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Equilibrated stress reconstructions for linear
elasticity problems with application to a
posteriori error analysis

Rita Riedlbeck, Daniele A. Di Pietro, and Alexandre Ern

Abstract We present an a posteriori error estimate for the linear elasticity problem.
The estimate is based on an equilibrated reconstruction of the Cauchy stress tensor,
which is obtained from mixed finite element solutions of local Neumann problems.
We propose two different reconstructions: one using Arnold—Winther mixed finite
element spaces providing a symmetric stress tensor, and one using Arnold—Falk—
Winther mixed finite element spaces with a weak symmetry constraint. The perfor-
mance of the estimate is illustrated on a numerical test with analytical solution.
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1 Introduction

We consider the linear elasticity problem on a simply connected polygon Q C R?:

f inQ, (1a)
u=0 ondQ, (1b)
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where u : Q — R? the displacement, and f: Q — R? the volumetric body force. The
Cauchy stress tensor o is given by Hooke’s law o (u) = A tr(e(u))I+2ue(u), where
A and i are the Lamé parameters, and the symmetric gradient £(u) = 1((Va)” +
Vu) describes the infinitesimal strain.

In many applications, this problem is approximated using H'-conforming finite
elements. It is well known that, in contrast to the analytical solution, the resulting
discrete stress tensor does not have continous normal components across mesh in-
terfaces, and its divergence is not locally in equilibrium with the source term f on
mesh cells. In this paper we propose an a posteriori error estimate based on stress
tensor functions which are reconstructed from the discrete stress tensor such that
they verify both of the above properties. Such equilibrated-flux a posteriori error es-
timates offer serveral advantages. First, error upper bounds are obtained with fully
computable constants. Second, polynomial-degree robustness can be achieved for
the Poisson problem in [4, 11], for linear elasticity in [9], and for the related Stokes
problem in [7]. Third, they allow one to distinguish among various error compo-
nents, e.g., discretization, linearization, and algebraic solver error components, and
to equilibrate adaptively these components in the iterative solution of nonlinear
problems [10]. An advantage for more general problems in solid mechanics is that
the stress reconstruction is based on the discrete stress (not the displacement) and
thus the estimate does not depend on the mechanical behaviour law.

We present two stress reconstructions. Both use mixed finite elements on cell
patches around mesh vertices, as proposed for the Poisson problem in [8, 5]. The
first one was introduced in [15] and uses the Arnold—Winther (AW) mixed finite
element spaces [3] providing a symmetric stress tensor. The second one follows
the same approach, but imposing the symmetry only weakly and using the Arnold—
Falk—Winther (AFW) mixed finite element spaces [2]. Element-wise reconstructions
of equilibrated stress tensors from local Neumann problems can be found in [13, 1,
12], whereas direct prescription of the degrees of freedom in the AW finite element
space is considered in [14].

2 Setting

We denote by L?(Q2) the space of square-integrable functions taking values in R,
and by (-,-) and ||-|| the corresponding inner product and norm. H'(Q) stands for
the Sobolev space composed of L?(£2) functions with weak gradients in [L?(Q)]?
and H(} (Q) for its zero-trace subspace. The weak formulation of problem (1) reads:
find u € [H} (£2)]? such that

(o(u),e(v))=(fv)  Vve [Hy(Q)P. )

The discretization of (2) is based on a conforming triangulation .7, of Q, verify-
ing the minimum angle condition. We will use a conforming finite element method
of order p > 2. Let PP(.7,) := {v € L*(Q) | VT € , v|r € PP(T)}, where P?(T)
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is the space of polynomials on T of degree less than or equal to p. For the sake of
simplicity we assume that f lies in [P?~!(.7,)]%. Then the discrete problem reads:
find wy, € [H}(2)]>N[PP(F},))? such that

(o(ws),e(va)) = (Evi) Vi € [Ho ()N [P"(F)). ©)

