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Equilibrated stress reconstructions for linear
elasticity problems with application to a
posteriori error analysis

Rita Riedlbeck, Daniele A. Di Pietro, and Alexandre Ern

Abstract We present an a posteriori error estimate for the linear elasticity problem.
The estimate is based on an equilibrated reconstruction of the Cauchy stress tensor,
which is obtained from mixed finite element solutions of local Neumann problems.
We propose two different reconstructions, one using Arnold–Winther mixed finite
element spaces providing a symmetric stress tensor and one using Arnold–Falk–
Winther mixed finite element spaces with a weak symmetry constraint. The perfor-
mance of the estimate is illustrated on a numerical test with analytical solution.
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1 Introduction

We consider the linear elasticity problem

−∇ ·σ(u) = f in Ω , (1a)
u = 0 on ∂Ω , (1b)

where Ω ⊂ R2 is a simply connected polygon, u : Ω → R2 the displacement, and
f : Ω → R2 denotes the volumetric body force. The Cauchy stress tensor σ is given
by Hooke’s law σ(u) = λ tr(ε(u))I+2µε(u), where λ and µ are the Lamé param-
eters, and the symmetric gradient ε(u) = 1

2 ((∇u)T +∇u) describes the infinitesimal
strain.

In many applications, this problem is numerically solved using H1-conforming
finite elements. It is well known that, in contrast to the analytical solution, the result-
ing discrete stress tensor does not have continous normal components across mesh
interfaces, and that its divergence is not locally in equilibrium with the source term
f on mesh cells. In this paper we propose an a posteriori error estimate based on
stress tensor functions which are reconstructed from the discrete stress tensor such
that they verify both of the above properties. Such equilibrated-flux a posteriori er-
ror estimates offer serveral advantages. First, error upper bounds are obtained with
fully computable constants. Second, polynomial-degree robustness can be achieved
for the Poisson problem in [3, 8]. Third, they allow to distinguish among various
error components, e.g., discretization, linearization, and algebraic solver error com-
ponents, and to equilibrate adaptively these components in the iterative solution of
nonlinear problems [7]. An advantage for more general problems in solid mechanics
is that the stress reconstruction is based on the discrete stress (not the displacement)
and thus the estimate does not depend on the mechanical behaviour law.

We present two stress reconstructions. Both use mixed finite elements on cell
patches around mesh vertices, as proposed for the Poisson problem in [6, 4]. The
first one was introduced in [9] and uses the Arnold–Winther (AW) mixed finite el-
ement spaces [2] providing a symmetric stress tensor. The second one follows the
same approach, but imposing the symmetry only weakly and using the Arnold–
Falk–Winther (AFW) mixed finite element spaces [1]. The AFW reconstruction of-
fers some advantages over the AW one: it is cheaper (since by hybridization tech-
niques we can avoid the resolution of saddle point problems), and the extension to
three dimensional problems is – from an implemenational point of view – easier (the
AW element in 3D has 162 degrees of freedom per element). The perspective of this
work is to deal with nonlinear elasticity and plasticity problems and to distinguish
different error components in the estimate.
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2 Setting

We denote by L2(Ω) the space of square-integrable functions taking values in R,
and by (·, ·) and ‖·‖ the corresponding inner product and norm. H1(Ω) stands for
the Sobolev space composed of L2(Ω) functions with weak gradients in [L2(Ω)]2

and H1
0 (Ω) for its zero-trace subspace. We assume henceforth that f lies in [L2(Ω)]2.

The weak formulation of (1) reads: find u ∈ [H1
0 (Ω)]2 such that

(σ(u),ε(v)) = (f,v) ∀v ∈ [H1
0 (Ω)]2. (2)

The discretization of (2) is based on a conforming triangulation Th of Ω , verify-
ing the minimum angle condition. We will use a conforming finite element method
of order p ≥ 2. Let Pp(Th) := {v ∈ L2(Ω) | ∀T ∈ Th v|T ∈ Pp(T )}, where Pp(T )
is the space of polynomials on T of degree less than or equal to p. For the sake of
simplicity we assume that f lies in [Pp−1(Th)]

2. Then the discrete problem reads:
find uh ∈ [H1

0 (Ω)]2∩ [Pp(Th)]
2 such that

(σ(uh),ε(vh)) = (f,vh) ∀vh ∈ [H1
0 (Ω)]2∩ [Pp(Th)]

2. (3)

3 A Posteriori Error Estimate

In this section, we derive an upper bound on the error between the analytical solution
of (2) and an arbitrary function uh ∈ [H1

