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Abstract

With any (not necessarily proper) edge k-colouring γ : E(G) −→ {1, . . . , k} of a graph G,
one can associate a vertex colouring σγ given by σγ(v) =

∑

e∋v γ(e). A neighbour-sum-
distinguishing edge k-colouring is an edge colouring whose associated vertex colouring
is proper. The neighbour-sum-distinguishing index of a graph G is then the smallest
k for which G admits a neighbour-sum-distinguishing edge k-colouring. These notions
naturally extends to total colourings of graphs that assign colours to both vertices and
edges.

We study in this paper equitable neighbour-sum-distinguishing edge colourings and
total colourings, that is colourings γ for which the number of elements in any two
colour classes of γ differ by at most one. We determine the equitable neighbour-sum-
distinguishing index of complete graphs, complete bipartite graphs and forests, and the
equitable neighbour-sum-distinguishing total chromatic number of complete graphs and
bipartite graphs.

Keywords: Equitable colouring, Neighbour-sum-distinguishing edge colouring,
Neighbour-sum-distinguishing total colouring

1. Introduction and statement of results

We consider undirected simple graphs and denote by V (G) and E(G) the sets of
vertices and edges of a graph G, respectively. We denote by degG(u), or simply deg(u)
whenever the graph G is clear from the context, the degree of a vertex u in G.

An edge k-colouring, k ≥ 1, of a graph G is a mapping γ : E(G) −→ {1, . . . , k}. Note
that such edge colouring is not necessarily proper. Each edge colouring naturally induces
a vertex colouring σγ(v) given by

σγ(v) =
∑

e∋v

γ(e)

for every v ∈ V (G). We will write σ(v) instead of σγ(v) whenever the edge colouring
γ is clear from the context. We call the value γ(e), e ∈ E(G), the colour of e and the
value σ(v), v ∈ V (G), the sum at v. For an edge uv ∈ E(G), we will say that u and v
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are in conflict whenever σ(u) = σ(v). A neighbour-sum-distinguishing edge k-colouring
of G (edge k-nsd-colouring for short) is an edge k-colouring γ such that for every edge
uv ∈ E(G), σγ(u) 6= σγ(v). Clearly, a graph admits an edge nsd-colouring if and only if
it has no isolated edge. The smallest k for which G admits an edge k-nsd-colouring is
the nsd-index of G, denoted χe

Σ(G).
A total k-colouring, k ≥ 1, of a graph G is a mapping γt : V (G)∪E(G) −→ {1, . . . , k}.

Again, note that we do not require a total colouring to be proper. Similarly as above,
each total colouring naturally induces a vertex colouring σT

γt
(v) given by

σT
γt

(v) = γt(v) +
∑

e∋v

γt(e)

for every v ∈ V (G). We will write σT (v) instead of σT
γt

(v) whenever the total colouring
γt is clear from the context. We call the value γt(e), e ∈ E(G), the colour of e, the
value γt(v), v ∈ V (G), the colour of v and the value σT (u), u ∈ V (G), the sum at u. A
total k-nsd-colouring of G is a total k-colouring γt such that for every edge uv ∈ E(G),
σT
γt

(u) 6= σT
γt

(v). Clearly, every graph admits a total nsd-colouring. The smallest k for
which G admits a total k-nsd-colouring is the total nsd-chromatic number of G, denoted
χt
Σ(G).

The study of edge nsd-colourings of graphs was initiated by Karoński,  Luczak and
Thomason [9]. They conjectured that every graph with no isolated edge admits an edge
nsd-colouring with three colours: 1, 2, 3, and proved it for 3-colourable graphs. Despite
many efforts to tackle this conjecture, see e.g. [1, 2, 15], it is still an open question. The
best known result is due to Kalkowski, Karoński and Pfender [8], who proved that every
graph with no isolated edge admits an edge nsd-colouring with five colours, 1, . . . , 5.

Total nsd-colourings of graphs were introduced in [14] by two of the authors, who con-
jectured that every graph admits a total 2-nsd-colouring, and proved this fact for several
graph families including in particular 3-colourable, 4-regular and complete graphs. The
best general upper bound is in this case due to Kalkowski, who proved in [7] sufficiency
of integers 1, 2, 3 for constructing a total nsd-colouring of any graph.

A colouring γ with the elements of {1, . . . , k} is equitable if the numbers of elements
in any two colour classes differ by at most one, that is −1 ≤ |γ−1(i)| − |γ−1(j)| ≤ 1
for any two colours i and j with i, j ∈ {1, . . . , k}. In 1964, Erdös [5] conjectured that
every graph with maximum degree ar most r admits an equitable (r+ 1)-colouring. This
conjecture was proved in 1970 by Hajnal and Szemerédi [6] and is now known as Hajnal-
Szemerédi Theorem. A shorter proof of this theorem was given in 2008 by Kierstead and
Kostochka [11]. For a recent survey on equitable colourings, see [12].

In this paper, we study equitable edge and total nsd-colourings. We will denote
by χe

Σ(G) the equitable nsd-index of G, that is the smallest k for which G admits an

equitable edge k-nsd-colouring. Similarly, we will denote by χt
Σ(G) the equitable total

nsd-chromatic number of G, that is the smallest k for which G admits an equitable total
k-nsd-colouring.

If γ is an edge k-nsd-colouring of a graph G, then the mapping γt defined by γt(v) = 1
for every v ∈ V (G) and γt(e) = γ(e) for every e ∈ E(G) is clearly a total k-nsd-colouring
of G since σγt

(v) = σγ(v) + 1 for every vertex v ∈ V (G). Hence, χt
Σ(G) ≤ χe

Σ(G) for
every graph G. The same relation holds for equitable nsd-colourings:
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Proposition 1. For every graph G without isolated edges, χt
Σ(G) ≤ χe

Σ(G).

Proof. Let γ be an equitable edge k-nsd-colouring of G. We will extend γ to an
equitable total k-nsd-colouring γt of G with γt(e) = γ(e) for every edge e ∈ E(G).
We thus need to extend γ to vertices in such a way that no two adjacent vertices are
in conflict and the colouring remains equitable. We first order the vertices of G as
v1, v2, . . . , vn, n = |V (G)|, in such a way that

σγ(v1) ≤ σγ(v2) ≤ · · · ≤ σγ(vn). (1)

Let qi = |γ−1(i)| be the number of edges with colour i. Moreover, let q and r be non-
negative integers such that r < k and |V (G)| + |E(G)| = qk + r. For γt to be equitable,
we then must have r colour classes of order q + 1 and k− r colour classes of order q. Let
Cq be any subset of k − r colours from {1, . . . , k} such that qi ≤ q for every i ∈ Cq, and
Cq+1 = {1, . . . , k} \ Cq. We will then colour q′i = q − qi vertices with colour i for each
i ∈ Cq and q′j = q + 1 − qj vertices with colour j for each j ∈ Cq+1. In order to produce
a total nsd-colouring, we will colour the vertices according to the above defined order,
and assign the colour 1 to the first q′1 vertices, then colour 2 to the next q′2 vertices and
so one. More formally, we let

γt(vi) = min

{

j
∣

∣

∣

j
∑

p=1

q′p ≥ i

}

. (2)

For every edge vivj , i < j, we then have

σγt
(vi) = σγ(vi) + γt(vi) < σγ(vj) + γt(vj) = σγt

(vj)

since σγ(vi) < σγ(vj) (by (1), as γ is neighbour-sum-distinguishing) and γt(vi) ≤ γt(vj)
(by (2)). The total colouring γt is therefore an equitable total nsd-colouring, and thus

χt
Σ(G) ≤ χe

Σ(G). �

It is known that for every graph G with no isolated edge, the nsd-index of G is 3
if G is a complete graph, see e.g. [4], 2 if G is a complete bipartite graph [13] and at
most 2 if G is a forest [10]. Observe that we necessarily have χt

Σ(G) ≥ 2, and thus
χe
Σ(G) ≥ 2, whenever two adjacent vertices in G have the same degree (in particular

when G is regular).
Concerning the equitable nsd-index of these graph classes, we will prove the following:

Theorem 2. For every complete graph Kn with n ≥ 3, n 6= 4, χe
Σ(Kn) = 3, while

χe
Σ(K4) = 4.

