(x, ξ′) = 〈B(x)ξ′, ξ′〉, r(x, ξ′) ≥ 0 being the principal symbol
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of the operator −Q̃. We clearly have r0(x
′, ξ′) = r(0, x′, ξ′). Let us see that for (x′, ξ′) ∈ U ,

0 ≤ x1 ≤ 3δ1, the equation (4.2) has a smooth solution safisfying

∂x1ϕ|x1=0 = −iρ+O(θM/2) (4.3)

provided δ1 and U are small enough. We will be looking for ϕ in the form

ϕ =

M−1∑

j=0

(iθ)jϕj(x, ξ
′)

where ϕj are real-valued functions depending only on the sign of θ and satisfying the equations

(∂x1ϕ0)
2 + 〈B(x)∇x′ϕ0,∇x′ϕ0〉 = n(x), (4.4)

k∑

j=0

∂x1ϕj∂x1ϕk−j +

k∑

j=0

〈B(x)∇x′ϕj ,∇x′ϕk−j〉 = εkn(x), 1 ≤ k ≤M − 1, (4.5)

ϕ0|x1=0 = −〈x′, ξ′〉, ϕj |x1=0 = 0 for j ≥ 1, where ε1 = 1, εk = 0 for k ≥ 2. It is easy to check
that with this choice the function ϕ satisfies (4.2) with RM being polynomial in θ.

Clearly, if ϕ0 is a solution to (4.4), then we have (∂x1ϕ0|x1=0)
2 = n0(x

′)− r0(x′, ξ′) ≥ C2 with
some constant C > 0 depending on δ. It is well-known that the equation (4.4) has a local (that is,
for δ1 and U small enough) real-valued solution ϕ±

0 such that ∂x1ϕ
±
0 |x1=0 = ±√

n0 − r0. We now
define the function ϕ0 by ϕ0 = ϕ+

0 if θ > 0, ϕ0 = ϕ−
0 if θ < 0. Hence |∂x1ϕ0(x, ξ

′)| ≥ Const > 0
for x1 small enough. Therefore, the equations (4.5) can be solved locally. Taking x1 = 0 in the
equation (4.5) with k = 1 we find

θ∂x1ϕ1|x1=0 = θ (2∂x1ϕ0|x1=0)
−1 =

|θ|
2
(n0 − r0)

−1/2 ≥ |θ|
2C

. (4.6)

Hence

Im ∂x1ϕ|x1=0 = θ∂x1ϕ1|x1=0 +O(θ2) ≥ |θ|
3C

> 0 (4.7)

if |θ| is taken small enough. On the other hand, taking x1 = 0 in the equation (4.2) we find

(∂x1ϕ|x1=0)
2 = (iρ)2 +O(θM ) = (iρ)2(1 +O(θM)) (4.8)

where we have used that |ρ| ≥ Const > 0 on U . Since Re ρ < 0, we get (4.3) from (4.7) and
(4.8). By (4.6) we also get

θϕ1(x1, x
′, ξ′) = θx1∂x1ϕ1(0, x

′, ξ′) +O(θx21) ≥
x1|θ|
2C

−O(|θ|x21) ≥
x1|θ|
3C

provided x1 is taken small enough. This implies

Imϕ(x, ξ′, θ) = θϕ1(x1, x
′, ξ′) +O(θ2x1) ≥

x1|θ|
4C

. (4.9)

The amplitude a is of the form

a =

m∑

k=0

hkak(x, ξ
′, θ)

where m ≫ 1 is an arbitrary integer and the functions ak satisfy the transport equations mod
O(θM ):

2i∂x1ϕ∂x1ak + 2i 〈B(x)∇x′ϕ,∇x′ak〉+ i (∆Xϕ) ak = ∆Xak−1 + θMQ(k)
M , 0 ≤ k ≤ m, (4.10)
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a0|x1=0 = ψ, ak|x1=0 = 0 for k ≥ 1, where a−1 = 0. Let us see that the transport equations have
smooth solutions for (x′, ξ′) ∈ U , 0 ≤ x1 ≤ 3δ1, provided δ1 and U are taken small enough. As
above, we will be looking for ak in the form

ak =

M−1∑

j=0

(iθ)jak,j(x, ξ
′).

