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ABSTRACT 

This paper is devoted to the analysis of the two- or three-dimensional 
elastic contact problem with Coulomb friction. quasi-static equilibrium, 
and small displacements. The classical approach is based on two minimum 
principles, or variational inequalities: the first for unilateral contact and 
the second for friction. In practical applications, this leads to an algorithm 
of alternately solving the two problems until convergence is achieved. A 
coupled approach using one principle or one inequality only is presented. 
This new approach, based on a model of material called implicit standard, 
allows for extension of the notion of a normality law to dissipative be-
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havior with a nonassociated flow rule, such as surface friction. For nu­
merical time integration of the laws, Moreau's implicit method is consid­
ered. Nondifferentiable potentials are regularized by means of the augmented 
Lagrangian technique. A discretized formulation using the finite eJement 
method and numerical applications are reported in a separate paper. 

I. INTRODUCTION 

During the two last decades, many papers dealing with contact problems 
using the finite element method have been written. In this work, attention 

.) 

is focused on modeling unilateral contact with Coulomb friction and small 
displacements in order to obtain variational formulations, minimization or 
inequality problems. Before proceeding, three relevant features of contact 
problems must be stated. 

First, as the sliding law involves time rates, an integration method must 
be chosen to determine the solution by numerical analysis. An explicit scheme 
is not satisfactory because the friction criterion is not fulfilled at the end of 
the step. As it is not possible to control the distance of a given traction state 
to Coulomb's cone, errors accumulate at the end of the loading steps. In 
the present approach, an implicit integration method is used. Although it is 
more complicated, it always gives better results concerning convergence and 
numerical stability [ 1-4]. For the elastoplastic law, the implicit method has 
been discussed by Moreau [3] and is known as the catching-up algorithm. 

Second, the contact law is written in a local frame that depends on the 
unit vector normal to the contact surface in the configuration at the end of 
the step. A fully implicit method that takes into account this fact was pro­
posed by Wriggers, Simo, and Taylor [5, 6] and Curnier and Alart [7, 8]. 
Using small displacement hypotheses, such a degree of accuracy of the so­
lution seems unnecessary. Hence, in the present approach, the normal unit 
vector is a priori determined by an assumption concerning possible contact. 
In this sense, the integration method can be characterized as semi-implicit 
[9]. 

Third, dry friction behavior is a dissipative process that is similar to a 
rigid-perfectly plastic law. Coulomb's criterion is analogous to the plasticity 
criterion and the sliding rule, to the yielding law. A large range of plastic 
behaviors, or more generally of dissipative processes, may be presented by 
a normality law fl0-18]. This class of material is called generalized stan­
dard materials (GSM) ll6]. This kind of material exhibits good properties 
with respect to the existence of solutions for the boundary-value problem. 
Because the dry friction sliding rule is a normality law where the derivative 
with respect to the normal traction is missing, the contact behavior may be 
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considered nonstandard. Other plasticity laws in metals [ 19] ~r soils [I, 20, 
21] also can be called nonstandard material laws. In this paper, a new class 
of materials, called implicit standard materials, is presented, which can be 
used to generalize in a simple1 neat way the standard materials and to define 
several interesting properties for the boundary-value problem. 

A good generalization should preserve the notion of energetic law defined 
by the Legendre transform. The classical standard materials are determined 
by the knowledge of two dual potentials and an explicit dependence of the 
generalized stresses or forces with respect to the generalized strains or 
displacements. 

The implicit standard materials are determined by a unique potential called 
a bipotential, and the dependence between generalized stresses and strains 
is implicit (in the sense of the implicit function theorem). By introduction 
of the so-called left and right dual potentials, it is shown that, with convexity 
assumptions, the implicit dependence can become explicit, but with the 
drawback that the standard form of the material law is lost. Some properties 
of existence of solutions are proved for boundary-value problems with im­
plicit standard materials by introduction of variational principles based on 
the so-called 64 bifunctional." This approach leads to an iterative algorithm 
to reach the solution. 

For unilateral contact with friction between elastic bodies, the new ma­
terial law model leads to a single displacement variational principle for which 
the unilateral contact and the fricton law are coupled. This variational ap­
proach is simpler than the classical one, which involves two variational prin­
ciples, one for unilateral contact and the other for friction [7, 8, 12, 22]: 

When displacements are expressed with respect to traction, as in global 
GSM theory [ 18], the problem may be presented in inequality form. For the 
classical approach, two inequalities are obtained, which must be alternately 
solved until convergence [9, 12, 23-25]. For the implicit standard material 
approach, a unique inequality is obtained because unilateral contact and fric­
tion are coupled. 