Theorem 3. For every complete bipartite graph Km,n with m = n = 2 or m = n ≥ 4,
χe
Σ(Km,n) = 2, while χe

Σ(K3,3) = 3 and χe
Σ(Km,n) = 1 if 1 ≤ m < n.

Theorem 4. For every forest F with no isolated edge, χe
Σ(F ) ≤ 2.

It was proved in [14] that the total nsd-chromatic number of G is 2 if G is a complete
graph of order n ≥ 2, and at most 2 if G is bipartite. We prove that the same result
holds for the equitable total nsd-chromatic number of bipartite graphs, and that we need
one more colour to produce an equitable total nsd-colouring of the complete graph Kn

whenever n ≥ 3:
3



Theorem 5. For every bipartite graph G, χt
Σ(G) ≤ 2.

Theorem 6. For every complete graph Kn with n ≥ 3, χt
Σ(Kn) = 3, while χt

Σ(K2) = 2.

The proofs of Theorems 2 to 6 are given in the next sections.

2. Proof of Theorem 2

We prove in this section that χe
Σ(Kn) = 3 for every n ≥ 3, n 6= 4, and that χe

Σ(K4) =
4. Recall that since Kn is regular, we have χe

Σ(Kn) ≥ 2. We first introduce some
definitions and preliminary results.

For any edge 3-colouring γ of a graph G, we denote by Eγ(i), 1 ≤ i ≤ 3, the set of
edges of G with colour i. For every vertex v of G, we denote by dγ,i(v) (or simply di(v)
when γ is clear from the context), 1 ≤ i ≤ 3, the number of edges of Eγ(i) that are
incident with v.

Let σ denote the vertex colouring of G induced by γ, and σ denote the mean value
of σ on V (G), that is

σ =
1

|V (G)|

∑

v∈V (G)

σ(v).

The σ-deviation of a vertex v is the value µσ(v) = σ(v) − σ. For regular graphs, the
deviation can be computed as follows:

Lemma 7. Let G be a d-regular graph, γ be an edge 3-colouring of G and σ be the vertex
colouring of G induced by γ. We then have σ(v) = dγ,3(v)−dγ,1(v) + 2d for every vertex
v in G. Moreover, if |Eγ(1)| = |Eγ(3)|, then σ = 2d and µσ(v) = dγ,3(v) − dγ,1(v) for
every vertex v in G.

Proof. We have

σ(v) = dγ,1(v) + 2dγ,2(v) + 3dγ,3(v)
= dγ,3(v) − dγ,1(v) + 2(dγ,1(v) + dγ,2(v) + dγ,3(v))
= dγ,3(v) − dγ,1(v) + 2d.

.

Suppose now that |Eγ(1)| = |Eγ(3)|. We then have

∑

v∈V (G) σ(v) =
∑

v∈V (G) (dγ,3(v) − dγ,1(v) + 2dG(v))

= 2|Eγ(3)| − 2|Eγ(1)| + 2d|V (G)|
= 2d|V (G)|.

This gives σ = 2d. Moreover, since σ(v) = dγ,3(v) − dγ,1(v) + 2d, we get µσ(v) =
σ(v) − σ = dγ,3(v) − dγ,1(v). �

We say that an edge 3-colouring γ of G is good if the following conditions hold:

1. |Eγ(1)| = |Eγ(3)|,

2. for every vertex v in G,

−

⌊

|V (G)|

2

⌋

≤ µσ(v) ≤

⌊

|V (G)|

2

⌋

,
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3. there exist two vertices wγ
min and wγ

max in G such that

µσ(wγ
min) = −

⌊

|V (G)|

2

⌋

and

µσ(wγ
max) =

⌊

|V (G)|

2

⌋

.

where σ denotes the vertex colouring of G induced by γ.

Lemma 8. For every integer n ≥ 3, if γ is an equitable edge 3-colouring of the complete
graph Kn such that |Eγ(1)| = |Eγ(3)|, then either

|Eγ(2)| = |Eγ(1)| = |Eγ(3)|

or
|Eγ(2)| = |Eγ(1)| + 1 = |Eγ(3)| + 1.

Proof. Since |E(Kn)| = n(n−1)
2 , if n ≡ 0 or 1 (mod 3), then |E(Kn)| ≡ 0 (mod 3),

which implies |Eγ(2)| = |Eγ(1)| = |Eγ(3)|. On the other hand, if n ≡ 2 (mod 3), then
|E(Kn)| ≡ 1 (mod 3), which implies |Eγ(2)| = |Eγ(1)| + 1 = |Eγ(3)| + 1. �

We are now able to prove Theorem 2.

Proof (of Theorem 2). We first prove a series of claims concerning equitable edge
nsd-colourings of Kn for small values of n.

Claim 1. For every integer n ≥ 3, χe
Σ(Kn) ≥ 3.

Proof. Assume to the contrary that γ is an equitable edge 2-nsd-colouring of Kn and
let σ be the vertex colouring induced by γ. We then have n − 1 ≤ σ(v) ≤ 2(n − 1) for
every vertex v of Kn, hence, since we need n distinct values for n vertices, there exist
two vertices u and v with σ(u) = n − 1 and σ(v) = 2(n − 1), in contradiction with the
colour of the edge uv. �

Claim 2. For every integer n ∈ {3, 5, 6}, there is a good equitable edge 3-nsd-colouring
of Kn.

Proof. A good equitable edge 3-nsd-colouring of K3 is obtained by colouring the edges
of K3 with colours 1, 2 and 3, respectively.

A good equitable edge 3-nsd-colouring of K5 is depicted in Figure 1, together with
its matrix representation. The value in row i and column j is the colour of the edge ij.
The sum at vertex i is given at the end of row i.

The matrix representation of a good equitable edge 3-nsd-colouring of K6 is given in
Figure 2. �

Claim 3. χe
Σ(K4) = 4.
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1

1

1
3

2

2 2

3
2

3













− 1 1 1 3
1 − 2 2 2
1 2 − 3 2
1 2 3 − 3
3 2 2 3 −













6
7
8
9
10

Figure 1: An equitable edge 3-nsd-colouring of K5 and its matrix representation.

