We let ak,j satisfy the equations

2i

j∑

ν=0

∂x1ϕν∂x1ak,j−ν + 2i

j∑

ν=0

〈B(x)∇x′ϕν ,∇x′ak,j−ν〉+ i (∆Xϕj) ak,j = ∆Xak−1,j (4.11)

0 ≤ j ≤ M − 1, a0,0|x1=0 = ψ, ak,j|x1=0 = 0 for k + j ≥ 1. Then the functions ak satisfy (4.10)

with Q(k)
M being polynomial in θ. As in the case of the equations (4.5) one can solve (4.11)

locally. Then we can write

V− := h−1(h2∆X + (1 + iθ)n(x))ũ−ψ = K−
1 f +K−

2 f

where

K−
1 f = h[∆X , φ]K−f = h(2φ′(x1)∂x1 + c(x)φ′′(x1))K−f

= (2πh)−n+1

∫ ∫
e

i
h
(〈y′,ξ′〉+ϕ(x,ξ′,θ))A−

1 (x, ξ
′, λ)f(y′)dξ′dy′

c being some smooth function,

A−
1 = 2iφ′a∂x1ϕ+ hcφ′′∂x1a

and

(K−
2 f)(x) = (2πh)−n+1

∫ ∫
e

i
h
(〈y′,ξ′〉+ϕ(x,ξ′,θ))A−

2 (x, ξ
′, λ)f(y′)dξ′dy′

where

A−
2 = φ(x1)

(
h−1θMRMa+ θM

m∑

k=0

hkQ(k)
M + hm+1∆Xam

)
.

Let us see that Proposition 4.1 follows from the following

Lemma 4.2. The function V− satisfies the estimate

‖V−‖H1
h
(X) . e−C|Imλ|‖f‖+Om

(
hm−n

)
‖f‖+OM

(
hǫM−n

)
‖f‖ (4.12)

with some constant C > 0.

Indeed, if u−ψ denotes the solution to the equation (1.1) with f replaced by Oph(ψ)f and ũ−ψ
is the parametrix built above, then the function v = u−ψ − ũ−ψ satisfies the equation (3.1) with

f ≡ 0. Therefore, by the estimates (3.10) and (4.12) we have
∥∥∥hN (λ;n)Oph(ψ) − T−

ψ

∥∥∥
L2(∂X)→H1

h
(∂X)

. e−C|Imλ| +Om

(
hm−n

)
+OM

(
hǫM−n

)
(4.13)

where the operator T−
ψ is defined by

T−
ψ f = h∂x1K−f |x1=0.

Hence, in view of (4.3),
(
T−
ψ f
)
(x′) = (2πh)−n+1

∫ ∫
e

i
h
〈y′−x′,ξ′〉(iψ∂x1ϕ(0, x

′, ξ′, θ) + h∂x1a(0, x
′, ξ′, λ))f(y′)dξ′dy′
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= Oph(ρψ +O(θM/2))f +

m∑

k=0

hk+1Oph(∂x1ak(0, x
′, ξ′, θ))f.

Since

Oph(∂x1ak(0, x
′, ξ′, θ)) = O(1) : L2(∂X) → H1

h(∂X)

uniformly in θ, it follows from (4.13) that

‖hN (λ;n)Oph(ψ) −Oph(ρψ)‖L2(∂X)→H1
h
(∂X) . e−C|Imλ| +O(h). (4.14)

On the other hand, using a suitable partition of the unity we can write the function χ−
δ as∑J

j=1 ψj , where each function ψj has the same properties as the function ψ above. In other

words, we have (4.14) with ψ replaced by each ψj , which after summing up leads to (4.1). 2

Proof of Lemma 4.2. Let α be a multi-index such that |α| ≤ 1. Since

i|α|A−
2 ∂

α
xϕ+ (h∂x)

αA−
2 = Om

(
hm+1

)
+OM

(
hǫM−1

)

and Imϕ ≥ 0, the kernel of the operator (h∂x)
αK−

2 : L2(∂X) → L2(X) is Om (hm−n) +
OM

(
hǫM−n

)
, and hence so is its norm. Since the function A−

1 is supported in the interval

[δ1/2, 3δ1] with respect to the variable x1, to bound the norm of the operator K−
1,α := (h∂x)

αK−
1 :

L2(∂X) → L2(X) it suffices to show that

‖K−
1,α‖L2(∂X)→L2(∂X) . e−C|θ|/h +O(h∞) (4.15)

for every fixed x1 ∈ [δ1/2, 3δ1] uniformly in x1. Since |θ|/h ∼ |Imλ|, (4.15) will imply (4.12).
We would like to consider K−

1,α as an h−FIO with phase Reϕ and amplitude

Aα = e−Imϕ/h
(
i|α|A−

1 ∂
α
xϕ+ (h∂x)

αA−
1

)
.