0 (Ω)]2 ∩ [Pp(Th)]
2. We will measure this

error in the energy norm

‖v‖2
en := (σ(v),ε(v)) = 2µ‖ε(v)‖2 +λ‖∇ ·v‖2 ≥ 2µCK‖∇v‖2, (4)

where the last bound follows from λ ≥ 0 and Korn’s inequality. Owing to (1b),
we have CK = 1

2 . This value would have been different if we had chosen mixed
boundary conditions. We start by introducing reconstructed stress tensors that
are more “physical” than σ(uh), which in general does not lie in H(div,Ω) =
{τ ∈ [L2(Ω)]2×2 | ∇ · τ ∈ [L2(Ω)]2} and thus cannot verify the equilibrium equation
(1b). Notice that, unlike σ(uh), these reconstructed tensors may not be symmetric.

Definition 1 (Equilibrated stress reconstruction). We call equilibrated stress re-
construction any function σh ∈H(div,Ω) constructed from σ(uh) such that

(−∇ ·σh,z)T = (f,z)T ∀z ∈ RM ∀T ∈Th, (5)

where RM := {b+c(x2,−x1)
T | b ∈R2,c ∈R} is the space of rigid body motions.

Theorem 1 (A posteriori error estimate). Let u ∈ [H1
0 (Ω)]2 be the weak solution

of (2) and uh ∈ [H1
0 (Ω)]2 be arbitrary. Let σh be a stress reconstruction verifying

Definition 1. Then
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‖u−uh‖en ≤ µ
−1/2

(
∑

T∈Th

(hT

π
‖f+∇ ·σh‖T +‖σh−σ(uh)‖T

)2

)1/2

. (6)

Proof. From (4) and the symmetry of σ(u−uh), we infer that

‖u−uh‖en =

(
σ(u−uh),

ε(u−uh)

‖u−uh‖en

)
≤ µ

−1/2

(
σ(u−uh),

ε(u−uh)

‖∇(u−uh)‖

)
≤ µ

−1/2 sup
v∈[H1

0 (Ω)]2; ‖∇v‖=1
(σ(u−uh),∇v). (7)

Fix v∈ [H1
0 (Ω)]2, such that ‖∇v‖= 1. Using the fact that u verifies (2), and inserting

(∇ ·σh,v)+(σh,∇v) = 0 into the term inside the supremum yields

(σ(u−uh),∇v) = (f,v)− (σ(uh),∇v) = (f+∇ ·σh,v)+(σh−σ(uh),∇v). (8)

For the first term in the right hand side of (8) we use (5) to insert the mean
value Π 0

T v of v on T , the Cauchy–Schwarz inequality, and the Poincaré inequal-
ity ‖v−Π 0

T v‖T ≤ hT
π
‖∇v‖T on simplexes T ∈Th, and obtain

∣∣(f+∇ ·σh,v)
∣∣≤ ∣∣∣ ∑

T∈Th

(f+∇ ·σh,v−Π
0
T v)T

∣∣∣≤ ∑
T∈Th

hT

π
‖f+∇ ·σh‖T‖∇v‖T ,

whereas the Cauchy–Schwarz inequality applied to the second term directly yields∣∣(σh−σ(uh),∇v)
∣∣≤ ∑

T∈Th

‖σh−σ(uh)‖T‖∇v‖T .

Inserting these results in (7) and again applying the Cauchy-Schwarz inequality
yields the result. ut

4 Stress Tensor Reconstructions

For the stress tensor reconstructions we will use mixed finite element formula-
tions on patches around mesh vertices in the spirit of [6, 4] to obtain H(div,Ω)–
conforming equilibrated stresses. We propose two reconstructions, one using the
Arnold–Winther (AW) mixed finite element spaces [2] providing a symmetric stress
tensor, and one using the Arnold–Falk–Winther (AFW) mixed finite element spaces
[1] where the symmetry of the stress tensor is imposed weakly.

The set of vertices of the mesh Th is denoted by Vh; it is decomposed into in-
terior vertices V int

h and boundary vertices V ext
h . For all a ∈ Vh, Ta is the patch of

elements sharing the vertex a, ωa the corresponding open subdomain in Ω , nωa its
unit outward normal vector, and ψa the piecewise affine “hat” function which takes
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the value 1 at the vertex a and zero at all the other vertices. For all T ∈ Th, VT
denotes the set of vertices of T and hT its diameter.