− 1 1 1 1 3
1 − 1 2 2 2
1 1 − 2 3 2
1 2 2 − 3 3
1 2 3 3 − 3
3 2 2 3 3 −

















7
8
9

11
12
13

Figure 2: Matrix representation of an equitable edge 3-nsd-colouring of K6.

Proof. Assume first that γ is an equitable edge 3-nsd-colouring of K4 and let σ be
the vertex colouring induced by γ. Since |E(K4)| = 6, we necessarily have |Eγ(1)| =
|Eγ(2)| = |Eγ(3)| = 2 which implies dγ,i(v) ≤ 2 for every v ∈ V (K4) and every i,
1 ≤ i ≤ 3. Hence, 4 ≤ σ(v) ≤ 8 for every v ∈ V (K4). On the other hand, we have
∑

v∈V (K4)
σ(v) = 2

∑

e∈E(K4)
γ(e) = 24.

Let V (K4) = {v1, v2, v3, v4}. To get a total sum of 24, we thus have, without loss of
generality, σ(v1) = 4, σ(v2) = 5, σ(v3) = 7 and σ(v4) = 8. The edges incident with v1 are
thus coloured 1, 1 and 2, while the edges incident with v4 are coloured 3, 3 and 2. This
implies γ(v1v4) = 2 and thus γ(v1v2) = 1, γ(v1v3) = 1, γ(v2v4) = 3 and γ(v3v4) = 3,
hence γ(v2v3) = 2. Thus, we finally get σ(v2) = σ(v3) = 6, a contradiction.

Hence, χe
Σ(K4) > 3. An equitable edge 4-nsd-colouring of K4 is given in Figure 3,

together with its matrix representation. �

We will now prove that χe
Σ(Kn) = 3 for every n ≥ 7, by induction on n. More

precisely, we will show that for every n ≥ 5 any good equitable edge 3-nsd-colouring of
Kn can be extended to a good equitable edge 3-nsd-colouring of Kn+2. Together with
claims 1 to 3, this will complete the proof.

Let γ be a good equitable edge 3-nsd-colouring of Kn, n ≥ 5. Suppose that Kn+2 is
obtained from Kn by adding two new vertices u and v. Let S ⊆ V (Kn) be any fixed set
of ⌊n

2 ⌋+1 = ⌊n+2
2 ⌋ vertices and S = V (Kn)\S (we thus have V (Kn+2) = S∪S∪{u, v}).

We first define an edge 3-colouring γ0 of Kn+2 as follows:
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2
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1









− 3 1 2
3 − 4 1
1 4 − 2
2 1 2 −









6
8
7
5

Figure 3: An equitable edge 4-nsd-colouring of K4 and its matrix representation.

•u • v
S

S

•

•

•

•

•

•

.

.

.

.

.

.

Figure 4: The edge 3-colouring γ0 of Kn+2.

1. γ0(xy) = γ(xy) for every edge xy with x, y ∈ S ∪ S,

2. γ0(uv) = 2,

3. for every vertex x ∈ S, γ0(ux) = 1 and γ0(vx) = 3,

4. for every vertex y ∈ S, γ0(uy) = γ0(vy) = 2.

The edge 3-colouring γ0 is depicted on Figure 4 (dashed, thin and thick edges represent
edges with colour 1, 2 and 3, respectively). This colouring is not equitable but is indeed
good and neighbour-sum-distinguishing:

Claim 4. The edge 3-colouring γ0 is a good edge 3-nsd-colouring of Kn+2.

Proof. Recall that γ is a good equitable edge 3-nsd-colouring of Kn. We denote by σ
and σ0 the vertex colourings induced by γ and γ0, respectively.

For each vertex x ∈ S ∪S, the two edges ux and vx are either assigned colours 1 and
3 or both assigned colour 2 by γ0. Therefore, for every vertex x ∈ S∪S, µσ0

(x) = µσ(x),
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•

• •

•
µσ0

(v) = ⌊n

2
⌋+ 1µσ0

(wγ
max) = ⌊n

2
⌋

µσ0
(u) = −⌊n

2
⌋ − 1 µσ0

(wγ

min) = −⌊n

2
⌋

−→

•

• •

•
µσ1

(v) = ⌊n

2
⌋µσ1

(wγ1
max) = ⌊n

2
⌋+ 1

µσ1
(u) = −⌊n

2
⌋ µσ1

(wγ1
min) = −⌊n

2
⌋ − 1

Figure 5: Recolouring of type 1.

•

• •

•
yi

u xi

v

−→

•

• •

•
yi

u xi

v

Figure 6: Recolouring of type 2.

which implies −⌊n
2 ⌋ ≤ µσ0

(x) ≤ ⌊n
2 ⌋. On the other hand, µσ0

(u) = −(⌊n
2 ⌋+1) = −⌊n+2

2 ⌋
and µσ0

(v) = ⌊n
2 ⌋ + 1 = ⌊n+2

2 ⌋. Hence, all vertices of Kn+2 are assigned distinct values
by µσ0

. Since |Eγ0
(1)| = |Eγ(1)| + ⌊n+2

2 ⌋ and |Eγ0
(3)| = |Eγ(3)| + ⌊n+2

2 ⌋, so that
|Eγ0

(1)| = |Eγ0
(3)|, we thus get by Lemma 7 that γ0 is a good edge 3-nsd-colouring. �

While constructing γ0 from γ, we added ⌊n+2
2 ⌋ edges with colour 1, ⌊n+2

2 ⌋ edges with
colour 3 and 2n + 1 − 2⌊n+2

2 ⌋ edges with colour 2. The edge colouring γ0 is thus not
necessarily equitable. We will then modify the edge colouring γ0 in order to obtain a good
equitable edge colouring γ1. In order to do that, we need to recolour by 1 or 3 some edges
which are coloured by 2, say p = 2q such edges, leading to an edge colouring γ1 (with
induced vertex colouring σ1) such that |Eγ1

(1)| = |Eγ0
(1)| + q, |Eγ1

(3)| = |Eγ0
(3)| + q

and |Eγ1
(2)| = |Eγ0

(2)|− 2q with either |Eγ1
(2)| = |Eγ1

(1)| or |Eγ1
(2)| = |Eγ1

(1)|+ 1 by
Lemma 8.

The edge colouring γ1 will be produced using two types of recolourings, both involving
edges incident with u or v, described as follows:

• Recolouring of type 1 (see Figure 5): Let wγ
min and wγ

max denote the (unique)
two vertices such that µσ0

(wγ
min) = −⌊n

2 ⌋ (= µσ(wγ
min)) and µσ0

(wγ
max) = ⌊n

2 ⌋
(= µσ(wγ

max)). If uwγ
minvw

γ
max is a 2-monochromatic 4-cycle, then recolour with

1 the edge vwγ
min and recolour with 3 the edge uwγ

max. Note that the deviations
of u and wγ

min, and of v and wγ
max have been switched, so that wγ1

min = wγ
min and

8



wγ1

max = wγ
max.

• Recolouring of type 2 (see Figure 6): If the set of pairs of vertices {(xi, yi)}1≤i≤k,
k ≥ 1, is such that uxivyi is a 2-monochromatic 4-cycle for every i, 1 ≤ i ≤ k, then
recolour with 1 all edges uxi and vyi and recolour with 3 all edges uyi and vxi.
Note that the deviation of any of these 2k + 2 vertices remains unchanged.

