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ABSTRACT 
Flows involving waves and free-surfaces occur in several 

problems in hydrodynamics, such as sloshing in tanks, waves 

breaking in ships and motions of offshore platforms. The 

computation of such wave problems is challenging since the 

water/air interface (or free-surface) commonly present 

merging, fragmentation and cusps, leading to the use of 

interface capturing Arbitrary Lagrangian-Eulerian (ALE) 

approaches. In such methods the interface between the two 

fluids is captured by the use of a marking function which is 

transported in a flow field. In this work we simulate these 

problems with a 3D incompressible SUPG/PSPG parallel edge-

based finite element flow solver associated to the Volume-of-

Fluid (VOF) method [1]. The hyperbolic equation for the 

transport of the marking function is also solved by a fully 

implicit parallel edge-based SUPG finite element formulation. 

Global mass conservation is enforced adding or removing mass 

proportionally to the absolute value of the normal velocity at 

the interface. The performance and accuracy of the proposed 

solution method is tested in the simulation of progressive waves 

and the interaction of a fixed cylinder with a progressive wave.  
INTRODUCTION 
Flows involving waves occur in several problems in 
hydrodynamics. Sloshing of liquids in tanks, wave breaking in 
ships, offshore platforms motions and green water on decks are 
important examples of this class of problems. The main 
computational challenge when solving such highly nonlinear 
problem is determining the evolution of the interface location. 
There are a large number of numerical methods devoted to the 
computation of free-surface problems. These methods are 
frequently classified as interface tracking and interface 
capturing methods. 
Interface tracking methods are based on a Lagrangian 
framework where the moving interface or boundary is explicitly 
tracked by the computational grid or by the particles of 
meshless methods which must be deformed or moved in order 
to follow the fluid flow. The deforming-spatial-
domain/stabilized space time finite element formulation 
(DSD/SST) proposed by Tezduyar [1] and Tezduyar et al [2, 3] 
is a mesh based example of interface tracking method. Particle 
methods, such as those of Koshizuka et al [4] and Violeau and 
Issa [5] are examples of smoothed particle hydrodynamics 
(SPH) methods to the simulation of free-surface problems. 
However, these methods still present a high computational cost 
since they need to compute the interaction between the particles 
using search algorithms. As a compromise between the 



advantages offered by mesh based and meshless methods, Del 
Pin et al present in [6] the particle finite element method 
(PFEM) applied to free-surface flows. In this method the 
critical parts of the continuum are discretized with particles 
while the remaining parts are treated by a Lagrangian finite 
element formulation. Another technique mixing Lagrangian and 
Eulerian flavors was proposed in [7] by Takizawa et al. In this 
work the authors enhanced the Constrained Interpolation Profile 
method (CIP) for solving hyperbolic equations with a meshless 
Soroban grid. The resulting formulation was used to treat fluid-
object and fluid-structure interaction in the presence of free-
surfaces.  

As a cost effective alternative to interface tracking methods, 
interface capturing methods have emerged. Interface capturing 
methods are Eulerian in their concept, thus they rely on a 
unique and fixed computational grid to capture the interface 
evolution. In this class of methods the interface is represented 
by a scalar function which marks the regions filled with the 
fluids involved. In other words, the interface position is 
implicitly captured in a scalar marking function value and the 
interface evolution is determined by the additional cost of 
solving an advection equation for the marker. As opposed to 
interface tracking methods, interface capturing methods require 
little effort to represent all complicated features of moving 
interfaces. Additionally, the parallel implementation and post-
processing of interface capturing methods are straightforward. 
The main drawback of interface capturing methods is the need 
to average the fluid properties at the interface cells (elements) 
due to the discontinuity of the Eulerian representation of the 
interface. Moreover, the accuracy and computational cost of 
interface capturing methods are typically associated to grid 
resolution, properties of the marking function chosen to 
represent the interface and numerical methods for solving the 
fluid flow and marking function advection. The well known 
volume-of-fluid scheme (VOF), firstly proposed by Hirt and 
Nichols [8] for Cartesian grids, is an interface capturing 
technique which employs a step function ranging from 0 to 1 to 
represent the fraction of fluid within the grid cells. In this sense, 
the interface is implicitly represented by the partially filled 
cells. The main issues associated to VOF methods include the 
difficulty in advecting a discontinuous step function and the 
accurate modeling of surface tension effects. Level set methods 
[9] implement free-surface flows in a different manner than 
VOF by changing the marking function employed to represent 
the interface. Therefore, the fluids are associated to the range of 
the distance function signs while the interface is implicitly 
represented by the zero level set. However, the level set method 
suffers when the distance function looses its properties and must 
be rebuilt. In fact, the success of level set method lies in its 
ability of building and keeping a signed distance function 
without losing its properties. The enhanced-discretization 
interface-capturing method, firstly proposed by Tezduyar in 
[10] and the work of Lohner et al presented in [11], are both 
examples of unstructured grid formulations based on the finite 
element method to solve free-surface flows using a VOF 
marking function.  

