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Fusion of global and local motion estimation
using foreground objects for Distributed Video

Coding

Abdalbassir ABOU-ELAILAH, Frederic DUFAUX, Joumana FARAH
Marco CAGNAZZO, Anuj Srivastava, and Beatrice PESQUET-ESEU

Abstract

The side information in distributed video coding is estiethtising the available decoded frames,
and exploited for the decoding and reconstruction of otfenés. The quality of the side information has
a strong impact on the performance of distributed videormpdiHere we propose a new approach that
combines both global and local side information to improwding performance. Since the background
pixels in a frame are assigned to global estimation and thegfound objects to local estimation, one
needs to estimate foreground objects in the side informatsing the backward and forward foreground
objects, The background pixels are directly taken from toba side information. Specifically, elastic
curves and local motion compensation are used to generatéotbground objects masks in the side
information. Experimental results show that, as far as #te-distortion performance is concerned, the
proposed approach can achieve a PSNR improvement of u3%adB for a GOP size of, and up to

4.73 dB for larger GOP sizes, with respect to the reference DISER\odec.
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I. INTRODUCTION

The digital video coding standards ISO/IEC MPEG-x and ITUHI26x are mainly based
on the Discrete Cosine Transform (DCT) and inter-frame, ifraene predictive coding. Addi-
tionally, in the High Efficiency Video Coding (HEVC) internatial standard, that has recently
emerged as a successor to H.264/AVC, the encoder exploisp#tial and temporal redundancies
existing in a video sequence. Here the encoder is significambre complex than the decoder
(with a typical factor of 5 to 10 [1]) and its architecture i®Msuited for applications where
the video sequence is encoded once and decoded many tinsBsasin broadcasting or video
streaming.

In the recent years this architecture has been challengsdugral emerging applications such
as wireless video surveillance, multimedia sensor netsyorkreless PC cameras, and mobile
phone cameras. In these new applications it is essentiahve A low complexity encoding,
while possibly affording a high complexity decoding.

Distributed Video Coding (DVC) is a recent paradigm in videonoaunication that fits well
in these scenarios, since it enables the exploitation ofithéarities among successive frames at
the decoder side, making the encoder less complex. Condgguba complex tasks of motion
estimation and compensation are shifted to the decodee tlat the Slepian-Wolf theorem from
information theory [2] states that for a lossless compoess is possible to encode correlated
sources (let us call them X and Y) independently and decoel fjointly, while achieving the
same rate bounds that can be attained in the case of jointeigcand decoding. The case of
lossy compression was subsequently dealt with by Wyner an{BE. Their popular result states
that, under mild constraints, the theoretical rate-digiorbounds for distributed coding are the
same as those for joint coding, provided that joint decodsngossible.

Based on these theoretical results some practical impletiems of DVC have been proposed
in [4], [5]. The European project DISCOVER [6], [7] resulted one of the most efficient and
popular existing architectures, where the DISCOVER codéased on the Stanford scheme [5].
More specifically, the sequence images are split into twe stframes: key frames (KFs) and

Wyner-Ziv frames (WZFs). The Group of Pictures (GOP) of sizs defined as a set of frames
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consisting of one KF and — 1 WZFs. The KFs are independently encoded and decoded using
such Intra-coding techniques as H.264/AVC Intra mode orGIEID0. The WZFs are separately
transformed and quantized, and a systematic channel cegplied to the resulting coefficients.
Only the parity bits are kept and sent to the decoder uporestquihis can be seen as a Slepian-
Wolf coder applied to the quantized transform coefficiedtsthe decoder, the reconstructed
reference frames are used to compute the side informatignw8ich is an estimation of the
WZF being decoded. The Motion-Compensated Temporal Intatipal (MCTI) [8] is commonly
used to produce Sl. Finally, a channel decoder uses they pafidrmation to correct Sl, thus
reconstructing the WZF. Therefore, generating an accuraite &sential, since it would result
in a reduced amount of parity information requested by treoder through the return channel.
At the same time the quality of the decoded WZF would be imptadering reconstruction.

The goal in terms of compression efficiency is to achieve angpperformance similar to the
best available hybrid video coding schemes. However, DVE i@t reached the performance
level of classical inter-frame coding yet. This is in partedw the quality of SI which has a
strong impact on the final Rate-Distortion (RD) performance.