Recall that we need to recolour p = 2q edges which are coloured by 2, q of them
with colour 1 and the q others with colour 3. If q = 1, since n ≥ 5, we can ensure that
the chosen set S contains none of the vertices wγ

min and wγ
max. By doing so and then

applying the recolouring of type 1, we obtain an edge colouring γ1 such that:

1. |Eγ1
(1)| = |Eγ1

(3)| and either |Eγ1
(2)| = |Eγ1

(1)| or |Eγ1
(2)| = |Eγ1

(1)| + 1,

2. for every vertex x ∈ V (Kn+2), −⌊n+2
2 ⌋ ≤ σ1(x) ≤ ⌊n+2

2 ⌋,

3. wγ1

min = wγ
min and wγ1

max = wγ
max.

Hence, γ1 is an equitable good edge 3-nsd-colouring of Kn+2 and we are done.
Assume from now on that q ≥ 2. Since γ is an equitable good edge 3-nsd-colouring

of Kn, we know by Lemma 8 that

|Eγ(1)| = |Eγ(3)| = r, and r ≤ |Eγ(2)| ≤ r + 1,

with r = ⌊n(n−1)
6 ⌋. As observed before, considering the way the edge colouring γ0 has

been constructed (see Figure 4), we also have

|Eγ0
(1)| = |Eγ0

(3)| = r +

⌊

n + 2

2

⌋

,

and

r + 2n + 1 − 2

⌊

n + 2

2

⌋

≤ |Eγ0
(2)| ≤ r + 2n + 1 − 2

⌊

n + 2

2

⌋

+ 1.

Again by Lemma 8, in order to be an equitable good edge 3-nsd-colouring of Kn+2, the
edge colouring γ1 must be such that

|Eγ1
(1)| = |Eγ1

(3)| = r +

⌊

n + 2

2

⌋

+ q,

and

r +

⌊

n + 2

2

⌋

+ q ≤ |Eγ1
(2)| ≤ r +

⌊

n + 2

2

⌋

+ q + 1. (3)

On the other hand, since γ1 has been obtained by recolouring 2q edges which were
coloured with colour 2 by γ0, we also have

r + 2n + 1 − 2

⌊

n + 2

2

⌋

− 2q ≤ |Eγ1
(2)| ≤ r + 2n + 1 − 2

⌊

n + 2

2

⌋

− 2q + 1. (4)

Combining (3) and (4), we get

r +

⌊

n + 2

2

⌋

+ q ≤ r + 2n + 1 − 2

⌊

n + 2

2

⌋

− 2q + 1,
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which gives

3q ≤ 2n + 1 − 3

⌊

n + 2

2

⌋

+ 1.

Since q ≥ 2, we thus necessarily have n = 11 or n ≥ 13. Moreover, we also get

|S| = n−

⌊

n + 2

2

⌋

≥ 3q − n + 2

⌊

n + 2

2

⌋

− 2 ≥ 3q − 1 ≥ q + 3 ≥ 5. (5)

The edge colouring γ1 is then obtained as follows, depending on the parity of q.

1. q = 2t, t ≥ 1.
We choose any set of t pairs of vertices X = {(xi, yi)}1≤i≤t in S. Since uxivyi is a 2-
monochromatic 4-cycle for every i, 1 ≤ i ≤ t, we can apply the recolouring of type 2
to the set X , so that |Eγ1

(1)| = |Eγ1
(3)| = |Eγ0

(1)|+q and |Eγ1
(2)| = |Eγ0

(2)|−2q.
The so-obtained edge colouring γ1 is thus an equitable good edge 3-nsd-colouring
of Kn+2.

2. q = 2t + 1, t ≥ 1.
We first choose any set of t pairs of vertices X = {(xi, yi)}1≤i≤t−1 in S\{wγ

min, w
γ
max}

(this is possible since, by (5), |S| ≥ q + 3). Since uxivyi is a 2-monochromatic 4-
cycle for every i, 1 ≤ i ≤ t, we can apply the recolouring of type 2 to the set X ,
so that we have |Eγ0

(1)| + q − 1 edges coloured by 1 (resp. by 3). We then apply
the recolouring of type 1, since uwγ

minvw
γ
max is still a 2-monochromatic 4-cycle, so

that |Eγ1
(1)| = |Eγ1

(3)| = |Eγ0
(1)| + q and |Eγ1

(2)| = |Eγ0
(2)| − 2q.

Therefore, the so-obtained edge colouring γ1 is an equitable good edge 3-nsd-
colouring of Kn+2.

This concludes the proof of Theorem 2. �

3. Proof of Theorem 3

We prove in this section that χe
Σ(Km,n) = 2 whenever m = n = 2 or m = n ≥ 4,

χe
Σ(K3,3) = 3 and χe

Σ(Km,n) = 1 if 1 ≤ m < n. As in the previous section, we denote by
Eγ(i) the set of edges that are assigned colour i by the edge colouring γ.

Proof (of Theorem 3). If 1 ≤ m < n, then adjacent vertices have distinct degrees,
and hence colouring all edges with colour 1 gives an equitable edge 1-nsd-colouring of
Km,n.

If m = n, then Km,n is regular, and therefore, χe
Σ(Km,n) ≥ 2. Suppose first that

m = n = 3 and let V ∪ V ′ denotes the bipartition of V (K3,3), with V = {v1, v2, v3} and
V ′ = {v′1, v

′
2, v

′
3}. We first claim that χe

Σ(K3,3) > 2. Assume to the contrary that γ is an
equitable edge 2-nsd-colouring of K3,3 and let σ denote the vertex colouring induced by
γ. Since |E(K3,3)| = 9, we necessarily have

{|Eγ(1)|, |Eγ(2)|} = {4, 5}. (6)

Moreover, since 3 ≤ σ(v) ≤ 6 for every vertex v ∈ V ∪ V ′, we get without loss of
generality either σ(v1) = σ(v2) = σ(v3), or σ(v1) = σ(v2) 6= σ(v′1) = σ(v′2). In the first
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Figure 7: An equitable edge 3-nsd-colouring of K3,3.

case, we get |Eγ(1)| + 2|Eγ(2)| = 3σ(v1) ≡ 0 (mod 3), in contradiction with (6). In the
latter case, we necessarily have {σ(v1), σ(v′1)} = {4, 5}, since otherwise we would have
six edges with the same colour. Assume without loss of generality that the edges incident
with v1 and v2 are coloured 1, 1 and 2. Since γ is an equitable edge colouring, the edges
incident with v3 are necessarily coloured 2, 2, and 2, but then σ(v′3) = 4 = σ(v1), or
2, 2 and 1, again a contradiction since this would in turn imply σ(v3) = σ(v′1) = 5.
Taking into account the equitable edge 3-nsd-colouring of K3,3 depicted in Figure 7, we
get χe

Σ(K3,3) = 3.

Finally, suppose that m = n = 2 or m = n ≥ 4 and let V ∪ V ′ denote the bipartition
of V (Kn,n), with V = {v1, . . . , vn} and V ′ = {v′1, . . . , v

′
n}. We consider two cases,

depending on the parity of n.

