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Abstract -- This paper presents a non-linear analytical model 

of a multi-V-shape Interior Permanent Magnet (IPM) motor with 
non-overlapping concentrated winding. The model relies on 
Maxwell equations to compute the flux density in the different 
parts of the motor. This article proposes a saturated analytical 
model of the stator and the rotor. The analytical model is used to 
calculate the average torque, the power factor and the voltage of 
the motor. It is compared to 2D Finite Element Analysis (FEA) 
and shows very good results. The developed model is 5 times 
faster than the FEA thus, it can be used in optimization 
procedures. 
 

Index Terms – Analytical model, Concentrated winding, 
Electrical machines, IPM motor, Multi-V-shape magnets.   

I.   NOMENCLATURE 

m : Number of coils per phase per electrical period 
Ns : Number of turns per coil 
Ncs , Ncp : Number of circuits in series and in parallel 
L : Stack length 
e : Airgap length 
α : Current angle 
IC,IB,IC : Currents in phases A, B and C (rms) 
id, iq : d-q axis current components 

II.   INTRODUCTION 

ecently, high performance motors have been the subject 
of many studies and research projects. Permanent magnet 
motors with rare earth materials are known for their 

suitability in high performance applications and have been 
widely used by industrials during the last decades [1], [2]. 
However, these magnets have reached high price, which 
increased the cost of the motor. In order to ensure 
competitiveness, varieties of motors, which do not use or with 
reduced rare-earth materials, have been extensively 
developed. Flux-switching motors offered the possibility to 
reduce the volume of the magnets by putting them on the 
stator side. The rotor is magnet-free and designed as a passive 
magnetic circuit with poles similar to the one used in switched 
reluctance motors [3]. Non-rare-earth permanent magnets 
such as ferrite or alnico have attracted significant interest in 
recent designs. The low magnetic field created by these types 
of magnet leads  to their use in a flux concentration 
configuration [4] or as an additional torque source in 
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synchronous reluctance motors. This configuration is known 
as the Permanent Magnet Assisted Synchronous Reluctance 
Motor (PMASynRM) with distributed winding [5]–[7].  

In this paper, ferrite magnets are used in the rotor with short 
end-winding in the stator in order to reduce the Joule losses. 
Therefore, the studied structure is a multi-V-shape Interior 
Permanent Magnet (IPM) motor with non-overlapping 
concentrated winding.The motor’s design process usually 
starts by modelling the magnetic performance. The advances 
in computational tools made it possible to use Finite Element 
Analysis (FEA) to create a numerical simulation of the studied 
motor. FEA allows a detailed investigation of the motor 
behavior, with the disadvantage of generally long execution 
times [8]. Other modelling approaches exist, such as the 
reluctance network that represents the flux paths through the 
motor parts [9], [10] and the analytical model based on 
solving Maxwell equations. In [11] authors proposed an 
analytical model for an IPM motor in linear conditions and the 
method was improved in [12] to take into account the non-
linear behavior of the iron in a PMASynRM with distributed 
windings. 

In this paper, an analytical model of a multi-V-shape IPM 
motor with non-overlapping concentrated winding is 
proposed. It is an 18 slot/16 pole structure (Fig.1). It has open 
slots in order to facilitate the automatic insertion of the 
windings during the manufacturing process. We can identify 
the existence of an interior iron bridge and an exterior one. A 
flux-barrier is mainly defined by 2 parameters: δ is the 
barrier’s tilt angle and k = θ/β is the ratio of the barrier’s 
opening angle with respect to the half pole angle β. The model 
relies on two fundamental laws of electromagnetism: 
Ampere’s theorem and flux conservation law [12]. This article 
proposes a saturated analytical model of the stator teeth, the 
stator yoke, the leakage flux in the slots and the saturation in 
the rotor magnetic circuit. The developed model is 
parameterized as a function of the slot number, the pole pair 
number and the magnet layer number. 