In this paper we propose new methods to enhance Sl througmbiration of the global and
local motion estimations. The parameters of the global hadeestimated at the encoder, and
sent to the decoder in order to generate a Sl based on GlokarMoompensation (GMC), and
referred to as GMC SI. On the other hand, another Sl is estionasing the MCTI technique
(local motion compensation) with spatial motion smoothiagactly as in DISCOVER codec;
this Sl is referred to as MCTI Sl. Thus, the two estimations MGTand GMC Sl are generated
at the decoder, using the reference frames and the globaingaers.

Normally, the background pixels must be compensated ugieggtobal motion and the
foreground objects using the local motion. However, théitianal motion compensation uses
block-based algorithms, resulting in possible codingaats above all around object edges. We
propose, therefore, to resort to segmentation maps in ¢oddiscriminate the background and
the foreground, and to apply to each one the suitable motiodem We underline here that we
are not proposing a segmentation tool, but rather a codiggrighm that is able to efficiently
exploit the information provided by the segmentation. Mprecisely, we are able to accurately
infer the segmentation maps of the WZFs given the segmentataps of the KFs, thanks to the

elastic deformation of object contours. This is the maintgbation of this article. In this context,
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our method could be referred as "ideal” since we use manuwghsetation maps. However, in
order to validate our technique in a more realistic scenav® also provide the experimental
results using an actual yet simple automatic segmentatgoritom, showing promising results
even without ideal maps.

First, we propose a new method based on elastic shape analysiurves [9], [10] for
estimating the foreground objects masks in the previoastymated Sl. Then, the pixels in the
estimated masks are selected from MCTI SI, while GMC Sl is usetbver all the remaining
pixels in the estimated Sl. More specifically, the foregmobjects masks are generated using the
segmented foreground objects in the reference frames., Tiefforeground objects contours are
constructed from the generated masks. Furthermore, thewsrare considered as closed curves
and the algorithm in [10] is used to generate the curves ireitenated Sl using curves from
the reference frames. Finally, the objects masks are geuokersing these generated curves.
We observe that while elastic deformations have been usdiredhe original applications
were in shape analysis, face recognition, shape prob@bihisodels, and shape inference for
pose modification. The use of elastic deformations for pted the temporal, motion-related
deformation of object boundaries is novel to this paper.

We propose two different approaches for generating foregtaobjects in Sl, based on the
local motion-compensation. In the first approach, the MCThiéque is directly applied to the
backward and forward foreground objects, in order to gdaeitae foreground objects in SI.
In the second approach, a local motion estimation methoadpgsed to generate foreground
objects in Sl exploiting the backward and forward foregmbwbjects. Here we use a local
motion-estimation technique which a variation of the dlz@sone used in Discover. The details
of this method will be discussed in Sec. III-C2.

Next, a mask is generated using the estimated foregrourettshin Sl. Based on the mask,
two approaches are proposed to combine global and locabmestimations. The first one aims
at directly using the estimated foreground objects and GMCTBe second one consists of
using MCTI SI for the pixels in the object mask and GMC SiI for tkeenaining pixels.

We clarify that the proposed technique allows to efficienitge a contour predictor in the
context of compression; moreover, as we will show in the grpental section, the achieved
gains are relatively immune to the segmentation process. i$tpartly due to the fact that the

contours are estimated at the decoder and need not to bentteats As a consequence they
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can be irregular without greatly impacting the compresgienformance. This is in contrast
to the classical object-based compression techniquesewderon-ideal segmentation, or even
an ideal segmentation with complex contours, is one of thénmeasons for the inferior
compression performance with respect to block-based gddih]. In other words, our method
is a contour-based compression technique that consigteatperforms the block-based state-
of-the-art algorithms, and this holds even when the segatientproduces imperfect or complex
contours. Finally, we note that the additional complexéiated to the computation of the elastic
curve affects only the decoder. This perfectly fits the DVCapagm.