To do so, we need to have that the phase satisfies the condition
∣∣∣∣det

(
∂2Reϕ

∂x′∂ξ′

)∣∣∣∣ ≥ C̃ > 0 (4.16)

for |θ| small enough, where C̃ is a constant independent of θ. Since Reϕ = ϕ0+O(|θ|), it suffices
to show (4.16) for the phase ϕ0. This, however, is easy to arrange by taking x1 small enough
because ϕ0 = −〈x′, ξ′〉 + O(x1) and (4.16) is trivially fulfilled for the phase −〈x′, ξ′〉. On the
other hand, using that Imϕ = O(|θ|) together with (4.9) we get the following bounds for the
amplitude:

∣∣∣∂β1x′ ∂
β2
ξ′ Aα

∣∣∣ ≤ Cβ1,β2
∑

0≤k≤|β1|+|β2|

( |θ|
h

)k
e−

δ1|θ|
8Ch ≤ C̃β1,β2e

−
δ1|θ|
9Ch (4.17)

for all multi-indices β1 and β2. It follows from (4.16) and (4.17) that, mod O(h∞), the operator
(K−

1,α)
∗K−

1,α is an h − ΨDO in the class OPS0
0(∂X) uniformly in θ with a symbol which is

O
(
e−2C|θ|/h

)
together with all derivatives, where C > 0 is a new constant. Therefore, its norm

is also O
(
e−2C|θ|/h

)
, which clearly implies (4.15). 2

5. Parametrix construction in the elliptic region

We keep the notations from the previous sections and note that ρχ+
δ ∈ S1

0(∂X). It is easy

also to see that 0 < C1〈ξ′〉 ≤ |ρ| ≤ C2〈ξ′〉 on suppχ+
δ , where C1 and C2 are constants depending

on δ. In this section we will prove the following
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Proposition 5.1. There is a constant C > 0 depending on δ but independent of λ such that
∥∥hN (λ;n)Oph(χ

+
δ )−Oph(ρχ

+
δ + hb)

∥∥
L2(∂X)→H1

h
(∂X)

≤ Ch (5.1)

where b ∈ S0
0(∂X) does not depend on λ and the function n.

Proof. The estimate (5.1) is a consequence of the parametrix built in [15]. In what follows
we will recall this construction. We will first proceed locally and then we will use partition
of the unity to get the global parametrix. Fix a point x0 ∈ ∂X and let U0 ⊂ ∂X be a small
open neighbourhood of x0. Let (x1, x

′), x1 > 0, x′ ∈ U0, be the normal coordinates used in the
previous section. Take a function ψ0 ∈ C∞

0 (U0) and set ψ = ψ0χ+
δ . As in the previous section,

we will construct a parametrix ũ+ψ of the solution of (1.1) with ũ+ψ |x1=0 = Oph(ψ)f in the form

ũ+ψ = φ(x1)K+f , where φ(x1) = χ(x1/δ1), 0 < δ1 ≪ 1 being a parameter independent of λ to
be fixed later on, and

(K+f)(x) = (2πh)−n+1

∫ ∫
e

i
h
(〈y′,ξ′〉+ϕ(x,ξ′,θ))a(x, ξ′, λ)f(y′)dξ′dy′.

The phase ϕ is complex-valued such that ϕ|x1=0 = −〈x′, ξ′〉 and satisfies the eikonal equation
mod O(xM1 ):

(∂x1ϕ)
2 + 〈B(x)∇x′ϕ,∇x′ϕ〉 − (1 + iθ)n(x) = xM1 R̃M (5.2)

where M ≫ 1 is an arbitrary integer, the function R̃M is smooth up to the boundary x1 = 0. It
is shown in [15], Section 4, that for (x′, ξ′) ∈ suppψ, the equation (5.2) has a smooth solution
of the form

ϕ =

M−1∑

k=0

xk1ϕk(x
′, ξ′, θ), ϕ0 = −〈x′, ξ′〉,

safisfying

∂x1ϕ|x1=0 = ϕ1 = −iρ. (5.3)

Moreover, taking δ1 small enough we can arrange that

Imϕ ≥ −x1
2
Re ρ ≥ Cx1〈ξ′〉, C > 0, (5.4)

for 0 ≤ x1 ≤ 3δ1, (x
′, ξ′) ∈ suppψ. The amplitude a is of the form

a =
m∑

j=0

hjaj(x, ξ
′, θ)

where m ≫ 1 is an arbitrary integer and the functions aj satisfy the transport equations mod

O(xM1 ):