In this work we use our VOF edge-based stabilized finite 
element solver [12] and [13], to deal with complex wave 
phenomena. The main characteristics of our solver are: 
Streamline-Upwind/Petrov-Galerkin (SUPG), Pressure-
Stabilizing/Petrov-Galerkin (PSPG) and Least Squares 
Incompressibility Constraint (LSIC) stabilized finite element 
formulation; implicit time marching scheme with adaptive time 
stepping control; advanced Inexact Newton solvers; edge-based 
data structures to save memory and improve performance; 
support to message passing and shared memory parallel 
programming models; and large eddy simulation extensions 
using a classical Smagorinsky model.  

GOVERNING EQUATIONS 

Incompressible Fluid Flow 

Let sdnΩ ⊂ �  be the spatial domain, where nsd is the number of 
space dimensions. Let Γ  denote the boundary of Ω . We 
consider the following velocity-pressure formulation of the 
Navier-Stokes equations governing the incompressible flow of 
two immiscible fluids within an Arbitrary Lagrangian-Eulerian 
frame [14]: 

( ) on 0,
mesh f

t
t

ρ
 ∂   + − ⋅ −  − ⋅ = Ω×     ∂
u
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0 on 0,
f
t ⋅ = Ω×  u∇∇∇∇ (2) 

where ρ  and u  are the density and velocity, 
mesh
u  is the mesh 

velocity, f  is the body force vector carrying the gravity 
acceleration effect and σσσσ  is the stress tensor given as 

( ),p p= − +u I Tσσσσ (3) 

where p  is the pressure, I is the identity tensor, T  is the 
deviatoric stress tensor 

2 ( )µ=T uεεεε  (4) 

and ( )uεεεε  is the strain rate tensor defined as 

( )1
( ) ( )

2
T= +u u uε ∇ ∇ε ∇ ∇ε ∇ ∇ε ∇ ∇ (5) 

In the present work a large eddy simulation (LES) approach to 
turbulence is considered by the use of a classic Smagorinsky 
turbulence model [15]. In this model, the viscosity µ  is 



augmented by a subgrid-scale viscosity 
SGS
µ  proportional to the 

norm of the local strain rate tensor and to a filter width h
defined here as the cubic root of the element volume, 

( )2SGS ( ): ( )
S
C hµ ρ= u u2ε ε2ε ε2ε ε2ε ε (6) 

where  
S
C  is the Smagorinsky constant, taken as 0.1. 

The essential and natural boundary conditions associated with 
equations (1) and (2) can be imposed at different portions of the 
boundary Γ  and represented by, 
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where 
g
Γ  and 

h
Γ  are complementary subsets of Γ . 

Let us assume that we have some suitably defined finite-
dimensional trial solution and test function spaces for velocity 

and pressure, hS
u
, hV

u
, h

p
S  and h h

p p
V S= . The finite element 
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(1) and (2) using SUPG and PSPG stabilizations for 
incompressible fluid flows can be written (see Tezduyar and 
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In the above equation the first four integrals on the left hand 
side represent terms that appear in the Galerkin formulation of 
the problem (1)-(8), while the remaining integral expressions 
represent the additional terms which arise in the stabilized finite 
element formulation. Note that the stabilization terms are 
evaluated as the sum of element-wise integral expressions, 
where nel is the number of elements in the mesh. The first 
summation corresponds to the SUPG term and the second to the 
PSPG term. We have evaluated the SUPG and PSPG 
stabilization parameters according to Tezduyar et al. [2], as 
follows: 

1 22 2

2

2 4
9

h h
mesh
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h h

ν
τ τ

−  −    = = +           

u u
(10)

here u
h is the local velocity vector, and ν  is the kinematic 

viscosity.  