For the numericaJ so]ution process, the augmented Lagrangian method 
[26] is used in order to avoid occurrence of nondifferentiab]e potentials in 
the contact representation. In the literature, two different methods have been 
followed for the numerical solution process. The first consists of applying 
Newtonts method to the saddle-point equations of the augmented Lagrangian 
[8] or, equivalently, of the perturbed Lagrangian [5, 6, 27]. The main draw­
back of this algorithm is that the size of the system increases because both 
displacements and tractions (or multipliers) remain together as independent 
unknown quantities. The second method consists of using Usawa's algo­
rithm. This approach was chosen by Fremond [28-30] for contact problems 
without friction, and by Jean and Touzot [9, 23-25] and Franchomme et 
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al. [3 I] for contact with friction. The current iteration involves two sets of 
predictor and corrector steps, one for unilateral contact and the other for 
friction. In the present approach, Usawa's algorithm is considered but the 
iteration is reduced to a single set of predictor and corrector steps. A similar 
algorithm using a projection step was presented by Giannakopoulos [32] and 
by Cumier and Alart [7] but starting from an approximation of the unilateral 
contact law by classical penalty techniques and of the friction law by a fic­
tious elastoplastic-like law. This is an extension of the approach known in 
elastoplasticity as the return mapping method, which is actually a particular 
case of Moreau's catching-up algorithm [I, 3, 4]. 

Others numerical formulations, such as linear complementarity problems 
(LCP), have been introduced. Klarbring and Bjorkman [33] used a rigid­
plastic dry friction model that can be considered as a piecewise· linearization 
of the implicit standard material model. Zhong and Sun [34] also used the 
LCP method but with a fictious elastoplastic-Iike model. 

Other relevant features of contact problems, such as dual solutions by 
equilibrium and hybrid finite elements or accuracy problems due to geo­
metrical modeling by finite elements, have been analyzed previously by De 
Saxce and Nguyen Dang Hung [35-38]. 

II. IMPLICIT STANDARD MATERIALS 

In soJid mechanics, a wide range of material behavior can be represented 
by the relation 

X= f(y) (1) 

where x and y are, respectively, the generalized strain and stress vectors. 
These quantities may be understood in the context of instantaneous values, 
velocities, or finite increments. If Eq. I can be inverted, 

y = g(x) (2) 

This definition is very broad, but generally gives little relevant information 
about the properties required for solving the boundary-value problem; i.e. 
the existence and uniqueness of solutions. These difficulties can be reflected 
in the numerical implementation of the solution procedure [ l]. 

A more restricted range of material that leads to the good properties of 
the boundary-value problem is one of the so-called standard materials. The 
existence of potentials V(x) and W(y) is postulated. They are dual in Le-
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gendre's sense [10-15, 19, 35, 39]; i.e., 

V(x) + W(y) = x • y (3) 

This scalar relation defines the energetic law of the material. The potential 
V represents a strain energy (or power) and W represents a complementary 
energy. If V and W are differentiable, the material law in a vectorial form 
can be deduced from Eq. 3 as 

iJV(x) 
y= 

ox 
iJW(y) 

x=--
iJy 

(4) 

These equations are particular cases of Eqs. and 2. For behavior such as 
plasticity, viscoplasticity, and contact, the concept of superpotential in the 
Moreau sense [II, 12] can be introduced, where V(x) and W(y) are assumed 
to be convex functions. Let x' and y' be any strain and stress vectors that 
are not related a priori by the material law. For all x' and y', 

V(x') + W(y') > x' • y' (5) 

where the equality is satisfied when the strain and stress vectors are related 
by the normality law of Eq. 4. From Eqs. 3 and 5, 

V(x') - V(x) > y · (x' - x) 
W(y') - W(y) 2: x · (y' - y) 

(6a) 
(6b) 

for all x' and y'. In other words, x and y are linked by a law in a subdif­
ferential form [10-13, 19, 35, 39], i.e., 

y E iJV(x), x E iJW(y) (7) 

Nevertheless, numerous behaviors are encountered in solid mechanics that 
do not belong to this useful family of standard materials. Some plasticity 
laws for metals [9], soils [I], and contact problems with friction [ 12, 14, 
22, 23] can be cited as examples. 