Let from now on uh be the solution of (3). The goal is to minimize the error
estimate (6), but to avoid a global computation. As a result, both of the proposed re-
constructions are based on the following local minimization problems on the patches
ωa :

σ
a
h := arg min

τh∈Σa
h ; ∇·τh=ψaf

‖τh−ψaσ(uh)‖ωa , (9)

where we define Σ a
h separately for each construction and add a weak symmetry

constraint in the second (AFW) construction. The global reconstructed stress tensor
σh is then obtained summing over all mesh vertices these local solutions σa

h.

4.1 Arnold–Winther Stress Reconstruction

For each element T ∈Th, the local AW polynomial mixed finite element spaces [2]
of degree k ≥ 1 are defined by

SAW
T := {τ ∈ [Pk+2(T )]2×2

sym | ∇ · τ ∈ [Pk(T )]2}, VAW
T := [Pk(T )]2,

where [Pk(T )]2×2
sym denotes the subspace of [Pk(T )]2×2 composed of symmetric-

valued tensors. Figure 1 shows the corresponding 24 degrees of freedom of the
symmetric stress tensor in the lowest-order case k = 1: the values of the three com-
ponents at each vertex of the triangle, the values of the moments of degree zero and
1 of the normal components each edge, and the value of the moment of degree zero
of each component on the triangle. On a patch ωa, the AW mixed finite element
spaces are defined as

SAW
h (ωa) := {τh ∈H(div,ωa)∩ [Pk+2(T )]2×2

sym | τh|T ∈ SAW
T ∀T ∈Ta},

VAW
h (ωa) := {vh ∈ [L2(ωa)]

2 | vh|T ∈ VAW
T ∀T ∈Ta}.

Let now k := p− 1. We need to consider subspaces where a zero normal com-
ponent is enforced on the stress tensor. Since the boundary condition in the exact
problem prescribes the displacement and not the normal stress, we distinguish the
case whether a is an interior vertex or a boundary vertex. For a ∈ V int

h , we set

Σ
a
h := {τh ∈ SAW

h (ωa) | τhnωa = 0 on ∂ωa, τh(b) = 0 ∀b ∈ V ext
ωa }, (12a)

Va
h := {vh ∈ VAW

h (ωa) | (vh,z)ωa = 0 ∀z ∈ RM}, (12b)

with V ext
ωa = Vh∩∂ωa, and for a ∈ V ext

h , we set

Σ
a
h := {τh ∈ SAW

h (ωa) | τhnωa = 0 on ∂ωa\∂Ω , τh(b) = 0 ∀b ∈ V ext
ωa },

Va
h := VAW

h (ωa),
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Fig. 1 Element diagrams for (SAW
T ,VAW

T ) with k = 1 (left) and (SAFW
T ,VAFW

T ,ΛT ) with k = 2 (right)

with V ext
ωa = Vh ∩ (∂ωa\∂Ω). As argued in [2], the nodal degrees of freedom on

∂ωa are set to zero if the vertex separates two edges where the normal stress is zero.

Construction 1 (AW stress reconstruction) Find σa
h ∈ Σ a

h and ra
h ∈ Va

h such that
for all (τh,vh) ∈ Σ a

h ×Va
h,

(σa
h,τh)ωa +(ra

h,∇ · τh)ωa = (ψaσ(uh),τh)ωa , (14a)
(∇ ·σa

h,vh)ωa = (−ψaf+σ(uh)∇ψa,vh)ωa . (14b)

Then, extending σa
h by zero outside ωa, set σh := ∑a∈Vh

σa
h.

For interior vertices, the source term in (14a) has to verify the Neumann compati-
bility condition

(−ψaf+σ(uh)∇ψa,z)ωa = 0 ∀z ∈ RM. (15)

Taking ψaz as a test function in (3), we see that (15) holds.

4.2 Arnold–Falk–Winther Stress Reconstruction

For each element T ∈ Th, the local AFW mixed finite element spaces [1] of degree
k≥ 1 hinge on the Brezzi–Douglas–Marini mixed finite element spaces [5] for each
line of the stress tensor and are defined by

SAFW
T := [Pk(T )]2×2, VAFW

T := [Pk−1(T )]2, ΛT := {µ ∈ [Pk−1(T )]2×2 | µ = µ
T},

On a patch ωa the global space SAFW
h (ωa) is the subspace of H(div,ωa) composed of

functions belonging piecewise to SAFW
T . The spaces VAFW

h (ωa) and Λh(ωa) consist of
functions lying piecewise in VT and ΛT respectively, with no continuity conditions
between two elements.