The rest of this paper is structured as follows. The relatedkvis described in Section Il.
Specifically, DISCOVER codec is presented in Section llI-Angyation of the global Sl is
described is Section 1I-B, and relevant SI improvementnegles are presented in Section II-C.
The proposed methods for the fusion of global and local mogtstimations are described
in Section IIl. More specifically, the removal of artifactfemting the GMC Sl is described in
Section llI-A, fusion using elastic curves in Section llJ4Bsion using local motion compensation
in Section 1lI-C, and the oracle fusion in Section IlI-D. Expnental results are shown in
Section IV in order to evaluate and compare the RD performanfdcke proposed approaches.

Finally, conclusions and future work are presented in $acV.

Il. RELATED WORK
A. DISCOVER Architecture

We start with a brief presentation of the DISCOVER codec [8], Here the input video
sequence is divided into WZFs and KFs, and the latter are excoding H.264/AVC Intra
coding. The WZF encoding and decoding procedures are dedcbidlow.

« Wyner-Ziv encoder - At the encoder side, the WZF is first transformed using<al integer
Discrete Cosine Transform (DCT). The integer DCT coefficiefthe whole WZF are then
organized intol6 bands. Next, each integer DCT coefficient is uniformly quaedi The
resulting quantized symbols are split into bit planes, Wwtace then independently encoded
using a rate-compatible Low-Density Parity Check AccunaulaDPCA) code. The parity
information is stored in a buffer and progressively senbupequest) to the decoder, while

the systematic bits are discarded.
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Fig. 1. MCTI technique [8].

« Generation of side information - In the DISCOVER scheme, the MCTI technique [8]
is used to generate Sl at the decoder side. Fig. 1 shows tihéeatare of the MCTI
technique. The frame interpolation framework is compodefdar modules to obtain high
guality Sl as follows: Both reference frames are first lowspfiéered in order to improve
the motion vector reliability, followed by backward motiestimation between the backward
and forward reference frames, bi-directional motion eation to refine the motion vectors,
spatial smoothing of motion vectors in order to achieve @éighotion field spatial coherence,
and finally bi-directional motion compensation.

o Wyner-Ziv decoder - A block-basedt x 4 integer DCT is carried out over the generated Sl
in order to obtain the integer DCT coefficients. Then, the LDPd&&oder corrects the bit
errors in the DCT transformed Sl, using the parity bits of WZguested from the encoder
through the feedback channel.

« Reconstruction and inverse transform - The reconstruction corresponds to the inverse of
the quantization using SI DCT coefficients and the decodedéwyiv DCT coefficients.
After that, the inversel x 4 integer DCT transform is carried out, and the entire frame is

restored in the pixel domain.

B. Global Motion Compensation

In [12] a new approach for generating GMC Sl is proposed. Here give the main char-
acteristics of this technique: First, the feature pointshaf original WZ and reference frames
are extracted, at the encoder, using Scale Invariant Fedtansform (SIFT). Then, a matching
between the feature points is carried out. Second, an effieigorithm is proposed to estimate
the affine parameters between the WZF and the backward (anarfby reference frame. Let
Tg andTr be the affine transforms between the original WZF and the backwnd forward

original reference frames, respectively. The parametetisose transforms are encoded and sent
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Fig. 2. Overall structure of the proposed DVC codec.

to the decoder.

Let us denote the backward and forward reference framescegply asRz and Ry for short.
Moreover, we indicate WithfiB and RF the results of GMC transform®g and 7 applied to
Ry and Ry. The GMC Sl is simply defined as the average of the frafgsand 2.

Consequently, we have now two Sl frames (MCTI SI and GMC SI) k& ¢urrent WZF,
therefore a fusion technique is needed. In [12] we proposedigorithm for the fusion, based
on the residual of the compensated reference frames.Rletind R be the backward and
forward compensated reference frames estimated by MCThiged. For eachl x 4 block b,
we perform a fusion by observing pixels in8ax 8 window. Namely, we compute two sums of

absolute differences (SADsfemc and fuct:

3 3
fome =Y Y 1Re(X0,Y)) = Rp(X:,Y))]
i=—4 j=—4

(1)
3 3
fuen =Y Y |Re(X.,Y;) — Rp(X,Y))]

i=—4 j=—4
Here(X;,Y;) = (zo+1i,y0+7), and(zo, yo) is the coordinate of the center pixel of the current

block b. The fusion in [12] is then given by:

GMC Si if <
SI(b) = Jeme < fmer )
MCTI SI otherwise

Hereafter, we refer to this method by ‘SADbin’.