It seems that a good generalization must preserve the notion of normality 
law in a suitable form and the convexity assumptions. A possible general­
ization consists of postulating the existence of a function b(x, y) that will 
be called bipotential such that the material law is 

b(x, y) = x · y (8) 
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If b is differentiable, it can be deduced that 

iJb(x, y) 
y= 

ax x= 
iJb(x, y) 

iJy 
(9) 

The dependence of yon x is now implicit in the sense of the implicit function 
theorem, as opposed to the explicit dependence occurring in the law of Eq. 
4 for standard materials. It may be noted that the standard materials corre­
spond to a particular case of Eq. 8 for which the bipotential is separable; i.e., 

b(x, y) = V(x) + W(y) (10) 

Later, the classical standard materials will be called the explicit standard 
materials, and materials with nonseparable bipotential will be called implicit 
standard materials. 

In a more general way, it can be assumed that the bipotential is convex 
with respect to x when y remains constant, and convex with respect to y 
when x remains constant. For any X

1 and y' that are not related by the ma­
terial law, 

b( X I ' y I) > X I • y I (I J) 

where equality occurs for x' and y' related by the material law of Eq. 8. 
From Eqs. 8 and II, it can be deduced that 

b( X 
1 

, y) - b( X, y) > y • (X 
1 

- X) 

b(x, y') - b(x, y) > x · (y' - y) 
( 12a) 
(12b) 

for all x' and y'. Then, x and y are linked by an implicit subdifferen­
tial law, 

y E iJxb(x, y) 

X E oyb(x, y) 

( I3a) 

(13b) 

Attention is now focused on the first relation (Eq. I3a). It can be proved 
that the material belongs to the class defined by Eq. I. This fact results from 
the convexity hypothesis of the bipotential. Indeed, the convex conjugate 
potential with respect to x can be defined as 

bf(z, y) = sup"[z · x - b(x, y)] ( 14) 
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This potential will be called the left dual potential and z, the left stresses. 
This implies that [39] 

(15) 

If y is a solution of Eq. 13a, 

(16) 

The left dual potential depends on two stresses, z and y. It can be said 
that x is obtained by subdifferentiating with respect to the left stresses z and 
taking the value z = y, without explicitly subdifferentiating with respect to 
y. In other words, the law of Eq. 16, a particular case of Eq. l, defines the 
material as explicit nonstandard, as opposed to the implicit standard fonn 
(Eq. 13a). Hence, explicitly solving Eq. 13a has the drawback of losing the 
standard fonn of the law. 

In a similar way, a right dual potential can be defined by 

b:Xxt u) = supy[u · y - b(xt y)] (17) 

The vector u denotes the so-called right strain. 
If x is a solution of Eq. 13b, 

(18) 

Ill. VARIATIONAL PRINCIPLES 

Let {1 be a structure with boundary S, subjected to imposed body forces 
f, imposed surface tractions i on part S 1 of S, and imposed displacements 
fJ on part S0 of S. On the remaining part S2 == S - S0 U S 1 of the boundary, 
contact may occur. 

A displacement field is called kinematically admissible (KA) if the fol­
lowing compatibility conditions are fulfilled: 

(19a) 

(19b) 

A stress field is said to be statically admissible (SA) if the following equi­
librium equations are satisfied: 

div (J1 + r = 0 in {1 

t( a 1
) = a.r • n = t on S 1 

(20a) 

(20b) 

7



The aim of this section is to present a variational formulation for an im­
plicit standard material behavior on the contact surface defined by a bipo­
tential b(u, t) such that 

t E o_ub( -u, t), -u E rJ1b(-u, t) (21) 

Unlike the general law of Eqs. 13, special sign conventions have been 
chosen to ensure compatibility with the classical traction definitions in solid 
mechanics [ 12]. For the sake of generality, an implicit standard behavior of 
the bodies is assumed by introducing a bipotential /3(E, u) such that 

(22) 

Hence, on this basis, the following new functional, ca11ed bifunctional, is 
defined: 

B(u, u) = ( /3(£(u), u)dil + l b(u, t(u))dS 
JrJ s2 

- r r. u d[J - r i . u ds - r t< o) . ii ds (23 > 
Jn Jsl Jso 

It may be noted that if it is assumed that no contact occurs (S2 is an empty 
set) and if the body material is explicit standard, 