3 A Posteriori Error Estimate

In this section, we derive an upper bound on the error between the analytical solution
of (2) and an arbitrary function w, € [H{ (2)]> N [P?(Z,)]*. We will measure this
error in the energy norm

IVlIen = (o(v),€(v)) = 2ulleW)[* + 4[|V - V][> > 2uCk ||V, @

where the last bound follows from A > 0 and Korn’s inequality. Owing to (1b),
we have Cx = % (this value would have been different if we had chosen mixed
boundary conditions). We start by introducing reconstructed stress tensors that
are more “physical” than o(u;), which in general does not lie in H(div,Q) =
{t € [L2(Q)]**? | V-1 € [L*(22)]?} and thus cannot verify the equilibrium equation
(1a). Unlike o (uy,), however, these reconstructed tensors may not be symmetric.
Definition 1 (Equilibrated stress reconstruction). We call equilibrated stress re-
construction any function 6, € H(div, ) constructed from o (uy,) such that

(7V~Gh,Z)T:(f,Z)T VZGRMVTG%, (®))

where RM := {b+c(x2,—x;)7 | b € R?,c € R} is the space of rigid body motions.

Theorem 1 (A posteriori error estimate). Let u € [H} (2)] solve (2) and u, €
[H(Q))? be arbitrary. Let 6, be a stress reconstruction verifying Definition 1. Then

1/2

_ h

nu—mmn<ulﬂ<2:(fwmwrcﬂT+cm—cmwmf> O
reg, "

Proof. From (4) and the symmetry of o (u—uy), we infer that
e(u—uy) ) 1/2( e(u—uy) )
u—wllen = [ c(u—uy), ——= | < clu—uy), —————
ol = (010w, G ) < (ot w gt
<u'? sup (o(u—uy),Vv). @)
VE[H (Q)]%; || Vv]|=1

Fix v € [H} (2)]?, such that ||Vv|| = 1. Using the fact that u verifies (2), and inserting
(V-opu,v)+ (04, Vv) = 0 into the term inside the supremum yields

(G<u_uh)7vv) = (f7 V) - (G(uh)7vv) = (f—I—V : Gh7v) + (Gh - O'(uh),VV). 3)



4 Rita Riedlbeck, Daniele A. Di Pietro, and Alexandre Ern

For the first term in the right hand side of (8) we use (5) to insert the mean
value H?V of v on T, the Cauchy—Schwarz inequality, and the Poincaré inequal-

ity v —Ivl|7 < %F|

Vv||r on simplexes T € .7, and obtain

h
(40,9 <| ¥ (04 V-0,v=T)r| < ¥ "L+ V040 Vr,

Tey;, TE<7/,

whereas the Cauchy—Schwarz inequality applied to the second term directly yields

[(on—o(up), Vv)| < Y llon—o(w)|z]|VVl|r.

Inserting these results in (7) and again applying the Cauchy-Schwarz inequality
yields the result. O

4 Stress Tensor Reconstructions

The set of vertices of the mesh .7}, is denoted by %}; it is decomposed into interior
vertices ”I/him and boundary vertices ¥, For all a € ¥}, .7, is the patch of ele-
ments sharing the vertex a, @, the corresponding open subdomain in £2, ng, its unit
outward normal vector, and y, the piecewise affine “hat” function which takes the
value 1 at the vertex a and zero at all the other vertices. For all T € .9, ¥7 denotes
the set of vertices of T and A7 its diameter.

From now on, u;, denotes the solution of (3). The goal is to minimize the error
estimate (6) avoiding global computations. As a result, both of the proposed recon-
structions are based on local minimization problems on the patches @, :

Ga .= ar min T — olu 9
p=arg min %= veo ()l o

where we define X} separately for each construction and add a weak symmetry
constraint in the second (AFW) construction. The global reconstructed stress tensor
0, is then obtained assembling the local solutions o7f.