1. n = 2t, t ≥ 1.
Let γ be the edge 2-colouring of Kn,n defined as follows. For every edge viv

′
j ∈

E(Kn,n), let σ(viv
′
j) = 1 if i is odd and σ(viv

′
j) = 2 otherwise. Since n is even,

γ is an equitable edge 2-colouring. To see that γ is neighbour-sum-distinguishing,
observe that for every i, 1 ≤ i ≤ n, σ(vi) = 2t if i is odd, σ(vi) = 4t if i is even,
while σ(v′j) = 3t for every j, 1 ≤ j ≤ n.

2. n = 2t + 1, t ≥ 2.
Let γ be the edge 2-colouring of Kn,n defined as follows. For the subgraph of Kn,n

induced by {v1, . . . , vn−1} ∪ {v′1, . . . , v
′
n−1}, γ is defined as in the previous case.

We then set γ(vnv
′
j) = 1 for every j, 1 ≤ j ≤ n − 1, γ(viv

′
n) = 2 for every i,

1 ≤ i ≤ n− 1, and σ(vnv
′
n) = 1. The edge colouring γ thus obtained is clearly an

equitable edge 2-colouring. To see that γ is neighbour-sum-distinguishing, observe
that for every i, 1 ≤ i ≤ n− 1, σ(vi) = 2t+ 2 if i is odd, σ(vi) = 4t+ 2 if i is even,
while σ(v′j) = 3t+ 1 for every j, 1 ≤ j ≤ n− 1, σ(vn) = 2t+ 1 and σ(v′n) = 4t+ 1.

This concludes the proof of Theorem 3. �
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4. Proof of Theorem 4

We prove in this section that χe
Σ(F ) ≤ 2 for every forest F with no isolated edge.

Throughout the proof we will thus use only colours 1 and 2 to colour the edges.
A vertex of degree 1 will be called a leaf or a pendant vertex. If v0, v1, . . . , vk is

an induced path such that v1, . . . , vk have no neighbours in G outside this path (i.e.
dG(v1) = . . . = dG(vk−1) = 2 and dG(vk) = 1), we call this path a pendant path of length
k incident with v0. In particular, if k = 1, we call v0v1 a pendant edge.

Suppose a forest F is a minimal counterexample, i.e., a counterexample with minimal
number of edges, to Theorem 4.

Claim 5. No component of F is a path.

Proof. Suppose P is a component of F which is a path. Then we colour the forest F ′

obtained of F by removing all vertices of P by the minimality of F , what will mean here
and in all further claims that we fix some equitable (edge) nsd-colouring of F ′ with 1
and 2, which exists due to the fact that F is a minimal counterexample to Theorem 4
(in cases where we will be left with components K2 in F ′, what does not take place in
this claim, we will mean that we colour the forest formed by the remaining components
of F ′ by the minimality of F and then we put 1’s or 2’s on the isolated edges of F ′ so
that the colouring is equitable).

Now it is sufficient to colour the path P equitably so that its neighbours are sum-
distinguished and the colouring of entire F is equitable in order to obtain an equitable
nsd-colouring of F , a contradiction with the fact that F is a counterexample to Theo-
rem 4. In case when P is of even length it suffices to use the same number of 1’s and
2’s, while for odd path P we might be forced to use one more 1 or 2 (and we do not
control which one). As leaves are always sum-distinguished from their neighbours, this
can however be always easily achieved, as we only need to colour every second edge of
the path differently, i.e., it is always sufficient to colour appropriately the first two edges
of the path – the rest of the colours on the path are the consequence of these two (note
also here a fact useful in further reasonings that if in a graph G we have a pendant path
of length 4, then its edges must be coloured with two 1’s and two 2’s in any equitable
edge nsd-colouring of G with 1 and 2). �

Since we want to prove that no counterexample to Theorem 4 exists, i.e., that in fact
χe
Σ(F ) ≤ 2, we may make use of the following reduction.

Claim 6. We may assume that F contains no vertex u of degree 3 adjacent to a leaf w
and a vertex x of degree 2 whose other neighbour y is a leaf.

Proof. Suppose there is such a vertex u, and let v be its remaining neighbour in F
(v /∈ {w, x}), see Figure 8(a).

Then χe
Σ(F ) ≤ 2 only if χe

Σ(F ′) ≤ 2 where F ′ is the forest obtained from F by
deleting the vertices u,w, x, y (together with their four incident edges) and appending
a pendant path of length 4 at v, i.e., identifying one end of this path with v (so that
the numbers of edges in F and F ′ are equal). Suppose that there is an equitable edge
colouring of F ′ with 1 and 2 (obviously, χe

Σ(F ′) 6= 1). Then use the same colouring on all
edges of F that appear also in F ′, so that four edges of F remain uncoloured. Note that
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Figure 8: Illustrations to Claims 6, 7 and 9.

in order to be certain that the colouring of F is equitable we must use colours 1, 1, 2, 2
on these four remaining edges, as exactly these four colours must have been used on the
pendant path of length 4 in F ′ (cf. the argument for paths above). First we copy on uv
the colour from the edge incident with v in F ′ from the mentioned path of length 4 (in
order to avoid sum conflicts between v and its neighbours other than u). Then we put a
colour on uw so that uv and uw have distinct colours, hence we are left with 1 and 2 to
use. We choose one of these colours for ux so that there is no conflict between u and v,
and we use the remaining colour on xy. Note that by our construction the sum at x will
always be smaller than the sum at u.

Hence, as F is a minimal (i.e., with minimum number of edges) counterexample
to Theorem 4, then so does F ′. We may thus perform the operation described above
repeatedly until there are no configurations from the thesis in our forest left. �

Let us root every tree (component) of F at any leaf. A vertex v of degree at least 3
with all descendants of degree at most 2 will be called a last multifather (this is just a
vertex which induces with its descendants only pendant paths incident with this vertex).
First we present a few observations implying that all descendants of any last multifather
must in fact be leaves (in other words, all pendant paths incident with such a vertex and
containing its descendants are in fact pendant edges), see Claim 11 below. Some of these
observations will be also useful in the further part of the argument, e.g. the following
seemingly very specific claim.

Claim 7. There is no vertex v of degree at most a+b+1 incident with a (a ≥ 0) pendant
edges and b (b ≥ 1) pendant paths of length 4 in F .

Proof. Suppose to the contrary that u1, . . . , ua are a (a ≥ 0) leaves adjacent with v,
while w1, . . . , wb are b (b ≥ 1) neighbours of v such that vwi is the first of four edges of
a pendant path of length 4 incident with v, i = 1, . . . , b, see Figure 8(b). Denote by v′

the remaining neighbour of v (if there is any).
13



Let F ′ be the forest obtained of F by deleting u1, . . . , ua and all 4b vertices (except
v) from the b pendant paths of length 4 incident with v (including w1, . . . , wb, resp.). By
the minimality of F , F ′ admits an equitable 2-colouring. It suffices then to complete the
colouring using an appropriate equitable number of 1’s and 2’s.