As for the previous construction, we define subspaces with zero normal compo-
nents enforced on the stress tensor, and distinguish between interior and boundary
vertices. Let k := p and set

Σ
a
h := {τh ∈ SAFW

h (ωa) | τhnωa = 0 on ∂ωa if a ∈ V int
h ,

τhnωa = 0 on ∂ωa\∂Ω if a ∈ V ext
h },

(17a)

Va
h := {vh ∈ VAFW

h (ωa) | (vh,z)ωa = 0 ∀z ∈ RM if a ∈ V int
h }, (17b)

Λ
a
h := Λh(ωa). (17c)
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Construction 2 (AFW stress reconstruction) Find σa
h ∈ Σ a

h , ra
h ∈Va

h and λ a
h ∈Λ a

h
such that for all (τh,vh,µh) ∈ Σ a

h ×Va
h×Λ a

h ,

(σa
h,τh)ωa +(ra

h,∇ · τh)ωa +(λ a
h,τh)ωa = (ψaσ(uh),τh)ωa , (18a)

(∇ ·σa
h,vh)ωa = (−ψaf+σ(uh)∇ψa,vh)ωa , (18b)

(σa
h,µh)ωa = 0. (18c)

Then, extending σa
h by zero outside ωa, set σh := ∑a∈Vh

σa
h.

The condition (15) for all a ∈ V int
h ensures that the constrained minimization prob-

lem (18) is well-posed.

4.3 Properties of the Stress Reconstructions

Lemma 1 (Properties of σh). Let σh be prescribed by Construction 1 or Construc-
tion 2. Then σh ∈H(div,Ω), and for all T ∈Th, the following holds:

f+∇ ·σh = 0. (19)

Proof. All the fields σa
h are in H(div,ωa) and satisfy appropriate zero normal con-

ditions so that their zero-extension to Ω is in H(div,Ω). Hence, σh ∈ H(div,Ω).
Let us prove (19). Since (15) holds for all a ∈ V int

h , we infer that (14b) or (18b) is
actually true for all vh ∈ Vh(ωa). The same holds if a ∈ V ext

h by definition of Va
h.

Hence, (ψaf+∇ ·σa
h,vh)ωa = 0 for all vh ∈ Vh(ωa) and all a ∈ Vh. Since Vh(ωa) is

composed of piecewise polynomials that can be chosen independently in each cell
T ∈ Ta, and using σh|T = ∑a∈VT σa

h|T and the partition of unity ∑a∈VT ψa = 1,
we infer that (f + ∇ · σh,v) = 0 for all v ∈ VT and all T ∈ Th. The fact that
(f+∇ ·σh)|T ∈ VT for any T ∈Th, concludes the proof. ut

5 Numerical Results

We illustrate numerically our theoretical results on a test case with a known ana-
lytical solution. We analyze the convergence rates of the error estimates and com-
pare them to those of the analytical error. The computations were performed us-
ing the Code Aster1 software. The exact solution u = (ux,uy) on the unit square
Ω = (0,1)2 is given by

ux =
1
π

sin(πx)cos(πy), uy =−
1
π

sin(πx)cos(πy),

1 http://web-code-aster.org
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h−1 estimate AFW estimate AW ‖u−uh‖en Ieff,AFW Ieff,AW
4 1.707e-2 — 1.707e-2 — 1.704e-2 — 1.00 1.00
8 4.141e-3 2.05 4.124e-3 2.05 4.026e-3 2.08 1.03 1.02
16 1.175e-3 1.82 1.120e-3 1.88 1.116e-3 1.85 1.05 1.00
32 2.835e-4 2.05 2.736e-4 2.03 2.707e-4 2.04 1.05 1.01
64 7.384e-5 1.94 7.244e-5 1.92 7.021e-5 1.95 1.05 1.03

Table 1 Error estimators, analytical error, and effectivity indices under space refinement

with the Lamé parameters µ = λ = 1, and the corresponding body force f. The
exact solution is imposed as Dirichlet condition on the whole boundary ∂Ω . The
discretization is done on a series of unstructured grids with the polynomial degree
p = 2 in the conforming finite element method (3).

Table 1 shows the error estimates calculated using the stress reconstruction in
the AFW (Const. 2) and in the AW spaces (Const. 1), the analytical error in the
energy norm, as well as their convergence rates. The two columns on the right indi-
cate the effectivity indices (overestimation factors) for both reconstruction methods,
calculated as the ratio of the estimate to the analytical error.

Since we chose p = 2, the convergence rates are close to 2, with the rates of the
estimates reproducing very closely the ones of the actual error. Furthermore, the
effectivity indices close to 1 indicate the reliability of the estimates.
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