2i∂x1ϕ∂x1aj + 2i 〈B(x)∇x′ϕ,∇x′aj〉+ i (∆Xϕ) aj = ∆Xaj−1 + xM1 Q̃(j)
M , 0 ≤ j ≤ m, (5.5)

a0|x1=0 = ψ, aj |x1=0 = 0 for j ≥ 1, where a−1 = 0 and the functions Q̃(j)
M are smooth up to the

boundary x1 = 0. It is shown in [15], Section 4, that the equations (5.5) have unique smooth
solutions of the form

aj =

M−1∑

k=0

xk1ak,j(x
′, ξ′, θ)

with functions ak,j ∈ S−j
0 (∂X) uniformly in θ. We can write

V+ := h−1(h2∆X + (1 + iθ)n(x))ũ+ψ = K+
1 f +K+

2 f
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where

K+
1 f = h[∆X , φ]K+f = h(2φ′(x1)∂x1 + c(x)φ′′(x1))K+f

= (2πh)−n+1

∫ ∫
e

i
h
(〈y′,ξ′〉+ϕ(x,ξ′,θ))A+

1 (x, ξ
′, λ)f(y′)dξ′dy′,

A+
1 = 2iφ′a∂x1ϕ+ hcφ′′∂x1a

and

(K+
2 f)(x) = (2πh)−n+1

∫ ∫
e

i
h
(〈y′,ξ′〉+ϕ(x,ξ′,θ))A+

2 (x, ξ
′, λ)f(y′)dξ′dy′

where

A+
2 = φ(x1)


h−1xM1 R̃Ma+ xM1

m∑

j=0

hjQ̃(j)
M + hm+1∆Xam


 .

As in the previous section, we will derive Proposition 5.1 from (5.3) and the following

Lemma 5.2. The function V+ satisfies the estimate

‖V+‖H1
h
(X) ≤ Om

(
hm−n

)
‖f‖+OM

(
hM−n

)
‖f‖. (5.6)

Proof. Let α be a multi-index such that |α| ≤ 1. In view of (5.4) we have
∣∣∣eiϕ/h

(
i|α|A+

1 ∂
α
xϕ+ (h∂x)

αA+
1

)∣∣∣

. sup
δ1/2≤x1≤3δ1

e−Imϕ/h . e−C〈ξ′〉/h = OM

(
(h/〈ξ′〉)M

)

for every integer M ≫ 1. Therefore, the kernel of the operator (h∂x)
αK+

1 : L2(∂X) → L2(X) is
OM

(
hM−n+1

)
, and hence so is its norm. By (5.4) we also have

xM1 e
−Imϕ/h ≤ xM1 e

−Cx1〈ξ′〉/h = OM

(
(h/〈ξ′〉)M

)
.

This implies that

eiϕ/h
(
i|α|A+

2 ∂
α
xϕ+ (h∂x)

αA+
2

)
= OM

(
(h/〈ξ′〉)M−1

)
+Om

(
(h/〈ξ′〉)m

)

which again implies the desired bound for the norm of the operator (h∂x)
αK+

2 . 2

By the estimates (3.10) and (5.6) we have
∥∥∥hN (λ;n)Oph(ψ) − T+

ψ

∥∥∥
L2(∂X)→H1

h
(∂X)

≤ Om

(
hm−n

)
+OM

(
hM−n

)
(5.7)

where the operator T+
ψ is defined by

T+
ψ f = h∂x1K+f |x1=0.

In view of (5.3), we have
(
T+
ψ f
)
(x′) = (2πh)−n+1

∫ ∫
e

i
h
〈y′−x′,ξ′〉(iψ∂x1ϕ(0, x

′, ξ′, θ) + h∂x1a(0, x
′, ξ′, λ))f(y′)dξ′dy′

= Oph(ρψ)f +

m∑

j=0

hj+1Oph(a1,j(x
′, ξ′, θ))f

where a1,j ∈ S−j
0 (∂X). Hence

Oph(a1,j) = O(1) : L2(∂X) → Hj
h(∂X).
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Therefore it follows from (5.7) that

‖hN (λ;n)Oph(ψ) −Oph(ρψ + ha1,0)‖L2(∂X)→H1
h
(∂X) ≤ O(h). (5.8)

We need now the following

Lemma 5.3. There exists a function b0 ∈ S0
0(∂X) independent of λ and n such that

a1,0 − b0 ∈ S−1
0 (∂X). (5.9)

Proof. We will calculate the function a1,0 explicitly. Note that this lemma (resp. Proposition
5.1) is also used in [15], but the proof therein is not correct since a1,0 is calculated incorrectly.
Therefore we will give here a new proof. Clearly, it suffices to prove (5.9) with a1,0 replaced by

(1− η)a1,0 with some function η ∈ C∞
0 (T ∗∂X) independent of h. Since ρ = −√

r0
(
1 +O(r−1

0 )
)

as r0 → ∞, it is easy to see that

(1− η)ρ−k − (1− η)(−√
r0)

−k ∈ S−k−1
0 (∂X) (5.10)

for every integer k ≥ 0, provided η is taken such that η = 1 for |ξ′| ≤ A with some A > 1 big
enough. We will now calculate the function ϕ2 from the eikonal equation. To this end, write

B(x) = B0(x
′) + x1B1(x

′) +O(x21), n(x) = n0(x
′) + x1n1(x

′) +O(x21)

and observe that the LHS of (5.2) is equal to

x1 (4ϕ1ϕ2 + 2〈B0∇x′ϕ0,∇x′ϕ1〉+ 〈B1∇x′ϕ0,∇x′ϕ0〉 − (1 + iθ)n1) +O(x21).