{3(£, u) = V(E) + W(u) (24) 

The bifunctional is reduced to the sum 

B(u, u) = 4>(u) + ll( u) (25) 

of the total strain energy functional 

4>(u) = r V(E(u))dil- r f· u dil- r t · u dS (26) 
Jn Ja Jsl 

and of the total complementary energy functional 

ll(u) = ( W(u)dil - ( t(u) · fl dS 
Ja Jso (27) 
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The classical calculus of variations can now be extended to intplicit stan­
dard materials. Because the bifunctional cannot be split further, the dis­
placement and stress problems are coupled. Thus, an exact solution (u, a) 
is simultaneously a solution of the following variational principles: 

(28a) 

(28b) 

For example, consider the proof of the displacement principle. Due to Eqs. 
19b, 21, and 22 and the convexity inequality of Eq. J2a, 

B(u•, u) - B(u, a)> L.,. · (E(u•) - E(u))dfl- L f· (u•- u)dfl 

- ( i · (uk- u)dS - ( t(a) • (u1 
- u)dS (29) Js, J~ 

Since the exact solution a is statically admissible, the minimurn principle 
results from equilibrium conditions of Eqs. 20 and Green's forn1ula, 

B(u1
\ a)~ B(u, a) (30) 

In a similar way, the stress principle can be deduced from compatibility 
conditions of Eqs. 19. Consider the proof of the existence of a solution. For 
this, it is noted that the solution can be obtained by successive approximation 
and combination of the two principles. Let (u;, a;) be the approximative 
solution at iteration i. Let a;+ 1 be a statically admissible stress field and uk, 
a kinematically admissible displacement field such that 

(31) 

Then, because of the minimum principle (Eq. 28b), 

(32) 

Let U;-+ 1 be a kinematically admissible displacement field and CT
1

, a statically 
admissible stress field such that 

(33) 
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From the minimum principle (Eq. 28a)~ 

(34) 

Hence, it is seen that a minimizing sequence of B can be constructed. 
Now, it is assumed that the couples belong to some reflexive Banach 

space X with the nonn 11·11- The existence of a solution of Eqs. 28 can be 
proved if the sequence (uh 0';) is bounded, by extracting a convergent sub­
sequence [ 12, 39 J. The bounded ness property can result from some. special 
assumption or from a classical hypothesis of coercivity; i.e., 

Jim B(u, a) = +oo 
ll(u,allf-doo 

Let (U;·, ar) be a bounded subsequence. Then 

(U;·, a;·)~ (u, a) weakly in X 

(35) 

(36) 

The method just described not only proves the existence of a solution, but 
gives also a practical algorithm to reach it. If the finite element method is 
used, this approximation algorithm requires the simultaneous definition of 
two kinds of meshes, the first involving displacement finite elements and 
the second involving equilibrium elements [ 13 ~ 15]. 

A simpler method, using only displacement finite elements, is the follow­
ing. The approximative solution (u;, a;) at iteration i being known, the new 
kinematically admissible displacement approximation U;+ 1 is found by solv­
ing the following minimum problem: 

Thus, a stress field ai+ 1 such that 

{Ti+l E ae,B(E(Ui+t), u;) 

t(ui+ 1) E a_ub(-ui+ 1, t(u;)) 

(37) 

(38a) 
(38b) 

is statically admissible in a weak sense. In other words, it satisfies only the 
equilibrium equations pounderated by the displacement shape functions of 
the finite elements. 
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IV. AUGMENTED LAGRANGIAN METHOD 

In order to avoid nondifferentiable potentials that occur in nonlinear me­
chanics, such as in contact problems, it is convenient to use the augmented 
Lagrangian method [8, 26] (see also the appendix of this paper). First, some 
classical results are recalled concerning this theory, applied to explicit stan­
dard materials. Let r be a nonnegative real coefficient. Its value. is chosen 
in a suitable range to ensure numerical convergence [26]. The convexity 
inequality (Eq. 6b) can be easi1y rewritten in the fo1lowing way: 

rW(y') - rW(y) + [y - (y + rx)] • (y' - y) > 0 (39) 

for all y'. Hence, y is the proximal of the so-called augmented stresses 
(y + rx) with respect to the function rW: 

y = prox(y + rx, rW) (40) 

The solution y of this equation, equivalent to Eq. 6b, can be reached using 
Usawa's algorithm. Let (x;, y;) be the approximation at iteration i. The com­
putation of y,.+ 1 takes place in two steps, the predictor, 