In Equation (9), the last summation is the Least Squares 
Incompressibility Constraint (LSIC) term [3], added to prevent 
spurious oscillations at high Reynolds number flows. The LSIC 
stabilization parameter is, 

2

h h
mesh

LSIC

h
τ

−
=
u u

(11)

The discretization of Equation (9) leads us to a nonlinear 
system of equations to be solved at each time step. 

Interface Capturing 
In volume-of-fluid (VOF) method [8], a scalar marking function 
can be employed to capture the position of the interface 
between the fluids by simply using the fluids fraction 
relationship. 

The volume-of-fluid can be stated as: assuming the value 1 in 
regions filled with fluid A, e.g., water, and the value 0 in 
regions filled with fluid B, e.g., air, the position of the fluid 

interface will be defined by the isovalue contour 
c

( , )=tφ φx , 

where c 0,1φ  ∈   . The value
c
=0.5φ  is usually assumed. 

Finally, the function ( )φ x  is driven by a velocity field u

satisfying the following transport equation, given in 
conservative form as, 
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φ
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In the volume-of-fluid (VOF) formulation the fluid density and 
viscosity, employed in the fluid flow solution, are interpolated 
across the interface as follows: 
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where subscripts A and B denote the values corresponding to 
each fluid. 

The finite element formulation of Equation (12) can be written 

as follows: Find h hS
φ

φ ∈ , such that, h hw V
φ

∀ ∈ , 

( )

( )

( )
( )1

1

0

el

e

el

e

h
h h h h

mesh

h h h

h
n h h

h h emesh
SUPG

h h he

n
h h

e

w d
t

w d

w dt

w d

Ω

Ω

= Ω

= Ω

∂
+ − ⋅ Ω

∂

⋅ Ω

∂
+ −

+ ⋅ Ω∂
⋅ + ⋅

+ ⋅ Ω =

     

+

         

∫

∫

∑∫

∑∫

u u

u

u u
u

u

φ
φ

φ

φ

τ

φ φ

δ φ

∇∇∇∇

∇∇∇∇

∇∇∇∇

∇ ∇∇ ∇∇ ∇∇ ∇

∇ ∇∇ ∇∇ ∇∇ ∇

(15)

where hS
φ

 and hV
φ

are standard test and weight finite element 

spaces. The first two integrals represent the Galerkin 
formulation of Equation (12), while the first element-wise 
summation represents the SUPG and the second summation 
term is the nonlinear discontinuity-capturing term, useful when 
sharp gradients and/or boundary layers are present in directions 

other than the streamlines [16]. The evaluation of 
SUPG
τ  and δ

stabilization terms follow the definitions described in [17] and 
[16] respectively. The discretization of Equation (15) leads us 
to a non-linear ordinary differential equation system, due to the 
discontinuity-capturing term. In this work, we have adopted the 
YZβ  discontinuity capturing term as proposed in [18] where δ  
is computed as: 
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where ( )eR φ  is the element residual of Equation (15) 
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Note that if 1β =  and the reference value 1φ = , the YZβ

discontinuity capturing term renders to the Consistent 
Approximated Upwind (CAU) method [16]. In order to avoid 
non physical results, values lying outside the range [0,1] were 
truncated with the following function: 
min max ,0 ,1h hφ φ   =     (18)