Hence, taking into account that ϕ0 = −〈x′, ξ′〉 and ϕ1 = −iρ, we get

ϕ2 = (2ρ)−1〈B0ξ
′,∇x′ρ〉+ (4iρ)−1〈B1ξ

′, ξ′〉 − (1 + iθ)(4iρ)−1n1.

Using the identity

2ρ∇x′ρ = ∇x′r0 − (1 + iθ)∇x′n0

we can write ϕ2 in the form

ϕ2 = (2ρ)−2〈B0ξ
′,∇x′r0〉+ (4iρ)−1〈B1ξ

′, ξ′〉
−(1 + iθ)(2ρ)−2〈B0ξ

′,∇x′n0〉 − (1 + iθ)(4iρ)−1n1.

By (5.10) we conclude that, mod S−1
0 (∂X),

(1− η)
ϕ2

ϕ1
= −i4−1(1− η)r

−3/2
0 〈B0ξ

′,∇x′r0〉+ (1− η)(4r0)
−1〈B1ξ

′, ξ′〉. (5.11)

Write now the operator ∆X in the form

∆X = ∂2x1 + 〈B0∇x′ ,∇x′〉+ q1(x
′)∂x1 + 〈q2(x′),∇x′〉+O(x1)

and observe that

∆Xϕ = 2ϕ2 + q1ϕ1 − 〈q2(x′), ξ′〉+O(x1).

We now calculate the LHS of the equation (5.5) with j = 0 modulo O(x1). Recall that a0,0 = ψ.
We obtain

2iϕ1a1,0 + 2i〈B0∇x′ϕ0,∇x′a0,0〉+ i(∆Xϕ)a0,0

= 2iϕ1a1,0 + 2i〈B0ξ
′,∇x′ψ〉+ i(2ϕ2 + q1ϕ1 − 〈q2(x′), ξ′〉)ψ.

Since the RHS is O(xM1 ), the above function must be identically zero. Thus we get the following
expression for the function a1,0:

a1,0 = −ϕ−1
1 〈B0ξ

′,∇x′ψ〉 − (ϕ−1
1 ϕ2 + 2−1q1 − (2ϕ1)

−1〈q2(x′), ξ′〉)ψ. (5.12)
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Taking into account that ψ = ψ0 on supp (1 − η), we find from (5.10), (5.11) and (5.12) that
(5.9) holds with

b0 = i(1− η)r
−1/2
0 〈B0ξ

′,∇x′ψ
0〉

−4−1(1− η)ψ0
(
−ir−3/2

0 〈B0ξ
′,∇x′r0〉+ r−1

0 〈B1ξ
′, ξ′〉+ 2q1 + 2r

−1/2
0 〈q2(x′), ξ′〉

)
. (5.13)

Clearly, b0 ∈ S0
0(∂X) is independent of λ and n, as desired. 2

Lemma 5.3 implies that

Oph(a1,0 − b0) = O(1) : L2(∂X) → H1
h(∂X). (5.14)

Now, using a suitable partition of the unity on ∂X we can write 1 =
∑J

j=1ψ
0
j . Hence, we can

write the function χ+
δ as

∑J
j=1 ψj, where ψj = ψ0

jχ
+
δ . Since we have (5.8) and (5.14) with ψ

replaced by each ψj , we get (5.1) by summing up all the estimates. 2

It follows from the estimate (3.11) applied with V ≡ 0 that

hN (λ;n)Oph(χ
0
δ) = O(δ) : L2(∂X) → H1

h(∂X) (5.15)

provided |Imλ| ≥ δ−2 and Reλ ≥ Cδ ≫ 1. Now Theorem 1.2 follows from (5.15) and Proposi-
tions 4.1 and 5.1. Let us now see that Theorem 1.1 follows from Theorem 1.2. Since the operator
−h2∆∂X ≥ 0 is self-adjoint, we have the bound

∥∥hp(−∆∂X)χ2((−h2∆∂X − 1)δ−2)
∥∥

=
∥∥∥
√

−h2∆∂X − 1− iθχ((−h2∆∂X − 1)δ−2)
∥∥∥

≤ sup
σ≥0

∣∣∣
√
σ − 1− iθχ((σ − 1)δ−2)