(41) 

and the corrector, 

(42) 

In order to apply the algorithm to implicit standard materials, it is desired 
to extend the augmented Lagrangian method to the bipotential. The con­
vexity inequality (Eq. 12b) is rewritten as 

rb(x, y') - rb(x, y) + [y - (y + rx)) · (y' - y) > 0 (43) 

for all y'. Hence, y is the proximal of the augmented stress with respect to 
the function rb(x, · ), where the variable argument is denoted by a dot and 
x remains constant; i.e., 

y = prox(y + rx, rb(x, • )) (44) 
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Then, Usawa's algorithm leads to an iterative process involving two steps: 
the predictor, 

(45) 

and the corrector, 

(46) 

V. CONSTITUTIVE LAW OF FRICTION WITH CONTACT 

For the sake of simplicity, consider contact between two bodies ilA and 
!18 , one of which may be a rigid foundation. In the range of small displace· 
ments, it is a priori allowed to assume that possible contact may happen 
between points xA and x8 of the two bodies. Consequently, the contact law 
can be written only in terms of the relative displacement u = uA - u8 and 
the traction t = tA = - t8 . With the approximation of small displacement, 
the unilateral contact condition is linearized as [35-38] 

where occurs, respectively, the normal unit vector and the initial gap, 

XA- Xo 
n=---

//xA - Xsll' 
h0 = (XA - x 8) • n 

(47) 

(48) 

and the decomposition of a vector a in normal and tangential parts is used; 
I.e.' 

a, = a· n, (49) 

Besides, Coulomb's dry friction criterion is used; i.e., 

(50) 

With the usual notation of an indicator function 1/IR+ (see the appendix), 
the constitutive law of contact can be thus written as 

t, E - J.Lt,au,<llu,ll) (51) 

where an overdot denotes the time derivative. 

12



In view of numerical applications, the implicit standard material law of 
contact is directly presented in the incremental form 

(52) 

Let .1KIL be the convex friction set defined by 

where the values at the starting point of the step are noted with a subscript 
0. Contact with friction can be represented by the following bipotential: 

Hence, the law of Eq. 13a gives 

+ J..L(lnO + .1tn)ll.1u,ll 

+ 1[/dK (.1tn, .1t,) ,. 

.1tn E - (lno + alf'R+(.1un + unO + ho)) 

.1t, E - (t,o + ~J.(lnO + .1tn)a du,CII.1u~l)) 

(54) 

(55 a) 

(55b) 

Equation 55 a represents the unilateral contact law and Eq. 55b is Coulomb's 
criterion in subdifferential form. These equations may be directly deduced 
from the multi valued differential equations (Eqs. 51) by applying the im­
plicit method [ 1-4]. It is well known that the implicit method, although 
more complicated, always gives better results concerning convergence and 
numerical stability than the explicit method [ 1-4]. The implicit 1nethod has 
been discussed by Moreau [3J and is known as the catching-up algorithm. 

On the other hand, introducing some subnormal to Coulomb's cone 

(56) 

Eq. 13b yields 

.1u, = -.1v, (57) 

As Eq. 56 leads to 

(58) 
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it may be seen that Eq. 57 is reduced to the unilateral contact condition: 

(59) 

Except for the cone vertex (t,o + .dtn = 0), equality is reached in Eqs. 58 
and 59. Hence, the law of Eq. 57 is equivalent to the classical sliding law 
112, 14J; i.e., 

t/() + Lit, 
L1u, = - L1A II II' t/() + Lit, 

L1A > 0, (60) 

Another simple geometrical interpretation of Eq. 57 can be obtained by not­
ing that when sliding occurs (equality in Eq. 58), Eqs. 56 and 57 imply that 
the vector ( -~-tiiL1u,ll, L1u1) is a normal to Coulomb's cone~ i.e., 

(61) 

as is represented in Fig. 1 . 
The model of implicit standard material provides a simple and powerful 

tool to represent the complex behavior of contact with friction. This model 
can be compared with the classical model of explicit laws. By Legendre's 
transform of the bipotential of Eq. 54 with respect to the displacement, the 

~~lltnll 

Fig. I Sliding. 
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left dual potential of Eq. 14 is obtained: 

- - - -
bf\ilt11 , ilt,, ilt11 , ilt,) = (tno + iltn- ilt11 )(urtO + ho) + 'l'R+(trtO + ilt11 ) 

+ 'I' .1K (ilt", ilt,)- 'I' .1K (ilt"' ilt,) (62) 
,... "' 

where ili denotes some left traction vector, dual to -ilu. Owing to Eq. 16, 
the explicit form of the law is 

Obviously, these equations are the inverse relations of Eqs. 55, but they are 
not as easy to use for numerical analysis. 