If a = 0, we may use the same number of 1’s and 2’s. Otherwise, we first greedily
choose colours for vu1, . . . , vua so that we obtain a partial equitable colouring of F (i.e.,
the number of 1’ and 2’s used so far on F is as equal as possible). We will then use
2b 1’s and 2b 2’s on the remaining edges. For this goal we first choose any colours for
vw1, . . . , vwb so that there is no conflict between v and v′. Finally, for each of the pendant
paths of length 4 incident with v, we complete its colouring (similarly as in the case of a
path itself above) first using a colour on yet non-coloured edge incident with wi to avoid
conflict between wi and v, and so on, in order to obtain an nsd-colouring of F with 1
and 2. Note that on each such path we will use two 1’s and two 2’s, thus the colouring
will also be equitable, a contradiction with the minimality of F . �

As a consequence of the claim above, for a = 0 and b = 1, we obtain the following:

Claim 8. There are no pendant paths of length (at least) 5 in F .

We supplement this observation with the two following ones.

Claim 9. There is no vertex v with deg(v) ≥ 4 incident with a pendant path of length 2
or 3 in F .

Proof. Suppose there is such a vertex v in F , and let v, u, w or v, u, w, x be the con-
secutive vertices of the corresponding path, see Figure 8(c). By the minimality of F ,
we may colour F − {uw} or F − {uw,wx}, respectively. In the first case, we conclude
by using on uw any of the available at most 2 colours – note that as deg(v) ≥ 4 and
deg(u) = 2, the sum at v will always be greater than the one at u. In the second case,
we use 1 or 2 on wx so that there is no conflict between u and w, and colour the edge
uv in such a way that the colouring is equitable, a contradiction. �

Claim 10. A vertex v of degree 3 cannot be incident with both a pendant path of length
at least 1 and a pendant path of length at least 2 in F .

Proof. Suppose there is such a vertex v in F . Note that by Claim 8, the both paths
have to be of length at most 4, and one of them has to have length at most 3 by Claim 7
(with a = 0 and b = 2). Additionally, if one of the paths is just a pendant edge, then the
other cannot have length 2, by Claim 6, nor 4, by Claim 7.

We thus are left with 6 cases. In each of these cases, we first colour by the minimality
of F the forest F ′ obtained from F by removing all edges of the two pendant paths. If
there is an even number of such edges, we then use an even number of 1’s and 2’s to
complete the colouring. Otherwise we might be forced to use one more 1 or 2 so that
the colouring of F is equitable at the end. Thus, for each such case, we analyse the
two corresponding subcases. For each of these cases (and subcases) we start by choosing
the colours for the first edges of the two paths (those incident with v) appropriately so
that v is not in conflict with its neighbour v′ from F ′. In Figure 9 we show that in all
(sub)cases there are always two possible choices (with different sums, one of which must
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Figure 9: Subcases of Claim 10.

be appropriate) for these two edges, which then can be extended without conflicts, re-
gardless of the colour of vv′ (marked thus by “?”), on the remaining yet uncoloured edges
(one choice is presented above the edges, while the alternative is presented below). We
thus obtain a contradiction with the minimality of F as a counterexample to Theorem 4.

�

Claim 11. Every vertex v of degree at least 3 with all descendants of degree at most 2
in F has only descendants of degree 1.

Proof. For vertices of degree at least 4 this follows by Claims 8, 9 and 7, while for
vertices of degree 3 this is a consequence of Claim 10. �

Claim 12. Every vertex v of degree at least 3 in F with all descendants of degree 1 has
a father of degree at least 3.

Proof. Suppose there is a vertex v in F of degree at least 3 with descendants being
leaves and a father v′ of degree at most 2. Then we delete all edges joining v with its
descendants in F and colour the obtained forest by the minimality of F . To conclude it
is sufficient to colour the pendant edges incident with v using at least one 2 (this will be
possible, and even almost always necessary) so that the colouring of F is equitable. This
way v has certainly a greater sum than v′, a contradiction. �

Note that by Claims 5, 11 and 12, every component of F must in particular have at
least two vertices of degree greater than 3. Thus each such component T (previously
rooted at some leaf) must contain at least one vertex which we will call a last multi-
grandfather, that is a vertex v of degree at least 3 in T which has at least one descendant
of degree at least 3 but none of the descendants of degree at least 3 of v has further
descendants of degree at least 3 (i.e., all descendants of degree at least 3 of v are last
multifathers). Note that such a v is adjacent with its father while, due to Claims 11,
12 and 8, every son of v either has degree at least 3 and all sons being leaves, or has
degree 2 and at most 3 descendants - all of degree at most 2. Moreover, by Claim 9, if
deg(v) ≥ 4, every pendant path incident with v must have length exactly 1 or 4.

Below, see Claim 13, we obtain a contradiction with the statement above that every
component of F contains a last multigrandfather. Consequently, we will prove that no
counterexample to Theorem 4 may exist, thus concluding its proof.
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Claim 13. No component T of F contains a last multigrandfather.

Proof. Assume to the contrary that v is a last multigrandfather in a component T of F .
Suppose first that v has two sons u and w of degree at least 3. Then we may delete

two pendant edges incident with u, say eu, e
′
u and two pendant edges incident with w, say

ew, e
′
w (recall that all descendants of u and w must be leaves), and colour the remaining

forest by the minimality of F . It is then sufficient to colour the remaining four edges with
two 1’s and two 2’s so that there is no conflict between v and its sons u,w in order to get
a contradiction with the minimality of F . We however have three essentially different
ways of extending our colouring, i.e., assigning 1, 1 to eu, e

′
u (and hence 2, 2 to ew, e

′
w) or

assigning 1, 2 or 2, 2 to them. Hence, one of these options must fulfil our requirements
(as the sum at v “forbids” only one potential sum at each of u and w).

Hence we may assume that v has exactly one son who is a last multifather, say u (if
it had no such son, it could not be a last multigrandfather by definition). Denote by
u′, u′′ any two leaves adjacent with u.

Let us consider first the case when all the remaining sons of v are leaves. If deg(v) ≥
4, then delete two pendant edges incident with u, say eu, e

′
u and two pendant edges

incident with v, say ev, e
′
v, and colour the remaining forest by the minimality of F .

Then, analogously as above, it is sufficient to colour the remaining four edges with two
1’s and two 2’s so that there is no conflict between u and v and between v and its father.
As we have three essentially different ways of extending the colouring, at most two of
which being “forbidden” by our requirements on lack of conflicts, we certainly may extend
the colouring to F . If however deg(v) = 3, let w be the son of v which is a leaf. Delete
from F all edges induced by v and its descendants and colour the remaining forest by the
minimality of F . As we have removed at least four edges, we certainly may use at least
two 1’s and at least two 2’s while equitably extending the colouring to F . Assign 1 to
vw and 2 to uu′. Then choose γ(uv) ∈ {1, 2}, where γ(uv) denotes the colour of the edge
uv, so that there is no conflict between v and its father v′, set γ(uu′′) = 3 − γ(uv), and
assign colours to the remaining uncoloured edges (if there are any) so that the obtained
colouring of F is equitable. If there is no conflict between u and v, we are done. On the
other hand, the only situation in which we may have such a conflict is when u′, u′′ are
the only sons of u, γ(vv′) = 2, and γ(uu′′) = 1 (in all other cases the sum at u would
be larger than the one at v), and hence γ(uv) = 2, see Figure 10(a). But then we may
switch the colours of uv and vw, decreasing the sum at u but not changing the sum at
v. In all cases we thus obtain a desired equitable nsd-colouring of F , a contradiction.