∣∣∣ ≤ sup
δ2≤|σ−1|≤2δ2

√
|σ − 1|+ |θ|

≤ O(δ + |θ|1/2) = O(δ + hǫ/2). (5.16)

On the other hand, it is well-known that the operator hp(−∆∂X)(1− χ2)((−h2∆∂X − 1)δ−2) is
an h−ΨDO in the class OPS1

0(∂X) with principal symbol ρ(1− χ0
δ). This implies the bound

hp(−∆∂X)(1 − χ2)((−h2∆∂X − 1)δ−2)−Oph(ρ(1 − χ0
δ)) = O(h) : L2(∂X) → L2(∂X). (5.17)

It is easy to see that Theorem 1.1 follows from (1.3) together with (5.16) and (5.17). 2

6. Proof of Theorem 2.1

Define the DN maps Nj(λ), j = 1, 2, by

Nj(λ)f = ∂νuj |Γ
where ν is the Euclidean unit normal to Γ and uj is the solution to the equation

{ (
∇cj(x)∇ + λ2nj(x)

)
uj = 0 in Ω,

uj = f on Γ,
(6.1)

and consider the operator

T (λ) = c1N1(λ)− c2N2(λ).

Clearly, λ is a transmission eigenvalue if there exists a non-trivial function f such that T (λ)f = 0.
Therefore Theorem 2.1 is a consequence of the following
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Theorem 6.1. Under the conditions of Theorem 2.1, the operator T (λ) sends H
1+k
2 (Γ) into

H
1−k
2 (Γ), where k = −1 if (2.2) holds and k = 1 if (2.4) holds. Moreover, there exists a

constant C > 0 such that T (λ) is invertible for Reλ ≥ 1 and |Imλ| ≥ C with an inverse
satisfying in this region the bound

∥∥T (λ)−1
∥∥
H

1−k
2 (Γ)→H

1+k
2 (Γ)

. |λ|k−1

2 (6.2)

where the Sobolev spaces are equipped with the classical norms.

Proof. We may suppose that λ ∈ Λǫ = {λ ∈ C : Reλ ≥ Cǫ ≫ 1, |Imλ| ≤ |λ|ǫ}, 0 < ǫ ≪ 1,
since the case when λ ∈ {Reλ ≥ 1} \ Λǫ follows from the analysis in [15]. We will equip
the boundary Γ with the Riemannian metric induced by the Euclidean metric gE in Ω and will
denote by r0 the principal symbol of the Laplace-Beltrami operator −∆Γ. We would like to apply
Theorem 1.2 to the operators Nj(λ). However, some modifications must be done comming from
the presence of the function cj in the equation (6.1). Indeed, in the definition of the operator
N (λ;n) in Section 1 the normal derivative is taken with respect to the Riemannian metric
gj = c−1

j gE , while in the definition of the operator Nj(λ) it is taken with respect to the metric
gE . The first observation to be done is that the glancing region corresponding to the problem
(6.1) is defined by Σj := {(x′, ξ′) ∈ T ∗Γ : rj(x

′, ξ′) = 1}, where rj := m−1
j r0, mj :=

nj

cj
|Γ. We

define now the cut-off functions χ0
δ,j by replacing in the definition of χ0

δ the function r♯ by rj .
Secondly, the function ρ must be replaced by

ρj(x
′, ξ′) =

√
r0(x′, ξ′)− (1 + iθ)mj(x′), Re ρj < 0.

With these changes the operator Nj(λ) satisfies the estimate (1.3). Set

τδ = c1ρ1(1− χ0
δ,1)− c2ρ2(1− χ0

δ,2) = τ − c1ρ1χ
0
δ,1 + c2ρ2χ

0
δ,2

where

τ = c1ρ1 − c2ρ2 =
c̃(x′)(c0(x

′)r0(x
′, ξ′)− 1− iθ)

c1ρ1 + c2ρ2
(6.3)

where c̃ and c0 are the restrictions on Γ of the functions

c1n1 − c2n2 and
c21 − c22

c1n1 − c2n2

respectively. Clearly, under the conditions of Theorem 2.1, we have c̃(x′) 6= 0, ∀x′ ∈ Γ. Moreover,
(2.2) implies c0 ≡ 0, while (2.4) implies c0(x