February 10, 2014 DRAFT



We observe that the GMC technique demands a relatively sioaiplexity increase, since the
number of SIFT features is usually low. More precisely, thecgler complexity is higher than
DISCOVER(+30%) [12] but it remains significantly smaller than Intra codinghwH.264/AVC.
This is perfectly compatible with a low-complexity encodeenario.

This method for Sl information fusion has quite good perfante with respect to previous
techniques. We have even improved it using a fusion baseduppost vector machine [13].
Nevertheless, the block-based motion compensation catupeosome unpleasant artifacts near
the object contours. In order to reduce these artifacts, mpgse in the current paper to resort
to image segmentation into background and foreground andedhis information to perform a
suitable fusion. We propose a novel tool to efficiently eatierthe object contours (and therefore,
to determine the segmentation map), based on elastic dafiomof curves. Finally we remark
that the new technique does not require a modification in ticeder and therefore its complexity

(as for [12]) remains relatively low.

C. Improved Side Information Generation

The Sl is usually generated through an interpolation of thektvard and forward reference
frames. The quality of Sl is poor in certain regions of theeadscene, like in areas of partial
occlusions, fast motion, etc. In VISNET Il codec [14], a refiment process of Sl is carried out
after decoding all DCT bands in order to improve reconstomcfil5]. In [16][17], approaches
are proposed for transform-domain DVC based on the suseessiinement of Sl after each
decoded DCT band. In [18], a solution is proposed based onubeessive refinement of Sl
using an adaptive search area, for long duration GOPs, msfoam-domain DVC. High-order
motion interpolation has been proposed [19] in order to cofté object motion with non-
zero acceleration. In [20], global motion is estimated &t decoder in order to adapt temporal
inter-/extrapolation for Sl generation. In [21], a SI andseolearning approach is proposed,
in order to enhance Sl generation and noise modeling usitigabglow and clustering. The
S| generation problem is very similar to the one of frame-nap conversion. In this context,
Qian and Bajic [22] have introduced a region-based intetolaechnique with global, local
and affine perspective motion model. In fact, region-baspdesentation allows a more coherent
motion compensation, resulting in an improved visual dquaf synthesized frames.

Other solutions were proposed for SI enhancement, thatree@uhash information to be
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transmitted to the decoder. However, the encoder needsténuae in advance the regions
where the interpolation at the decoder would falil, i.e. oegi corresponding to a poor Sl. In
[23][24], hash information is extracted from the WZF beingcetsed and sent only for the
macroblocks where the sum of squared differences betweeprévious reference frame and
the WZF is greater than a certain threshold.

In [25] the authors proposed a Witsenhausen-Wyner Video rigo(WWVC) that employs
forward motion estimation at the encoder and sends the mué#otors to the decoder to generate
SI. This WWVC scheme achieves better performance than H.2&2/A noisy networks and
suffers a limited loss (up to 0.5 dB compared to H.264/AVC) aiseless channel. The authors
in [26] proposed a novel framework that integrates the gitagded segmentation and matching
to generate interview Sl in Distributed Multiview Video Cadi

In [27][28][29], the authors presented DVC schemes thatsisbrin performing the motion
estimation both at the encoder and decoder. In [27], theoasitbropose a pixel-domain DVC
scheme, which consists in combining low complexity bit jglanotion estimation at the encoder
side, with motion compensated frame interpolation at trmder side. Improvements are shown
for sequences containing fast and complex motion. The asiino28] present a DVC scheme
where the task of motion estimation is shared between thedemand decoder. Results have
shown that the cooperation of the encoder and decoder carcadtie overall computational
complexity, while improving the coding efficiency. Finglly DVC scheme proposed by Dufaux
et al. [29] consists in combining the global and local motion estiions at the encoder. In this
scheme, the motion estimation and compensation are pextbboth at the encoder and decoder.

In contrast, in this paper, both global and local Sl are ordypegated in the decoder. It is
important to note that the encoding complexity is kept lolweTglobal parameters are sent to
the decoder to estimate the GMC SI, and the combination leetvilee GMC S| and MCTI Sl
is made at the decoder side.