VI. VARIATIONAL PRINCIPLES FOR CONTACT WITH FRICTION 
~ 

As shown in Section lll, the boundary-value problem of contact with fric-
tion is governed by the variational principles of Eqs. 28. In order to prove 
the existence of solutions, coercivity of the bifunctional must be checked. 
This property may be assumed for the body material. For example, in nu­
merical applications, the bodies are elastic, with the explicit standard model 

I 
{3(£, (J) = V(E) + W((J), V(E) = 2 E. DE, 

I 
W((J) = - (J · n-1(J 

2 
(64) 

Then, because the elastic stiffness matrix D is positive-definite, the poten­
tials V and W, and consequently the bipotential {3, are coercive functions. 

Attention is next focused on the contact bipotential of Eq. 54. It may be 
assumed that for the initial values of the step (i.e., at the end of the previous 
step), the unilateral contact inequalities are fulfilled: 

(65a) 

(65b) 

Because of the unilateral contact conditions of Eq. 59, ilun is bounded for 
negative values. When the contact initially occurs on some part of S2 with 
nonvanishing area, the inequality of Eq. 65b is strictly satisfied and the 
bipotential increases to an infinite value when ilu"--+ +oo. Elsewhere, some 
special hypotheses concerning the applied loads must be introduced in order 
to satisfy coercivity as proved by Fremond [28-30]. 
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Because of Coulomb's condition (Eq. ·53), it may .be assumed that 

(66) 

Thus, L1t11 is bounded for negative values. When the initial gap does not 
vanish on some part of S~ with nonvanishing area, the inequality of Eq. 65a 
is strictly satisfied and the bipotential increases to infinity when L1t" ~ +oo. 
Elsewhere, a special hypothesis is needed, as previously. 

Due to Eq. 66, coercivity of the bipotential is proved when IIL1u~l ~ +oo. 
Finally. Lit, is bounded by Coulomb's condition (Eq. 53). 

For the sake of simplicity, analysis is restricted to contact between elastic 
bodies. When using pure displacement finite elements, only the principle of 
Eq. 28a need be considered. Introducing the incremental total strain energy 

L1ct>(L1u) = J V(L1E(L1u))dll - J L1f • L1u dll - ( L1t • L1u dS (67) 
n n Js. 

the implicit standard material model leads to the following variational principle: 

Inf L1f/>h(L1u) = L1ct>(L1u) 

+ ( (tmAun + t10 · L1u, + p,(tnO + L1tn)IIL1u,ll)dS (68) 
Js: 

for KA L1u, subject to 

This variational principle was proposed by various authors [40, 41]. 
In oppos'ition to classical variational principles, this one must be solved 

by an iterative algorithm. The nonnal contact pressure increment L1t11 can be 
updated at each iteration using Eq. 38b. The iterations are required by the 
implicit standard nature of the material laws. The main advantage of this 
approach is that unilateral contact and friction are coupled in a single dis­
placement variational principle. 

In the classical approach as presented by Duvaut and Lions [ 14] or Pana­
giatopoulos [ 12, 22], the algorithm is also iterative, but unilateral contact 
and friction are not coupled: there are two displacement variational princi­
ples. For the first [ l 2, 14, 22, 38L the tangential traction increments L1t1 are 
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assumed constant and only the unilateral contact problem is considered: 

lnf LlcJ>c(Llu) = LlcJ>(Llu) + l (t,n:Au11 - Llt, · Llu,)dS (69) 
s2 

for KA Llu subjected to 

For the second, the normal contact pressure increment Lltn remains constant 
and the variational problem is 

lnf LlC/>1 (Llu) = LlcJ>(Llu) 

+ l (~J-(InO + Llt~~)IILlu,ll + tiQ · Llu, - LltnLlun)dS (70) 
s2 

for KA Llu. The two principles are alternately solved and the traction in­
crements updated. 