Suppose now that v has a son, say w, adjacent with only one leaf w′ (i.e., v, w,w′ form
a pendant path of length 2 incident with v). By Claim 9, deg(v) = 3, see Figure 10(b).
Then delete all descendants of v and colour the forest obtained by the minimality of F .
As we have removed at least five edges from F , we still may use at least two 1’s and
two 2’s. Set γ(ww′) = 1 = γ(wv), γ(uu′) = 2 = γ(uu′′) and if we still have any choice
(which will not prevent us from completing the colouring of F equitably) choose a colour
for uv so that there is no conflict between v and its father. Finally, colour the remaining
uncoloured edges equitably (i.e. so that the colouring of F is equitable). This way, no
conflict is possible, except a potential conflict between v and its father. In such a case,
we must however have had no choice while colouring uv, and hence deg(u) = 3. Then
we colour all previously removed edges once more differently, setting γ(vw) = 2 = γ(vu)
(and hence increasing the sum at v), γ(uu′) = 1 = γ(uu′′), and completing the colouring
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Figure 10: Illustrations to cases in Claim 13.

equitably, see Figure 10(b). As no conflict is then possible, we obtain a contradiction.
Suppose finally that there is a pendant path of length 3 or 4 incident with v and

induced by v and its descendants. Delete the edges of this path and all edges incident with
u and colour the obtained forest by the minimality of F . Let w1, w2, . . . , wj , j ∈ {3, 4} be
the consecutive vertices of this path with w1 being a son of v. Set γ(vw1) = 1 = γ(w1w2),
γ(w2w3) = 2 and γ(w3w4) = 2 (if there is such an edge), γ(vu) = 1, γ(uu′) = 2, see
Figure 10(c), and colour the remaining edges so that we obtain an equitable colouring
of F . Note that as γ(w1w2) = 1 (what will not be changed), no conflict is possible
between w1 and v. We may however have potential conflicts between v and its remaining
neighbours. If there is a conflict between v and u or v′, where v′ is the father of v, we
exchange the colours of vu and uu′, increasing the sum at v (and not changing the sum
at u nor at v′). After such a switch, since hitherto there was a conflict, v must have a
greater sum than u or v′. If v is still in conflict with the remaining one of these two,
we raise the sum at v once more (not changing the sums at u and v′) by switching the
colours of vw1 and w2w3. Then if there was still some conflict in F , it would have to be
between v and its neighbour, say x, other than v′, u and w1, but then deg(v) ≥ 4 and
deg(x) ≤ 2 (as we have assumed that v has only one son of degree at least 3), hence v
and x could not be in conflict.

Thus, in all cases we have been able to obtain a desired equitable nsd-colouring of F
using colours 1 and 2, a contradiction. �

5. Proof of Theorem 5

We prove in this section that χt
Σ(G) ≤ 2 for every bipartite graph G. In order to

prove the result in the non-connected case, we will in fact prove a stronger thesis but in
the case of connected bipartite graphs. We will not only prove that such graphs admit
equitable total nsd-colourings using 1 and 2, but also that, if the sum of the numbers of
vertices and edges is odd, then there are two such colourings – one with a majority of 1’s
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and the second with a majority of 2’s. This immediately implies the thesis of Theorem 5
(as we may first colour the components of a non-connected bipartite graph with even
sums of numbers of vertices and edges, and then the remaining ones, using alternately a
majority of 1’s and a majority of 2’s).

Note that this strengthened thesis for connected bipartite graphs is straightforward
in the case of a star (even with no edges) – e.g., if a star has at least two edges, it is
sufficient to put 1’s on all its edges and 2’s on the vertices or the other way round. For
the remaining connected bipartite graphs it follows by first using Observation 9, and
then sequentially repeating application of Lemma 10 below until we achieve one or two
desired total colourings.

Observation 9. Every connected bipartite graph G = (X,Y ;E) with at least one edge
can be totally coloured with 1 and 2 so that the vertices in one set of the bipartition have
even sums and the vertices in the second set of the bipartition have odd sums and so that
the number of 1’s used exceeds the non-zero number of 2’s.

Proof. Colour all the edges of G with 1. Then colour one vertex in X with 2. Next
subsequently colour all the remaining vertices in G, each with 1 or 2, so that the parities
of sums at all the vertices in X are the same and different from those in Y . If the number
of 1’s used on G does not exceed the number of 2’s, it means that all vertices are coloured
with 2 (note that the number of vertices may exceed the number of edges by at most
one in a connected graph). Then choose any edge uv ∈ E and change the colours of its
end-vertices from 2 to 1 and the colour of the edge from 1 to 2. Note that this will not
influence the sums at any vertex in G, but the number of 1’s used will exceed the number
of 2’s afterwards (while at least one 2 will remain on G). �

Note that neighbours are certainly sum-distinguished under the colouring from Ob-
servation 9 above. Now we will show that given such a colouring we can repeatedly
increase the number of 2’s used (at each step only by one) not spoiling at the same time
the neighbour distinction in G until we achieve our goal (or goals).

Lemma 10. Given any total colouring with 1 and 2 of a connected bipartite graph G =
(V,E) which is not a star and with the number of 1’s used exceeding the non-zero number
of 2’s such that the vertices in one set of the bipartition of G have even sums and the
vertices in the second set of the bipartition have odd sums, we may construct a new
total colouring of G with 1 and 2 complying with the second feature of the given one
(concerning the parities of the sums at vertices) but with exactly one more 2 used than
in the initial colouring.

Proof. Suppose we are given a graph and an initial colouring as claimed. The proof
will be based on the fact that the parities of the sums in G do not change if we make a
negative of any edge uv, i.e., after changing every 1 to 2 and every 2 to 1 used on u, v
and uv.

We will show that starting from our initial colouring we may always subsequently
make negatives of a few edges to obtain a colouring consistent with the thesis. We will
write that an edge uv is of type abc, where a, b, c ∈ {1, 2} if u, uv, v (or v, uv, u) are
coloured a, b, c, respectively, in the initial colouring. Note first that we may assume that

18



there are no edges of types 121 and 112 (nor 211) in G, as we could make a negative of
any such edge and immediately achieve our goal.

Suppose there is no edge of type 111 in G either, hence there are only edges of types
222, 212 and 221 (or equivalently 122). Then the graph H induced in G by the edges of
type 212 cannot be a forest, as otherwise there would be more 2’s than 1’s on G. Indeed,
if H is a forest, i.e., has more vertices than edges, then more 2’s appear on vertices than
1’s on edges in G. On the other hand, there are at least as many edges coloured 2 as
there are vertices coloured 1 in G, as every such vertex must be an end of an edge of type
221 (or 122), and since the other end of such an edge is coloured 2, we may easily define
an injective mapping from the set of vertices coloured 1 to the set of edges coloured 2
(by assigning to such a vertex any of its incident edges). Hence, as H is not a forest
and must be bipartite, it contains a cycle of length at least 4, and hence also a path
of length 3. It is then sufficient to subsequently make negatives of all these three edges
(after which the consecutive edges of this path of types 212, 212, 212 will become edges
of types 122, 222, 221 respectively – note in particular that the vertices of the middle
edge will switch colours twice, hence in fact will return to their initial values) to obtain
a required colouring of G.