 
Fig.1 Studied motor structure with the rotor’s main geometrical parameters 

III.   ANALYTICAL MODEL 

The analytical model computes the flux density of the motor 
over one electrical period (360°elec). Due to magnetic 
symmetry, half of the machine is modeled.  

A.   Magnetomotive Force 

The machine is a three phase motor with a non-overlapping 
concentrated tooth winding. The magnetomotive force (mmf) 
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is determined with respect to the winding pattern shown in 
Fig.2 that covers one electrical period.  The mmf level of each 
tooth is given by the total current of the tooth coil as in (1). A 
linear variation of the mmf in the slots is considered.  
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B.   Stator Slots Additional Air-Gap  

Stator slotting influences the magnetic field by affecting the 
distribution of the flux density in the air-gap. It increases the 
reluctance of the flux path and reduces the air-gap flux density 
in front of a slot. Therefore, it is important to take it into 
account. A common method for modeling the stator slotting 
effect uses Carter’s coefficient to smooth the stator geometry 
but assumes that the slot width is much smaller than its height 
[13]. In this paper, the additional air-gap length is calculated 
using the mean flux path under the slot opening [14]. Thus, 
idealized flux paths are shown in Fig.3. Assuming quarter-
circular flux lines with radii R1 and R2, the arc lengths Γ1 and 
Γ2 are given by: 

= 2  sin
= 2   −  (2) 

Where θslot is the slot opening angle, Rsi is the internal 
radius of the stator and ν is the angle under the slot opening. 
The additional air-gap es(ν) is the equivalent length of the two 
parallel paths Γ1 and Γ2. The use of the first-order Taylor 
expansion leads to (3): 

=  2  −    ,   
  0                                             ,   ℎ   (3) 

 

The total air-gap length is given by:  = +  (4) 

 
Fig.3 Idealized flux paths under stator slot 

C.   Flux density of the stator 

The flux density of the stator is calculated in the teeth and 
the yoke. Additionally, the tangential leakage flux that links 
two adjacent teeth is taken into account. Assuming quarter-
circular paths between the air-gap and the stator tooth (Fig.4), 
the tooth flux density is calculated using flux conservation law 
applied to the tooth pitch (θτst) with a discretization of 1°elec. 

 
Fig.4 Flux lines between the airgap and the stator tooth 

Equation (5) computes the stator tooth flux density  due 

to airagp flux density Bag(θ): ∀  ∈ {1,9}     ; ∀  ∈ { + 2  , 2 − 2 } 
 =   +   

    
+  

            (5) 

 

Where θst is the tooth angular span and θi is the center 
angular position of the ith tooth (Fig.4). The flux density for n 
= 0 is calculated using flux conservation law for the airgap 
flux under the stator tooth. Its expression is given by (6) 

 =    
  (6) 

 

Hence, we obtain  which is the airgap flux density 

for each tooth along the y-axis shown in Fig.4, for 0 ≤  ≤
 where  ,  are respectively, the slot width and the 

stator tooth width. 

 
Fig.5 Tangential leakage flux in the stator slot 

In order to take the slot leakage flux into consideration, the 
total current distribution in each slot is considered to be linear. 
Thus, Ampere’s theorem is written on paths along the tooth 
height hst as shown in Fig.5, and the flux conservation law is 
applied between the tangential leakage flux in stator slots lf_slot(y) and the slot flux entering the tooth st_slot(y).This 
yields (7) and (8). 

 =  −   (7) 
 



	= 1 	
	= 	 		 	 	 + 	 − 1 − 1  

(8) 

 

With =	 		 	 	 + 	 		; 	 = 1 − 	  
Where 	, 	 	 	, 	 	,  are respectively, the vacuum 

permeability, the relative permeability of the left and the right 
stator tooth (surrounding the considered slot) and the total 
current of the considered slot. Therefore the total leakage flux 
density and the total flux density of a tooth along its height (y-
axis) are given by (9) and (10) respectively. 