When using equilibrium finite elements, the dual principle of Eq. 28b can 
be introduced. Let the incremental total complementary energy be 

Llll(Lla) = ( W(Lla)dfl -1 Llt(LlO') • Llu dS (71) 
.JJ) So 

Taking account of Eq. 54, the principle of stress variation for the implicit 
standard model is gi vcn by 

Inf Llllb(LlO') = Llll(LlO') + l (Lltn(Uno + ho) + ~-t(tnO + Llt11)jiLlu~l)dS 
s2 

(72) 

for SA Lla subjected to 

VII. VARIATIONAL INEQUALITIES OF CONTACT 

In this approach, the traction field on S2 is expressed with respect to the 
displacement field on S2 by solving equilibrium equations, linear if the bod-
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ies are elastic and linearized if they are inelastic. The philosophy of this 
approach is well explained by Suquet [ 1 8] and is called global GSM theory. 

The existence of a strongly monotonic affine operator and of its inverse 
is assumed: 

E : .dt ~ .du(.dt) 

E- 1 
: .du ~ .dt(.du) 

(73a) 

(73b) 

Using the convexity inequality of Eq. 12b applied to the bipotential of Eq. 
54 and Eq. 73a, it may be seen that the exact field .dt is a solution of the 
following variational inequality: 

Find .dt E .dK,.,. such that 

l (.dun~.dtn, .dt,) + Uno + ~ + JLII.du,(.dt," .dt,)ll) · (.dt:- .dt")dS 
s2 

+ J.du,(.dtn, .dt,) · (.dt;t'- .dt,)dS ~ 0 
s, 

(74) 

for all .dt* E .dK,.,.. 

This new inequality is the formulation associated with the implicit stan­
dard material law of Eq. 57. 

The dual formulation is obtained by considering Eqs. 12a and 73b. Hence, 
the exact field .du is a solution of the following variational inequalities: 

Find .du such that .dun + Uno + h0 2:: 0 and 

l (t,0 + .dtt(.du,, .du,)) · (.du;t'- .du,)dS 
s2 

+ l JL{tno + .dtn(.dun, .du,))(ll.du:"ll - ll.du~l)dS > 0 
s2 

for all .du;t' and 

l (tno + .dtn(.du,, .du,))(.du:- .du")dS > 0 
sl 

(75) 

for all .du: such that .du: + uno + h0 > 0. 
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This system of inequalities corresponds to the implicit standard material 
law in the dual fonn of Eqs. 55. After piecewise linearization, this system 
is equivalent to the linear complementarity problem stated by Klarbring and 
Bjorkman [33]. 

Another approach consists of considering the explicit nonstandard for­
mulation based on the left dual potential of Eq. 62. Introducing the hyperball 

and owing to Eqs. 17 and 73a, it may be seen that the exact traction field 
.dt such that 

is a solution of the following system of variational inequalities: 

Find .dt, such that 1,0 + .dt, > 0 and 

1 (.du"(.dt,, .dt,) + Uno + ho(.dt:- .dt,)dS 2: 0 
s2 

for all .dt~ such that 1,0 + .dt~ > 0. 

Find .dt, E .dK~(.dt,) such that 

l .dur(.dt,, .dt,) · (.dt;tc- .dt,)dS > o 
Sz 

for all .dt~E .dK~(.dtn)· 

(77) 

(78) 

These two variational inequalities must be solved alternately, as the two 
variational principles of Eqs. 69 and 70, which result from the c!xplicit non­
standard nature of the fonnuJation. The inequality fonnulation of Eq. 63 
was presented by Jean [23]. 

VIII. USAWA'S ALGORITHM FOR CONTACT PROBLEMS 

The global GSM approach is again considered, but instead of the in­
equality fonnulation, the augmented Lagrangian method is used. For the 
implicit standard material, Eq. 44 applied to the bipotential of Eq. 54 leads 
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to the following equation: 

This equation corresponds to the contact law in the implicit form of Eq. 57. 
Usawa' s algorithm applied to Eq. 79 consists of an iterative process in­
volving the predictor 

and the corrector 

(80a) 

(80b) 

(81) 

The corrector step is graphically represented in Fig. 2 for three different 
contact statuses, denoting by ~K! the dual cone of ~KJi defined by Eq. 58. 
In this approach, unilateral contact and friction are coupled. 