SOLUTION PROCEDURE 
The computational solution kernels consist of predictor 
multicorrector time integration schemes as described in [17], 
[19] for both incompressible fluid flow and interface transport 
equations. The generalized trapezoidal rule is employed in the 
time discretization. The nonlinearities due to the convective 
term on the Navier-Stokes equation are treated by an Inexact 
Newton-GMRES algorithm as described in Elias et al [20]. In 
this solution algorithm, at the beginning of the nonlinear 
iterations in each time step, the algorithm computes large linear 
tolerances, producing fast nonlinear steps. As the iterations 
progress towards the solution, the inexact nonlinear method 
adapts the GMRES tolerances to reach the desired accuracy. A 
nodal-block diagonal preconditioner is employed for the flow 
and a simple diagonal preconditioner for the marker. Moreover, 
for both the fluid flow and the marking function advection we 
use an adaptive time stepping procedure based on a 
Proportional-Integral-Derivative (PID) controller (see [21]) for 
further details). Most of the computational effort spent in this 
solution procedure is due to the matrix-vector products within 
the GMRES driver for both flow and marker. To improve the 
computational efficiency with respect to standard element-by-
element and sparse matrix-vector storage schemes, we adopt an 
edge-based data structure in order to minimize indirect memory 
addressing, diminish floating point operation counts (flops) and 
memory requirements, as described in Elias et al [22] and 
Coutinho et al [23] for both the Navier-Stokes equations and the 
marking function advection. Further computational gains are 
obtained from data preprocessing performed by the EdgePack 
library – a package to improve cache reutilization based on 
reordering and grouping techniques [24]. All computational 
kernels are parallelized covering most of distributed and shared 
memory systems as well as vectorized and pipelined processors 
[25]. 



Enforcing Mass Conservation 
The most challenging feature for a good interface capturing 
method resides in its ability to preserve the mass of the species 
involved. According to Lohner [11], in VOF methods the mass 
loss can be associated to reasons such as: interface smearing 
due to numerical diffusion of the step function, inexact 
divergence free velocity field and boundary conditions, 
undulations in the solution of the marking function advection. 
Level set methods suffer when the marking function loose its 
signed distance property. These problems have been reported by 
many authors and are still the subject of several researches. In 
this work we have followed the procedure proposed in [11] and 
[12] to overcome mass losses. In this procedure the mass 
lost/gained are found by comparing the expected value, 
composed by the initial mass plus the inlet and outlet fluxes, at 
the end of each time step. Therefore, the values to be added or 
removed are made proportional to the absolute value of the 
normal velocity of the interface given by 

( )h h
meshn

u
φ

φ

∇
− ⋅=

∇
u u (19) 

the amount computed from Equation (19) guarantees that the 
mass correction will act mainly in regions where the interface is 
moving faster, while keeping the stationary regions untouched. 
Therefore, the portion of mass correction corresponding to each 
element is computed and projected onto the global nodes by L2 
projection. In [12], Elias and Coutinho evaluate different test 
problems with the help of the mass preservation algorithm 
showing its efficiency.  

In order to guarantee the effectiveness of the mass correction 
method we must have an accurate procedure for computing the 
volume of the fluid phases. In this work we have adopted a 
method, described in [12], which makes use of the interface 
explicitly determined for those elements lying on the interface. 
To introduce the method, firstly we need to identify the 
elements as filled, partially filled or empty. This can be done by 
computing an element key according to the nodal value of the 
marking function φ. Thus, if φ ≥ 0.5 we assign a value 1, 
otherwise, it is marked as 0. Finally, the element key is found by 
summing its nodal values. Note that the empty elements can be 
skipped from the computation since the void region will be the 
difference between the domain and the filled region. Moreover, 
for elements partially filled, the filling volume can be found 
from the sub-tetrahedra and wedges formed by the interface 
plane cutting the original element. 

TEST PROBLEMS 

Progressive Wave 
This case represents the simulation of generation and 
propagation of a progressive regular wave, from a piston-type 
wave maker. The computational domain is presented in Figure 
1. It has 120 meters length, 20 meters height and 0.5 meters
width. Figure 1 also presents the initial condition and initial 
mesh configuration.  

Figure 1. Initial condition and mesh – 67,320 nodes and 254,052 
tetrahedral elements. 

The movement is prescribed by a periodic function at the left 
face, simulating a piston-type wave maker. To avoid mesh 
entangling we introduce a buffer region where the periodic 
function describing the nodes displacement suffers a damping 
effect, given by, 

cos( )Ae t−= +ω ϕ0
x

x  (20) 

where A  is the piston displacement amplitude, x  and 
0
x  are 

position coordinates, ω  is the piston  angular frequency, t  
refers to the time and ϕ  is the phase angle. In this problem, the 

piston moves periodically, with amplitude 0.40 m from its 
original position and the oscillation period is 4 s. All nodes, 
from the piston up to 20 m, also oscillate gradually according to 
Equation (20). 

The time step was fixed in 0.005 seconds and the simulation 
time is 40 seconds. Linear GMRES tolerance was set to 10-3 
and 10-5 for the Navier-Stokes equations and scalar marking 
function equation, respectively. The Navier-Stokes Inexact-
Newton flow solver converges in 3 iterations while the scalar 
marking function equation converges in 6 iterations. 