= 	 −	  (9) 
 = 		 +  (10) 
 

The subscripts l and r represent the left and the right sides 
of a tooth. The tooth flux density is considered constant along 
the tooth width (θ-axis) so that the stator tooth flux density 
with respect to the electrical angle can be written: 

, = 	 				 	 ℎ 	 	 ℎ0							 	 ℎ 	  (11) 
 

The stator yoke flux density is calculated by applying the 
flux conservation equation between the stator teeth and the 
yoke over a variation of ∆θ = 1°elec. The stator yoke flux 
density with respect to the electrical angle Bsy(θ) is expressed 
by (12) for 0 ≤ θ ≤ 360°elec: 
   + ℎ = ℎ + , 	 	 		 (12) 
 

Where hsy is the yoke height and Ryi is the yoke interior radius. 

D.   Flux density of the rotor 

The flux density of the rotor has to be calculated for 8 
poles, since we are dealing with the half of the machine. Fig.6 
shows one rotor pole with V-shape flux-barriers that are filled 
with magnets. The iron piece between two flux-barriers is 
called “flux-guide” (green area in Fig.6).  

 
Fig.6 Motor general schematic and flux paths 

Each rotor pole is divided into two zones (z =1, 2) and the 
rotor flux densities are modeled by the flux-guide mean path. 
At the flux-guide boundaries, the magnetic flux is assumed to 
be aligned in the same direction as the flux-guide mean path 
(Fig.7a). Nbf is the number of flux barriers. The flux is 
defined as , ,  where fg is the flux-guide number (fg 

∈ {1, }), and pol is the pole number ( ∈ {1,8}). For the 
flux-guide between poles (fg =1), (13) and (14) are written: 
 , , = 	 , + , , +	 , ,  

 	− , ,  
(13) 

 , , = 	 , , + , , +	 , ,  (14) 
 

With pol = 1 if pol-1= 8. For flux-guides between flux-
barriers (fg	∈	{2, Nbf}), (15) and (16) are written with	 ∈{1,2}: 
 , , =	 , , − 2 − , ,  

 + 2 − 	 , , + − 1 	 , ,  
 − − 1 , ,  

(15) 

 , , =	 , − , + , ,  
 − , , +	 , ,  

(16) 

 

Where 	,  are the boundary fluxes of the rotor flux-

guides. , are the boundary fluxes of the exterior iron 

bridges.   and  are the fluxes of the interior iron bridge 
and the airgap respectively.  is the flux crossing the flux-
barrier. 

 
Fig.7 Flux density mean path in a rotor flux-guide (a). Local saturation near 
the exterior iron bridge (b) 

The boundary flux densities are then given by (17) - (20) 
 

, , = , ,
2	 1 = 	 , ,  (17) 

 

, , = , ,
2	 1 = 	 , ,  (18) 

 

, , = , ,
	  (19) 

 

, , = , ,
	  (20) 

 

 and  are the boundary widths of the flux-guides. 

A linear interpolation is used between the boundary flux 
densities in order to compute the interior flux densities of each 
flux-guide.  

The iron bridges are generally saturated. Hence, the mmf 
drop of the rotor flux-guide near the iron bridge is higher than 
other areas. To take into account this local saturation 
phenomenon, the area near the exterior iron bridges is 

(a) (b) 



modeled separately (Fig.7b). We assume a linear variation of 
the flux density between two bridges in the θ-axis (Bx(θ)). The 
boundary flux density of the flux-guide Bfgf and the average 
value of the airgap flux density Bagavg are used to calculate an 
average value of the flux-guide flux density in the y-axis: 

= +2  (21) 
 

Thus, for the electrical angle between θ2(i) and θ1(i+1) the 
flux-guide local saturation flux density is given by: 
 = 	 +  (22) 

E.   Equations of the global system 

The motor general scheme is shown in Fig.6. The magnets 
are inserted in the V-shape flux-barriers and are surrounded 
by air from both sides. The model considers the non-linearity 
of the ferromagnetic material. The electrical angular position 
θ is discretized from 0 to 360° along the airgap. Ampere’s 
theorem is written on five contours (C1 to C5) and expressed 
by (23) to (27), respectively. 
 	 − 	 	 + − +  