The new approach may be compared with that developed by Jean and 
Touzot l9, 23-25] and by Alart [8], which requires two equations instead 
of the single equation of Eq. 79. The exact field ~t is a solution of the 
following system: 

Lltn = proj(Lltn - r(Llun + u,.0 + h0)~ [-t,.0 , +oo]) (82) 

~t, = proj(~t, - r~u,, ~KJi(~tn)) (83) 

These equations correspond to contact in the explicit form of Eq. 63. 

tn tn 

b 

t 
1+1 •• , 
latl 

(a) (b) (c) 

Fig. 2 Implicit standard material approach (KJ: dual cone of K,.): (a) no contact; (b) adhesive 
friction; (c) sliding. 
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tn tn tn 

(a) (b) (c) 

Fig. 3 Explicit material approach: (a) no contact; (b) adhesive friction; (c) sliding. 

Following Jean [9. 23-25], Usawa's algorithm , applied to the unilateral 
contact equation of Eq. 82, leads to the predictor 

(84) 

and the corrector 

(85) 

Applied to the friction equation (Eq. 83), this leads to the predictor 

(86) 

and the corrector 

(87) 

The corrector step of Eq. 85 is graphically represented in Fig. 3(a) when 
contact is not predicted, and the corrector step of Eq. 87 is represented in 
Figs. 3(b) and 3(c). 

IX. CONCLUSION 

The success of the standard material approach follows from the possibility 
of associating variational functionals to deduce good properties for the 
boundary-value problems. Surface friction laws are good examples of rna-
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terial behaviors that exhibit nonassociated flow rules. In order to avoid this 
undesirable lack of normality and consequently to extend the classical vari­
ational calculus to nonstandard materials, it is shown to be necessary to 
abandon the explicit form of the constitutive law. This idea leads to the 
introduction of the concept of a bipotential that generalizes the classical po­
tentials of strain energy and complementary energy. The new formulation 
allows the unilateral contact and the friction law to be expressed as a single 
variational inequality. This variational inequality may be solved by using an 
adaptation of Usawa's algorithm, which requires only a single projection 
step to update the tractions instead of two steps, as required in some other 
algorithms. 

Displacements are updated by computing a linear elastic response. This 
can be performed using classical finite element analysis. The details of the 
discretization procedure and the numerical results are reported in another 
paper. 
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APPENDIX 

Let Y be a locally convex separated topological vector space and Y' its 
dual. The duality is denoted (x, y'), for x E y and y' E Y'. Let F be a 
convex function defined on Y, with values in R = [ -oo, +oo]. The vector 
y' is a subgradient ofF at the point x if y' is the slope of an affine minorant 
ofF exact at the point x. The set of subgradient ofF at x is the subderivative 

iJF(x) = {y' E Y' such that Vu E Y, F(u) - F(x) > (y', u - x)} 

IfF is differentiable, then oF(x) = {F'(x)}. 
Let K C Y be a closed convex set. The indicator function of the convex 

set K is denoted PK(x) and is defined by 

p K( X) = 0 if X E K 

P K(x) = + oo if x ~ K 

Then, for x E K, aPK(x) = {y' E Y' such that Vu E K, (y', u - x) < 0}. 
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If x belongs to the interior of K, then iJ'/I'K(x) = {0}. If x is on the boundary 
of K, o'/I'K(x) is the outward normal cone of Kat the point x. 

The conjugate functional F* is defined on Y' by the Legendre transform 

F*(y') =sup ((y', u)- F(u)) 
uEY 

so that F*(y') = (y', x) - F(x) when y' E iJF(x). Furthermore, x E iJF*(y'). 
Let H be a Hilbert space for the inner product (xiy) and the norm llxll = 

V("ilX). The duality mapping F from H to its dual H' is defined by 

(Fx, y) = (xly) 

Let f be a convex function on H with values in R = [- oo, + oo] and x 
be given in H. The solution y of the following minimization problem 

inf (f(u) + ~ llx - uuz) 
uEH 2 

is called the proximal point of x with respect to the function/ and is denoted 

y = prox(x, /) 

Hence, the proximal point satisfies 

F(x - y) E of(y) 

or. equivalentJy, 

/(y*) - f(y) + (y - xly* - y) > 0 

for all y*. The proximation mapping introduced by Moreau is defined by 

prox1 : H---+ H: x---+ prox(x, f) 

Let K C H be a closed convex set. Then, the proximal point with respect 
to the indicator function 1/J'K is a point y E K such that for all y* E K, 

(y - xly* - y) > 0 

Then, the proximal point is the projection of x to the set K: 

y = prox(x, 1/J'K) = proj(x, K) 
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