The problem of Sl fusion has been addressed in Multiview DVGeng two Sl are usually
generated. The first Sl (Jlis generated from previously decoded frames in the sanve wvikile
the second one (Sl is estimated using previously decoded frames in adjademtsv The paper
[30] proposed new techniques for the fusion of &hd S). Dufaux [31] proposed a solution
that consists in combining Sand S), using Support Vector Machine (SVM). In [13], a solution

is proposed for combining global and local Sl using SVM, ie ttontext of Monoview DVC.
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I1l. PROPOSED METHODS

The block diagram of our proposed codec architecture isctisgiin Fig. 2. It is based on the
DISCOVER codec [6], [7].

For the segmentation of the foreground objects, the auihdi@2], [33] propose a coarse-to-
fine segmentation method for extracting moving regions fommpressed video. In the proposed
methods, we consider that the foreground objects in the BackiReference Frame (BRF)
and Forward Reference Frame (FRF) are already segmented, \Merare interested in the
combination of global and local motion estimations.

Let Fi and Fi. (i = 1,2,..., N,, N, is the number of foreground objects) be the foreground
objects already segmented from the backward and forwaetemte frames, respectively. Fur-

thermore, the foreground objects mask$, and M} are generated from the foreground objects

( ' 0 if F5(z,y) =0
My(z,y) =

1 otherwise

according to:

L 3)
0 if Fi(z,y)=0

1 otherwise

My (z,y) = {

Then, the foreground objects contours are extracted frarfdreground objects masks. The
contours can be considered as closed curves.dietand g% be the representations of the
backward and forward foreground objects contours. As amel@ Figs. 3, 4, 5, and 6 show,
respectively, the original frame, the foreground objebg foreground object mask generated
from the foreground object, and the generated foregrounecbloontour, for frame numbelr

of Stefan sequence.

A. Artifact removal in GMC Sl using foreground objects masks

The GMC SI is simply defined as the average of the frafigsand R [12]. Fig. 7 shows
an example of a GMC SI (top center) and the GMC Sl with the dhjeask (bottom center),
for frame numbe of Stefan sequence. As we can see, the background aroundrdggdund
object in GMC Sl is affected by the shifted foreground olgedtie to global motion. In this

case, the background in one of the reference frames is acnagh the foreground objects
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Fig. 3. Original frame numbet of Stefan sequence. Fig. 4. Foreground objectr) of frame numberl of Stefan

sequence.

Fig. 5. Foreground object masR/) of frame numbern of Fig. 6. Foreground object contous) of frame numben of

Stefan sequence. Stefan sequence.

Original frame (3)
Ea .’-‘,:;r. oy ]

2

Object mask (3

Fig. 7. Original frame, GMC SI, updated GMC SI, Object mask, GMC 8hwnask, and updated GMC SI with mask for

frame numbe of Stefan sequence.

of the other reference frame. We propose to remove thisaattéffect around the foreground
objects using the obtained segmented foreground objedtseafeference frames.

The masksMp and My are defined as the union of all foreground objects magksand
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ML respectively:
N,
Mp = U Mg
N,
Mp = M},

=1

(4)

Let ]\/ZB and ]\//.7F be the results of the GMC transforriy and 7T applied to the maska/g
and My respectivelyﬂg and M\F are used in order to remove the artifacts of the pixels in the
background around the foreground objects. First, eacH pixéhe transformed frame§B and
Ry is assigned to either the background or the foreground tmjasing]\/fg and ]\7F. Then, in
order to avoid the averaging between the background andotiegrbund objects, the GMC SI

can be updated as follows:

(if Mp(z,y) =1 and Mp(z,y) =0
GMC Sl(z,y) = Re(z,y)
otherwise
if Mp(z,y) =0 and Mz(z,y) =1
GMC Sl(z,y) = Rg(z,y)

\

In these situations, only the background is taken for GMCFg]. 7 shows the updated GMC
Sl (top right) and the updated GMC SI with the object mask, ffame number3 of Stefan
sequence. It is clear that the artifact effect is removedraiahe foreground object, compared
to the GMC SI.

B. Fusion using elastic curves

In this section our goal is to estimate the contour in Sl usiagkward and forward contours.
As described in [10], a contour can be analyzed using anielastric, leading up to a contour
in SI. Then, the estimated contour is used to generate a maSk that is useful in the fusion
of GMC Sl and MCTI SI.