4.1 Arnold—Winther Stress Reconstruction

For each element T € .7}, the local AW spaces of degree k > 1 are defined by [3]

SV = {re PATR2 I Vre D)), VY =[PP

sym

where [PX(T)]3 denotes the subspace of [P¥(T)]*** composed of symmetric-

valued tensors. Figure 1 shows the corresponding 24 degrees of freedom for the
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symmetric stress tensor in the lowest-order case k = 1: the values of the three com-
ponents at each vertex of the triangle, the values of the moments of degree zero and
1 of the normal components each edge, and the value of the moment of degree zero
of each component on the triangle. On a patch ®,, the AW mixed finite element
spaces are defined as

SV (@) == {14 € H(div,0,) N [P>(T)53 | Talr € S VT € Z},

sym

ViV(@,) i= {vi € [LX (@) | valr € VIV VT € T}

Let now k := p — 1. We need to consider subspaces where a zero normal com-
ponent is enforced on the stress tensor. Since the boundary condition in the exact
problem prescribes the displacement and not the normal stress, we distinguish the
case whether a is an interior vertex or a boundary vertex. For a € “I/him, we set

i = {1, € S}V (0,) | Tanw, =0 0n d®,, T4(b) =0Vb e ¥ X'}, (12a)
Vi, = {vi, e Vy¥ (@) | (V4,2)e, =0 Vz € RM}, (12b)

with %Sfft = 7,Nd®,, and for a € ¥}, we set

= {1, €S}V () | i, =0 0n 0w\, 7,(b) =0Vb € ¥3X'}, (13a)
Vi = Vi (@), (13b)

with 72X = 73,1 (d0,\dR). As argued in [3], the nodal degrees of freedom on
d @, are set to zero if the vertex separates two edges where the normal stress is zero.

Construction 1 (AW stress reconstruction) Find ¢} € X! and xj € V§ such that
forall (ty,,vy) € X' X V§,
(0% Tha, + (5 V- Th)a, = (Va0 (W), Th)w, (14a)
(V-05,Vi)a, = (—Wuf+ 0 (W) Vs, vi)a,- (14b)
Then, extending G}, by zero outside @, set Gy := Y ey, OF-

Using the definitions (12) and (13), the formulation (14) is equivalent to (9). For
interior vertices, the source term in (14a) has to verify the Neumann compatibility
condition

(—yf+0(u,)Vy,,2)y, =0 VzeRM. 15)

Taking y,z as a test function in (3), we see that (15) holds.

4.2 Arnold-Falk—-Winther Stress Reconstruction

For each element T € .7}, the local AFW mixed finite element spaces [2] of degree
k > 1 hinge on the Brezzi-Douglas—Marini mixed finite element spaces [6] for each
line of the stress tensor and are defined by
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111
Fig. 1 Element diagrams for (S7%,V4V) with k = 1 (left) and (S4™V, V4FV, A7) with k = 2 (right)

S = [FA(T)P2, VY = B N(T)R, Api={ue [T = —pT).

On a patch o, the global space S, (®,) is the subspace of H(div, ®,) composed of
functions belonging piecewise to S7°V. The spaces V™ (®,) and A, (@, ) consist of
functions lying piecewise in Vr and Ay respectively, with no continuity conditions
between two elements.

As for the previous construction, we define subspaces with zero normal compo-
nents enforced on the stress tensor, and distinguish between interior and boundary
vertices. Let k := p and set

= {1, € S"™(@,) | Thng, =0 0n day, if a e ¥, (17a)
Tpg, =00n dw,\dQ ifa e ¥},

V¢ = {v, € Vi™(@,) | (V,2)w, = 0Vz € RM if a € ¥}, (17b)

A= Ap(@y). (17¢)

Construction 2 (AFW stress reconstruction) Find of € X, rj € Vj and 7L;l‘ €Ay
such that for all (Tj,, Vi, p) € Zjf X VI X Af,

(6Z7Th)wa + (l'ZaV : Th)wu + ()*Z7 Th)a)a = (l[/aO'(llh),Th)wa, (18a)
(V-0 Vi)a, = (—VWuf+0(uy)Vyy,v,)e,, (18b)
(Ohstn)w, = 0. (18¢)

Then, extending o}, by zero outside @, set G := Y ey, O

Using the definitions (17), the formulation (18) is equivalent to a modified version pf
(9), adding the weak symmetry constraint (18c). The condition (15) for all a € ”I/hm‘
ensures that the constrained minimization problem (18) is well-posed.