Figure 2. Generation and propagation of a progressive wave. 
Free surface elevation at t = 0s, t = 8s, t = 16s, t = 24s, t = 32s 

and t = 40s. 

According to linear wave theory, the wave celerity can be 
computed as the ratio between its length and period [26]. The 
analytical and numerical results for the wave celerity are 6.17 
m/s and 6.42 m/s, which are in good agreement. Beyond the 
wave celerity, other comparison parameters were verified. The 
wave length and height provided by the linear wave generator 
theory ([27] and [28]) are 24.67 m and 1.49 m, respectively. 
They compare well with the values obtained from the 
simulation, 24.70 m and 1.58 m.  

Figure 3. Progressive wave displacement. 
Three positions were chosen to track pressure and velocity 
fields. Figure 4 shows the monitored points. 

Figure 4. Monitored points. x = 60m and y = 2.5m, 5.0m, 7.5m. 

The piston is in the origin of coordinate system. The points are 
at x coordinate 60.0 meters and y coordinates 2.5, 5.0 e 7.5 
meters. 

The analytical solution was calculated from equations given by 
the potential formulation for regular progressive wave 
propagation, known as linear theory [26]. The velocity 
components and pressure equations are shown below: 

( )
( )

( )
cosh

cos
sinha

k h y
u kx t

ky
ζ ω ω

+  = −  (21)

( )
( )

( )
sinh

sin
sinha

k h y
v kx t

ky
ζ ω ω

+  = −  (22)

( )
( )

( )
cosh

cos
cosha

k h y
p gy g kx t

ky
ρ ρ ζ ω

+  = − + −  (23)

In equations 21, 22 e 23, u and v are the velocity components, p 
is pressure and x and y are position coordinates. The wave 
amplitude and frequency are ζa e ω, respectively. Water depth is 
h and k is the wave number. The wave number is calculated 
from dispersion relationship, given by equation 24 .  

2

tanh( )k kh
g

ω
= (24) 

where g denotes gravity. 

Figure 5 shows the pressure field for all monitored points. The 
numerical simulation is compared to the linear theory. The 
transient phase of the pressure time history is due to the initial 
condition.  
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Figure 5. Pressure on monitored points. 

In all three points, after the initial transient, a good agreement 
between the numerical and analytical pressure solutions is 
observed. 

Mean pressure is presented in table 1 and the dynamic pressure 
amplitudes are presented in table 2. The values were taken in 
the last 5 minutes of simulation. 

y = 2.5 m y = 5.0 m y = 7.5 m 

Linear mean pressure (Pa) 
73634,47 49174,80 24776,55 

EdgeCFD mean pressure (Pa) 
73269,62 48896,79 24510,88 

Table 1. Mean pressure.

y = 2.5 m y = 5.0 m y = 7.5 m 

Linear amplitude of dynamic 

pressure (Pa) 
1371,88 2185,01 3914,47 

EdgeCFD amplitude of 

dynamic pressure (Pa) 
1953,80 2941,15 4831,95 

Table 2. Amplitude of dynamic pressure.
Velocity field for each one of three monitored points is shown 
in Figures 6 – 11. As it happens in pressure solution, the 
simulation needs an adjustment time to converge to steady-state 
solution. 
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Figure 9. Velocity. Component v. x = 60.0 and y = 5.0 m. 
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Figure 10. Velocity. Component u. x = 60.0 and y = 7.5 m. 
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Figure 11. Velocity. Component v. x = 60.0 and y = 7.5 m. 

Note that, there is a good agreement of the frequency, but the 
amplitudes are not so close. On the other hand, it is important to 
observe that linear theory can not cope with viscosity effects 
and non-linear free surface effects.  

Progressive wave interaction with a fixed cylinder 

This case refers to the interaction of a progressive wave with a 
fixed circular cylinder placed on the center of the domain, as 
shown in Figure 12. The ground based circular section structure 
has a depth of 15 m (5m in the air and 10 m under the water) 
and its radius is 5m. All dimensions of progressive wave 
original case domain were kept, except the width. This 
dimension is taken as 50 m, being a good choice to diminish the 
effects of lateral walls on the wave-cylinder interaction. The 
piston, represented by the face at y = 0 m, moves cyclically in 
x- direction with a 0.40 m amplitude and period of 4 seconds. 
The fluid properties are: ρwater = 1000.0 kg/m3, µwater = 0.001 
kg/(m s), ρair = 1.0 kg/m3, µair = 0.001 kg/(m s). The air 
viscosity is considered equal to the water in order to avoid 
unstable regions in the air phase. 