Suppose then to the contrary that there is an edge of type 111 in G. As the parities
of the sums at the ends of such an edge e must differ (by the definition of our initial
colouring), e must be adjacent with at least one edge coloured 1, say f , thus f is also
an edge of type 111 (as there are no edges of type 112 nor 211 in G). Note that we
may then assume that there is no edge of type 222, as otherwise it could not be adjacent
with any edge of type 111 and thus we could make negatives of such an edge of type 222
and two adjacent edges of type 111, and obtain a required colouring of G. Thus in G
there are only edges of type 111, which we will call edges of type A, and edges of types
212 and 122 (or 221), which we will all call edges of type B. Analogously as above, one
may verify that if there is a path of length 3 in G with two consecutive edges of type
A and one of type B or two consecutive edges of type B and one of type A, then by
making consecutively negatives of all edges of one such path, we will always obtain a
desired total colouring of G. We will show that such a path must exist in G. Let H ′ be
any component of a graph induced in G by the edges of type A. (Recall that each such
component must have diameter at least 2.)

Suppose that H ′ is not a star. As G is connected and at least one 2 is used as a colour
on it, at least one vertex, say v, (coloured 1) in H ′ must be incident with an edge, say e′

of type B. Note that the other (different from v) end of e′, say u, must be coloured 2,
hence does not belong to H ′. On the other hand, in H ′ there must be a vertex, say w,
at distance 2 from v, as otherwise H ′ would be a star. Hence there is a path of length
3 (starting at u and ending at w) in G with two consecutive edges of type A and one of
type B, as claimed.

We thus may finally assume that H ′ is a star (with at least two edges). If at least
one of its leaves is incident with an edge of type B, then we obtain a path as above.
Otherwise however, as G is connected, G is not a star and at least one 2 was used on
it, the center of the star making up H ′ must be incident with one end of a path P of
length two, whose first edge (incident with the center of the star), say e′, is of type B.
However, as the other end of e′ must be coloured with 2, the second edge of this path
must also be of type B, thus we obtain a path of length 3 with two consecutive edges of
type B (from P ) and one edge of type A (incident with the center of H ′), as claimed. �
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Figure 11: Equitable total nsd-colourings of K2, K3 and K4.

6. Proof of Theorem 6

Finally, we prove in this section that χt
Σ(K2) = 2 and χt

Σ(Kn) = 3 for every n ≥ 3.
The colourings of small cases (for n ≤ 4) are depicted in Figure 11. By Theorem 2 and

Proposition 1, it is enough to show that χt
Σ(Kn) 6= 2 for n ≥ 3 (recall that χt

Σ(Kn) ≥ 2
since Kn is regular).

First we observe that for any n, there exist (essentially) exactly two total 2-colourings
distinguishing Kn by sums; in one of them there is a vertex with a monochromatic palette
of 1’s, and in the other one there is a vertex with a monochromatic palette of 2’s, since
we add n numbers (colours) at every vertex and we obtain sums from the set {n, ..., 2n}
but not n and 2n in the same colouring. Moreover, it is easy to observe that for any such
colouring of Kn, n ≥ 2, with a monochromatic palette of a’s, a ∈ {1, 2}, say at a vertex v,
after deleting v we obtain a total 2-nsd-colouring of Kn−1 with a monochromatic palette
of (3 − a)’s.

Let γ be such a total 2-colouring distinguishing Kn, n ≥ 2, by sums with a vertex
having a monochromatic palette of 1’s - for a monochromatic palette of 2’s the reasoning
and calculations are the same. Now for every positive integer k we prove by induction
that: If n = 2k then there exist k(k + 1) elements (vertices and edges) coloured with 1
and k2 elements coloured with 2. If n = 2k+1 then there exist (k+1)2 elements coloured
with 1 and k(k + 1) elements coloured with 2.

For n = 2 we have both vertices in different colours and an edge is coloured with 1,
since there exists a monochromatic palette of 1’s. For n = 2k, k > 1, let v be a vertex
with a monochromatic palette of 1’s. Then there exists a vertex u in Kn−1 = Kn − v
having a monochromatic palette of 2’s. Consider a graph K2k−2 obtained from K2k by
removing vertices u and v. Then there exist k(k−1) elements coloured with 1 and (k−1)2

elements coloured with 2 in K2k−2, by induction. So, there exist k(k − 1) + 2k elements
coloured with 1 (since v adds n elements coloured with 1) and (k− 1)2 + 2k− 1 elements
coloured with 2 (since u adds n− 1 elements coloured with 2) in K2k.

Similarly, for n = 3 we have four elements coloured with 1 and two elements coloured
with 2, since there exists a monochromatic palette of 1’s and there exist exactly one such
a total distinguishable colouring by sums. For n = 2k + 1, k > 1, let v be a vertex
with a monochromatic palette of 1’s. Then there exists a vertex u in Kn−1 = Kn − v
having a monochromatic palette of 2’s. Consider a graph K2k−1 obtained from K2k+1

by removing vertices u and v. Then there exist k2 elements coloured with 1 and k(k− 1)
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elements coloured with 2 in K2k−1, by induction. So, there exist k2 + 2k + 1 elements
coloured with 1 (since v adds n elements coloured with 1) and k(k − 1) + 2k elements
coloured with 2 (since u adds n− 1 elements coloured with 2) in K2k+1.

Now observe that if n = 2k then a difference between numbers of 1’s and 2’s is k in
the colouring γ and if n = 2k+1 the difference is k+1. So, γ is equitable only for n = 2.
This finishes the proof, as the same reasoning applies in the case of a monochromatic
palette of 2’s in γ (with 1’s and 2’s switched).

7. Discussion

We introduced and studied in this paper equitable edge and total nsd-colourings. We
determined the equitable nsd-index of complete graphs (Theorem 2), complete bipartite
graphs (Theorem 3) and forests (Theorem 4), and the equitable total nsd-chromatic
number of bipartite graphs (Theorem 5) and complete graphs (Theorem 6).

By colouring the edges of a graph G (having no isolated edge) with different powers
of 2, one obviously get an equitable edge nsd-colouring of G, so that the inequality
χe
Σ(G) ≤ 2|E(G)| holds for every graph G with no isolated edge. In a recent paper [3],

Bensmail, Senhaji and Szabo Lyngsie studied “edge-injective” nsd-colourings, a stronger
version of equitable edge nsd-colourings in which no two edges can be assigned the same
colour. From their results, it follows that the inequality

χe
Σ(G) ≤ min (2|E(G)|, |E(G)| + 2∆(G))

holds for every graph G (having no isolated edge) with maximum degree ∆(G), giving
an upper bound on χe

Σ(G) which is polynomial in terms of |E(G)| + |V (G)|. However,
we do not know if there exists any constant upper bound on χe

Σ(G) for every graph G.

Theorem 5 shows that χt
Σ(G) ≤ 2 holds for every bipartite graph G. It would be

interesting to determine whether there also exists a constant upper bound on χe
Σ(G)

when G is bipartite.
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were partly supported by the Polish Ministry of Science and Higher Education, while
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