4.3 Properties of the Stress Reconstructions

For both stress reconstructions we obtain the following result, recalling that we as-
sume f to be piecewise polynomial of degree p — 1.

Lemma 1 (Properties of 6},). Let 6}, be prescribed by Construction 1 or Construc-
tion 2. Then o, € H(div,Q), and for all T € J},, the following holds:
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h~ | estimate AFW | estimate AW | [[u—up|len |lefr AFW |Lefr AW
4 11.707e-2 — [1.707e-2 — |1.704e-2. — | 1.00 | 1.00
8 |4.141e-3 2.05 |4.124e-3 2.05(4.026e-3 2.08| 1.03 | 1.02
16 |1.175e-3 1.82 |1.120e-3 1.88|1.116e-3 1.85| 1.05 | 1.00
32 12.835e-4 2.05|2.736e-4 2.03|2.707e-4 2.04| 1.05 | 1.01
64 |7.384e-5 1.94 |7.244e-5 1.92|7.021e-5 1.95| 1.05 | 1.03

Table 1 Error estimators, analytical error, and effectivity indices under space refinement

f+V-.0,=0. (19)
Proof. All the fields o, are in H(div, @,) and satisfy appropriate zero normal con-
ditions so that their zero-extension to 2 is in H(div, Q). Hence, o), € H(div, Q).
Let us prove (19). Since (15) holds for all a € "//him, we infer that (14b) or (18b) is
actually true for all v, € Vj,(@,). The same holds if a € ¥, by definition of VY.
Hence, (Y f+V-6,v4)w, =0 forall v, € V4(@,) and all a € 7. Since V(@) is
composed of piecewise polynomials that can be chosen independently in each cell
T € F,, and using 0|7 = Y4ey; 0|7 and the partition of unity ¥ ,cv, Wo = 1,
we infer that (f+V-0y,v) =0 for all ve Vg and all T € 7. The fact that
(f+V-.op)|r € Vr forany T € .7}, concludes the proof. O

5 Numerical Results

We illustrate numerically our theoretical results on a test case with a known ana-
Iytical solution. We analyze the convergence rates of the error estimates and com-
pare them to those of the analytical error. The computations were performed us-
ing the Code_Aster! software. The exact solution u = (u,uy) on the unit square
Q = (0,1)? is given by
1 . I .

Uy = — sin(7x) cos(my), ty=—— sin(7x) cos(my),
with the Lamé parameters t = A = 1, and the corresponding body force f. The
exact solution is imposed as Dirichlet condition on the whole boundary d2. The
discretization is done on a series of unstructured grids with the polynomial degree
p =2 in the conforming finite element method (3). For each computation, two error
estimates are calculated, one for each stress reconstruction. The AFW reconstruc-
tion offers some advantages over the AW one: it is cheaper (since by hybridization
techniques we can avoid the resolution of saddle point problems), and the imple-
mentation for three-dimensional problems is easier (the lowest-order AW element
in 3D has 162 degrees of freedom per element).

! http://web-code-aster.org
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Table 1 shows the error estimates calculated using the stress reconstruction in the

AFW (Const. 2) and in the AW spaces (Const. 1), the analytical error in the energy
norm, as well as their convergence rates. The two columns on the right indicate the
effectivity indices (overestimation factors) for both reconstruction methods, calcu-
lated as the ratio of the estimate to the analytical error. Since we chose p = 2, the
convergence rates are close to 2, with the rates of the estimates reproducing very
closely the ones of the actual error. Furthermore, the effectivity indices close to 1
indicate the reliability of the estimates.
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