 − + − = 0 
(23) 

 

	 − 	 	 − , 	ℎ  

 + − + − +  
 − = 0 

(24) 

 − , , 	 + −1 	 , , 	  + , , = 0 
(25) 

 − , 	ℎ + , , 	 = 0 (26) 
 , , 	 − , , + , , = 0 (27) 
 

Where nb is the number of the flux-barriers varying from 1 
to Nbf . H, w and h are respectively the magnetic field, the 
width and the height. The subscripts pm, fb, ib, a1 and a2 
represent the permanent magnet, the flux-barrier, the interior 
iron bridge and the air next to the magnet sides, respectively. 
Ats and Atr are the mmf drop of the stator path (tooth + yoke) 
and the rotor path respectively. The above equations are 
completed with (28) that express the flux conservation law in 
the airgap. < >	= 0 (28) 
 

Equations (23) and (24) are not valid for the exterior iron 
bridge angular positions. The equation system above the 
exterior iron bridges is given in the next section (III-F). 
The flux of the interior iron bridges is calculated by applying 
the flux conservation law in the central iron piece and 
between the flux-barriers for	 ∈ {1,8}: 
Central iron piece:  

−1 , , + , , + , , 	 
 + , , + , , − , , +	  = 0	 

(29) 

 

Between two flux-barriers: ∈ {2, } −1 , , + , ,
+ , , + , ,

− −1 , , − , , − , ,
	 

 + , , + , , − , ,  
 − , , − + = 0 

(30) 

 

It is worth mentioning that (29) and (30) take into account 
the alternating magnetic orientation of the permanent magnet 
among poles.  

F.   Flux density of the exterior iron bridge 

To complete the global system, the airgap flux density 
above the exterior iron bridge has to be computed. The flux 
conservation law (31) and Ampere’s theorem (32) are used on 
the iron bridge as shown in Fig.8. The mmf drop in the stator 
iron is included when applying Ampere’s theorem.  

= 	 ℎ 	∆ − 	 
 1	 ≤ 	 	 ≤ 	 + 1 

(31) 

 

	 + 	 		− +  

− + − 		= 0						 
 2	 ≤ 	 	 ≤ 	 + 2 

(32) 

 
 

Where (n+2) is the electrical angular span of the iron 
bridge. Rrot is the rotor radius and heb is the height of the 
exterior iron bridge. Equation (32) is completed with the 
boundary value Bag(θ1) . The airgap flux density above the 
iron bridge is then deduced by (31). 

 
Fig.8 Exterior iron bridge: Ampere’s theorem and flux conservation law 

G.   Performance calculation  

The airgap flux density is used to calculate the stator phase 
flux linkages ( a, b, c). The slot leakage flux is added to 
obtain the total flux linked by the stator coils. Equation (33) 
gives the expression of phase-A flux linkage. For the other 
phases it is obtained by replacing the subscript A by B and C. 

= 	 	 + 	 	 (33) 

 

Where 	and  are the center angular position of the 
coils A+ and A- (Fig.2). The d-q axis flux linkages ( , ) 
are then computed using Park’s transformation. The average 
torque (Tavg), the power factor (PF) and the voltage (V) are 



computed at 4 static positions for an accurate estimation [15]. 
They are expressed by (34), (35) and (36) respectively. 
 = 32 	 − 	  (34) 
 

= 	 − −  (35) 

 

= +  (36) 

IV.   FINITE ELEMENT COMPARISON 

A 2D finite element model of the studied motor is created 
and its results are compared with the results of the analytical 
model. The first motor geometry (M1) is reported in the 
appendix. At first, the magnetomotive force (mmf) is verified 
and the airgap flux density is shown for two pairs of current 
values and current angles. Then, the flux density of the stator 
teeth is shown and the flux density of the rotor flux-guides 
and exterior iron bridges are reported. Finally, the comparison 
of the average torque, the power factor and the voltage is 
conducted for M1 and another geometry M2 in order to verify 
the robustness of the analytical model.  