Figure 12. Progressive wave over a cylinder. Free surface 
initial condition and domain. 



Figure 13 shows the computational domain and the partitions 
for parallel processing. The computation was performed in 
parallel (MPI) in a SGI Altix XE 1200, employing 8 of its 88 
Xeon cores (2.66 GHz). The maximum inexact-Newton linear 
tolerance was set to 10-3 while the linear tolerance for the 
marking function equation was 10-5. The nonlinear loops were 
stopped after the relative residual as well as the relative step 
increment decreased 3 orders of magnitude. In addition, a fixed 
time step of 0.005 was employed. For 50 seconds of simulation 
it was spent about 70 hours of CPU time. Figure 14 presents 
five snapshots representing the time solutions at 10, 20, 30, 40 
and 50 seconds. 

Figure 13. Progressive wave over a cylinder. 
Computational domain: Tetrahedral finite elements unstructured 

mesh with 195,426 nodes and 1,140,159 elements and 
partitioning for 8 processors. 

(a) 
(b) 

(c) (d) 

(e) 
Figure 14. Progressive wave over a cylinder. Free 

surface elevation at (a) t = 10s, (b) t = 20s, (c) t = 30s, (d) t 
= 40s, (e) t = 50s. 
Figure 15 presents the kinetic energy of the fluid. Since the 
fluid is initially at rest, the kinetic energy is introduced by the 
piston. The oscillatory movement of the piston, the wave-
cylinder and wave-opposite face interactions are captured in the 
kinetic energy oscillatory behavior. Figure 16 shows the water 
mass preservation with respect to the initial water mass, and 
reveals how efficiently the mass correction algorithm works. 
Note that most of the disturbances occur at the initial stage, up 
to 1 second, which coincides with the moment that the piston 
pushes the fluid, which is initially at rest. It is important to 
remind that the mass correction algorithm is based on the 
velocity field normal to the free surface, making the correction 
effects more pronounced when the interface is moving faster. 
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Figure 15. Kinetic energy of progressive wave. 
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Figure 16. Water phase preservation 

The maximum computed water loss was around 0.005% which 
is one order of magnitude smaller than the adopted nonlinear 
stopping criteria. It means that material losses are negligible. 
The history of the horizontal hydrodynamic force exerted by the 
fluid over the cylinder is illustrated by Figure 17.  The 
amplitude of the linear force evaluated using the MacCamy and 
Fuchs analytical formulation is equal to 612,299 N [29]  and by 
the WAMIT® code is 591,257 N, [30]. These results, based on 
linear diffraction theory, are close to the numerical results 



obtained by the program. The causes of the changes in the time 
history of the horizontal force (between 37s and 45s for 
example) could at first be imputed to the wall reflections at the 
end of the channel, but deserves more investigation 
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Figure 17. Force exerted by the progressive wave over the 
cylinder. 

CONCLUSIONS 
In this work we have successfully extended our parallel 
incompressible flow solver to problems involving wave 
interactions with moving physical boundaries. This goal was 
reached by introducing Arbitrary Lagrangian-Eulerian 
formulation into the stabilized finite element formulation. We 
have validated the present formulation simulating a progressive 
wave generated from a piston-like wave maker and its 
interaction with a vertical circular cylinder. The main 
conclusions are that some important parameters in progressive 
wave behavior, as celerity, wavelength and height, are in good 
agreement with existing linear theoretical values. In the 
problem of the progressive wave interaction with a fixed 
circular cylinder, we have computed the horizontal force over 
the cylinder and the kinetic energy of the fluid, which is 
introduced by the piston movement.  We noticed the linear 
force given by the MacCamy and Fuchs analytical formulation 
and the WAMIT® code are close to the numerical results 
obtained in the simulation. Furthermore, we verified in this case 
that the maximum loss computed is around 0.005%, which 
evidences the efficiency of global mass conservation procedure. 
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