′) < 0, ∀x′ ∈ Γ. Hence,

0 < C1 ≤ |c0r0 − 1− iθ| ≤ C2,

if (2.2) holds, and

0 < C1〈r0〉 ≤ |c0r0 − 1− iθ| ≤ C2〈r0〉,
if (2.4) holds. Using this together with (6.3) and the fact that ρj ∼ −√

r0 as r0 → ∞, we get

0 < C ′
1〈ξ′〉k ≤ C1〈r0〉k/2 ≤ |τ | ≤ C2〈r0〉k/2 ≤ C ′

2〈ξ′〉k (6.4)

where k = −1 if (2.2) holds, k = 1 if (2.4) holds. Let η ∈ C∞
0 (T ∗Γ) be such that η = 1 on

|ξ′| ≤ A, η = 0 on |ξ′| ≥ A + 1, where A ≫ 1 is a big parameter independent of λ and δ.
Taking A big enough we can arrange that (1 − η)τδ = (1 − η)τ . On the other hand, we have

ητδ = ητ + O(δ + |θ|1/2). Therefore, taking δ and |θ| small enough we get from (6.4) that the
function τδ satisfies the bounds

C̃1〈ξ′〉k ≤ |τδ| ≤ C̃2〈ξ′〉k (6.5)
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with positive constants C̃1 and C̃2 independent of δ and θ. Furthermore, one can easily check
that (1 − η)τ ∈ Sk0 (Γ) and ητδ ∈ S−2

0 (Γ). Hence, τδ ∈ Sk0 (Γ), which in turn implies that the

operator Oph(τδ) sendsH
1+k
2 (Γ) into H

1−k
2 (Γ). Moreover, it follows from (6.5) that the operator

Oph(τδ) : H
1+k
2

h (Γ) → H
1−k
2

h (Γ) is invertible with an inverse satisfying the bound
∥∥Oph(τδ)

−1
∥∥
H

1−k
2

h
(Γ)→H

1+k
2

h
(Γ)

≤ C̃ (6.6)

with a constant C̃ > 0 independent of λ and δ. We now apply Theorem 2.1 to the operators
Nj(λ). We get, for λ ∈ Λǫ, |Imλ| ≥ Cδ ≫ 1, Reλ ≥ Cǫ,δ ≫ 1, that

‖hT (λ)−Oph(τδ)‖L2(Γ)→L2(Γ) ≤ Cδ (6.7)

in the anisotropic case, and

‖hT (λ) −Oph(τδ)‖L2(Γ)→H1
h
(Γ) ≤ Cδ (6.8)

in the isotropic case, where C > 0 is a constant independent of λ and δ. Introduce the operators

A1(λ) = (hT (λ) −Oph(τδ))Oph(τδ)
−1,

A2(λ) = Oph(τδ)
−1 (hT (λ)−Oph(τδ)) .

It follows from (6.6), (6.7) and (6.8) that in the anisotropic case we have the bound

‖A1(λ)‖L2(Γ)→L2(Γ) ≤ C ′δ (6.9)

while in the isotropic case we have the bound

‖A2(λ)‖L2(Γ)→L2(Γ) ≤ C ′δ (6.10)

where C ′ > 0 is a constant independent of λ and δ. Hence, taking δ small enough we can arrange
that the operators 1+Aj(λ) are invertible on L2(Γ) with inverses whose norms are bounded by
2. We now write the operator hT (λ) as

hT (λ) = (1 +A1(λ))Oph(τδ)

in the anisotropic case, and as

hT (λ) = Oph(τδ)(1 +A2(λ))

in the isotropic case. Therefore, the operator hT (λ) is invertible in the desired region and by
(6.6) we get the bound ∥∥(hT (λ))−1

∥∥
H

1−k
2

h
(Γ)→H

1+k
2

h
(Γ)

≤ 2C̃. (6.11)

Passing from semi-classical to classical Sobolev norms one can easily see that (6.11) implies
(6.2). 2

7. Proof of Theorem 2.2

We keep the notations from the previous section. Theorem 2.2 is a consequence of the following

Theorem 7.1. Under the conditions of Theorem 2.2, there exists a constant C > 0 such that
the operator T (λ) : H1(Γ) → L2(Γ) is invertible for Reλ ≥ 1 and |Imλ| ≥ C log(Reλ+ 1) with
an inverse satisfying in this region the bound

∥∥T (λ)−1
∥∥
L2(Γ)→L2(Γ)

. 1. (7.1)
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Proof. As in the previous section we may suppose that λ ∈ Λǫ. We will again make use of the
identity (6.3) with the difference that under the condition (2.6) we have c0(x