The studied motors have 2 V-shape flux-barriers filled with 
ferrite magnets and rotate at 500 rpm.  

A.   Magnetomotive force 

In order to verify the validity of the magnetomotive force 
model (1) and the stator permeance function (3), the system 
formed by (23) and (28) was solved under linear conditions 

with a passive rotor disc. Thus, the terms 	and  do 
not exist. Fig.9 shows the airgap flux density for a current 
value of 43A (rms) and a current angle of 0°.  

 
Fig.9 Airgap flux density under linear conditions and passive rotor iron disc 

In this particular configuration, the airgap flux density is 
the image of the mmf since no Ampere-turns are consumed in 
the motor’s iron parts. The analytical model (AM) reproduces 
almost the exact shape of the Finite Element Analysis (FEA) 
result. This validates the mmf and the stator saliency models 
for the non-overlapping concentrated tooth winding. 

B.   Airgap flux density 

The airgap flux density of the motor M1 is obtained by 
resolving the equation system (23) to (28). A comparison 
between the analytical model and the finite element model is 
made. The airgap flux density is given for two current values, 
28A (Fig.10) and 43A (Fig.11) with a current angle of 
10°elec. The analytical model gives satisfactory results and is 
accurate for both current values at two saturation levels of the 
ferromagnetic material (lower saturation at 28A and higher 
saturation at 43A). 

 
Fig.10 Comparison of the airgap flux density between the AM and the FEA 
(Irms=28A, α =10°elec) 

 
Fig.11 Comparison of the airgap flux density between the AM and the FEA 
(Irms=43A, α=10°elec) 

C.   Flux density of the stator teeth 

The developed model of the stator teeth that takes into 
consideration the airgap flux density and the slot tangential 
leakage flux (section III-C) is computed and compared to the 
results of the FEA. The comparison is carried out for a current 
of 43A and a current angle of 10°elec. Since only half of the 
motor is modeled, the number of teeth is 9. Fig.12 shows the 
flux density of the 9 teeth along the tooth height. 

 
Fig.12 Comparison of the stator teeth flux density between the AM and the 
FEA (Irms=43A, α=10°elec) 

Fig.12 shows that the stator tooth flux density is not 
constant along the tooth. The analytical model shows a good 
concordance with the finite element results. 

D.   Flux density of the exterior iron bridge 

Each rotor barrier has two exterior iron bridges. Their flux 
densities are obtained by the system of equations (32). For a 
current value of 43A (rms) and a current angle of 10°elec, the 
comparison of the exterior iron bridges flux density of motor 
M1 between the AM and the FEA is given in Fig.13.  

AM FEA 



 
Fig.13 Comparison of the exterior iron bridges flux densities between the AM 
and the FEA (Irms=43A, α=10°elec) 

Fig.13 shows a good agreement between the AM and the 
FEA results. The flux density of the iron bridges can reach 
high saturation levels and causes the peaks observed in the 
AM. Despite these local peaks, the airgap flux density given 
in Fig.11, reflects the saturation of the motor and shows very 
good results when compared to the FEA. 

E.   Flux density of the rotor 

The motor M1 has 2 flux barriers therefore it has 2 flux-
guides per pole. Fig.14 shows the flux density of the flux-
guides for the first pole. It was computed along the mean flux 
path of the flux-guide, with a current of 43A (rms) and a 
current angle of 10°elec. The x-axis represents the length of 
the flux-guide. 

 
Fig.14 Comparison of the flux density of the rotor flux-guides for the 1st pole 
between the AM and the FEA (Irms=43A, α=10°elec) 

The analytical model shows good results when compared to 
the finite element model. The local variations of the flux 
density along the flux-guide shown in the FEA are close to the 
linear approximation of the analytical model. 

F.   Average torque 

The average torque is computed for the motor M1 at two 
current levels: 28A and 43A. Another motor geometry is 
added to the comparison. The motor M2 has the same exterior 
dimensions as M1 but differs in its rotor parameters (Fig.1). 
The barriers parameters of both motors are given in per unit 
and reported in the appendix. Tavg of M2 is also computed for a 
current of 28 A and 43A (rms). Fig.15 shows the comparison 
of the AM and the FEA for the two motor structures. It can be 
seen that the curves are very close at all current levels for the 
two structures. The discrepancy between the two models at 
the maximum average torque is given in TABLE I and is 
around 2% (for the two current values) which confirms the 
accuracy of the analytical model. 

 
TABLE I 

 COMPARISON BETWEEN AM AND FEA AT MAXIMUM AVERAGE TORQUE 

 M1 M2 
Current rms (A) 28 43 28 43 
AM: Tavg (Nm) 104.4 163.4 128 192.8 
FEA: Tavg (Nm) 102.1 160.2 128.6 194.5 
Discrepancy % 2.2 2 0.4 0.9 

 
Fig.15 Comparison of the average torque between the AM and the FEA for 
two motor structures 

G.   Power factor 

The power factor (PF) is also computed for the two motors 
under the same conditions of the torque. The analytical 
model curves and the finite element curves show good 
agreement. Fig.16 shows the PF versus the current angle. 

 
Fig.16 Comparison of the power factor between the AM and the FEA for two 
motor structures 

At maximum average torque, for 28A the PF of M1 is 0.59 
(AM) and 0.6 (FEA). For 43A it is 0.48 (AM) and 0.49 
(FEA). For M2 at 28A the PF is 0.85 (AM) and 0.855 (FEA). 
For 43A it is 0.7 (AM) and 0.71 (FEA). The difference 
between the two models remains acceptable. 

H.   Voltage  

The two motors rotate at 500 rpm. Fig.17 shows the results 
for the voltage curves computed with the analytical and finite 
element models. TABLE II shows the discrepancy between 
the two models at the current angle that corresponds to the 
maximum average torque. It is less than 5% which confirms 
the validity of the analytical model. 

 

 
Fig.17 Comparison of the voltage between the AM and the FEA for two 
motor structures 

TABLE II 
COMPARISON OF VOLTAGE BETWEEN AM AND FEA AT 

MAXIMUM AVERAGE TORQUE 

 M1 M2 
Current rms (A) 28 43 28 43 

AM: Voltage (V) 152.1 193.2 130.5 156 
FEA: Voltage (V) 146.1 184.4 130.2 154.7 
Discrepancy % 4.1 4.7 0.2 0.8 



I.   Computational time 

In order to obtain accurate values of the average torque, the 
PF and the voltage, 4 static computations are needed [15]. 
The average computational time of one calculation step is 3.1s 
for the AM and 17s for the FEA. This makes the analytical 
model about 5 times faster than the finite element model. 

V.   CONCLUSION   

  This paper presented a complete analytical model for a 
saturated multi-V-shape IPM with non-overlapping 
concentrated winding. The equations are based on Ampere’s 
theorem and flux conservation law. The proposed model took 
into consideration the evolution of the flux density along the 
height of the stator teeth with the tangential slot leakage flux. 
The saturation in the rotor flux-guide is modeled and the local 
saturation in the area near the exterior iron bridges is included 
for a more accurate computation of the airgap flux density. 

The analytical model was compared to a 2D finite element 
model. The results of the flux density in the different parts of 
the motor showed a very good agreement with the finite 
element analysis. The curves of the average torque, the power 
factor and the voltage for two motor structures showed also 
good agreement with the finite element model. 

The analytical model is about 5 times faster than the finite 
element model and gives accurate results. Thus, in future 
work, it will be used for the electromagnetic calculation in a 
multi-physics optimization routine. 

VI.   APPENDIX  
MOTOR SPECIFICATIONS 

 M1 M2 
Stator exterior radius (mm) 130 130 

Axial length (mm) 200  200 
Barriers width (pu) 1  1.3 

Barriers tilt angle (pu) 1  0.1 
Barriers opening angle (pu) 1  1.5 
Specific torque (Nm/liter) 15.08 18.32 
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