′) > 0, ∀x′ ∈ Γ. This
means that |τ | can get small near the characteristic variety Σ = {(x′, ξ′) ∈ T ∗Γ : r(x′, ξ′) = 1},
where r := c0r0. Clearly, the assumption (2.7) implies that Σ1 ∩ Σ2 = ∅. This in turn implies
that Σ ∩ Σj = ∅, j = 1, 2. Indeed, if we suppose that there is a ζ0 ∈ Σ ∩ Σj for j = 1 or j = 2,
then it is easy to see that ζ0 ∈ Σ1 ∩Σ2, which however is impossible in view of (2.7). Therefore,
we can choose a cut-off function χ0 ∈ C∞(T ∗Γ) such that χ0 = 1 in a small neighbourhood of
Σ, χ0 = 0 outside another small neighbourhood of Σ, and suppχ0 ∩ Σj = ∅, j = 1, 2. This
means that suppχ0 belongs either to the hyperbolic region {rj ≤ 1− δ2} or to the elliptic region
{rj ≥ 1 + δ2}, provided δ > 0 is taken small enough. Therefore, we can use Propositions 4.1
and 5.1 to get the estimate

∥∥hNj(λ)Oph(χ
0)−Oph(ρjχ

0)
∥∥
L2(Γ)→L2(Γ)

. h+ e−C|Imλ|

which implies ∥∥hT (λ)Oph(χ
0)−Oph(τχ

0)
∥∥
L2(Γ)→L2(Γ)

. h+ e−C|Imλ|. (7.2)

It follows from (6.3) that near Σ the function τ is of the form τ = τ0(r − 1 − iθ) with some
smooth function τ0 6= 0. We now extend τ0 globally on T ∗Γ to a function τ̃0 ∈ S0

0(Γ) such that
τ̃0 = τ0 on suppχ0 and |τ̃0| ≥ Const > 0 on T ∗Γ. Hence, we can write the operator Oph(τχ

0)
as follows

Oph(τχ
0) = Oph(χ

0)Oph(τ̃0)(B − iθ) +O(h)

where B = 1
2Oph(r − 1) + 1

2Oph(r − 1)∗ is a self-adjoint operator. Hence

(B − iθ)−1 = O(|θ|−1) : L2(Γ) → L2(Γ).

Since τ̃0 is globally elliptic, we also have

Oph(τ̃0)
−1 = O(1) : L2(Γ) → L2(Γ).

This implies

K1 := Oph(χ
0)(B − iθ)−1Oph(τ̃0)

−1 = O(|θ|−1) : L2(Γ) → L2(Γ)

and (7.2) leads to the estimate
∥∥hT (λ)K1 −Oph(χ

0)
∥∥
L2(Γ)→L2(Γ)

. |θ|−1
(
h+ e−C|Imλ|

)

. |Imλ|−1 +Reλ e−C|Imλ| ≤ δ (7.3)

for any 0 < δ ≪ 1, provided |Imλ| ≥ Cδ log(Reλ), Reλ ≥ C̃δ with some constants Cδ, C̃δ > 0.
On the other hand, by Theorem 1.2 we have, for λ ∈ Λǫ, |Imλ| ≥ Cδ ≫ 1, Reλ ≥ Cǫ,δ ≫ 1,

∥∥hT (λ)Oph(1− χ0)−Oph(τδ(1− χ0))
∥∥
L2(Γ)→L2(Γ)

≤ Cδ. (7.4)

As in the proof of (6.5) one can see that the function τδ satisfies

C̃1〈ξ′〉 ≤ |τδ| ≤ C̃2〈ξ′〉 on supp (1− χ0) (7.5)

with positive constants C̃1 and C̃2 independent of δ and θ. Moreover, τδ ∈ S1
0(Γ). We extend

the function τδ on the whole T ∗Γ to a function τ̃δ ∈ S1
0(Γ) such that τ̃δ(1−χ0) = τδ(1−χ0) and

C̃ ′
1〈ξ′〉 ≤ |τ̃δ| ≤ C̃ ′

2〈ξ′〉 on T ∗Γ. (7.6)

Hence ∥∥Oph(τ̃δ)
−1
∥∥
L2(Γ)→L2(Γ)

≤ C̃ (7.7)
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with a constant C̃ > 0 independent of λ and δ. By (7.4) and (7.7) we obtain
∥∥hT (λ)K2 −Oph(1− χ0)

∥∥
L2(Γ)→L2(Γ)

≤ Cδ (7.8)

with a new constant C > 0 independent of λ and δ, where

K2 := Oph(1− χ0)Oph(τ̃δ)
−1 = O(1) : L2(Γ) → L2(Γ).

By (7.3) and (7.8),
‖hT (λ)(K1 +K2)− 1‖L2(Γ)→L2(Γ) ≤ (C + 1)δ. (7.9)

It follows from (7.9) that if δ is taken small enough, the operator hT (λ) is invertible with an
inverse satisfying the bound

∥∥(hT (λ))−1
∥∥
L2(Γ)→L2(Γ)

≤ 2 ‖K1‖L2(Γ)→L2(Γ) + 2 ‖K2‖L2(Γ)→L2(Γ) . |θ|−1 + 1. (7.10)

It is easy to see that (7.10) implies (7.1) 2
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