The curveps is characterized as follows:

B:Dr+— R?

t— (z,y)

(5)

wheret € D = [0, 1] and (z,y) represent the coordinates of each point in the contour. ler t

purpose of studying the shape gf it is represented using the Square Root Velocity (SRV)
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function defined ag : D — R? [10]:

) = 20 ©

VB

where||.|| is the Euclidean norm iiR? and = %. The curvef can be obtained using as

follows: t
B(t) = / 2(9)llg(s)]|ds @)

We are given backward and forward curvélsand B}, treated as closed curves, and our goal
is to find an estimated curvé’ between these two curves. The algorithm used to estirffate
(Fig. 8) is described as follows (we refer the reader to [D0]the theory behind this estimation):

First, the SRV representation of the curggis computed as follows:

ity = 2 ®
Al

At the beginning of this algorithm, the parametérs,,, 6t, andk are respectively set tdr,

L1, and zero.

Step 1 - A circular shift of k£(dt) is applied on the forward curvé}(t) as follows:

Bi(t) = By(t — k(0t)) (9)

Then, the SRV representation Bj(t), denoted byj}(t), is computed using Eqg. 6.
Step 2 - Rotation: The optimal rotation betweegj andg; is given by R, as follows:

R, =UIVT (10)

where[U, S, V] = SVD(B), B = [}, q;(t)§(t)"dt and I = (§?). Here SVD stands
for the Singular Value Decomposition of a matrix.dét(B) < 0, the last column of

changes sign before multiplication in Eq. 10. Théjn,is multiplied by R, as follows:

q;(t) = R1.q(t) (11)

Following that,g;(t) is used to reconstruﬁ}(t) as follows:

Bi(t) = / 3 ()13 (5)]|ds 12)
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Computeg; (t) using 8i(t)
Initialization (k = 0, 6, = 2 and ot = 1)
|

NO k<n

YES
Seti(t) = Bi(t — k(6t)) and computeji(t)
ComputeR; usingg;(t) and gi(t)
Updateq(t) = Ry.G4(t)
Compute agair;é}(t) using the updated’(t)
Compute(t) by applying DP algorithm using;(t) and ;(t)
Re-sampledi (t) = 5}( (t)) and computejj;(t)

Compute) = cos~ [fD a5 (1)q; (t)dt]
k+1

9 < emin NO
YES

Omin = 07 ke=k,R=FR; and(jzf(t) = q}(t) T

Computeq(t) = a(3) = s [qi(tH@}(t)]

cos ( )

Then, estimates: (t) = [i (R.qi(s))||(R.d.(s))||ds

Fig. 8. Algorithm proposed in [10] for estimating (¢).

Step 3 - Reparameterization: This step consists of using and cj} to find a function
~(t) that is important in matching the two curves, by applying Bygamic Program-

ming (DP) algorithm. The obtained functiorit) is used to re-sampl,é}(t) as follows:
Bi(t) = B(v(1)) (13)

Consequentlyg;(t) is recomputed for the updateﬁ(t) (using Eq. 6).
Step 4 - Compute the length of the geodesi@s follows:

6 = cos™! [ /D q;;(t)q;(t)dt] (14)
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If 0 < 6,.:,, the parameters, ..., k., R andq;(t) are updated as follows:

.

Omin = 0
k.=k
R=R,
[ Gy () = 4;(t)
Then, k is set tok + 1. If k is smaller tham, go to Step 1. Otherwise, go tdtep 5

(15)

Step 5 - The geodesiax(7), 7 € [0,1] that connectsy;(t) and §;(t), is defined as
follows:

St [ B (L= 7))

+ sin (HminT)djc (t)} (16)

It is clear thata(0) = ¢;(t) and a(1) = ¢4(t). This equation allows predicting the

a(r) =

curves between the backward cursjeand the forward curve) at any timer € [0, 1],
Here, we aim to estimate the curve in the middle between tietwrrd and forward

curves. For this reason, we compuiél) to obtaing’(t) as follows:

(t) = af3) (17)

1
9

cos (i) [a(t) + G5(t)]

Then, ¢! (t) is projected [10] inC¢ to obtaing’(¢) (C¢ represents the closed curves).
Step 6 - The objective of this step is to obtain the curggt) using ¢'(¢) with the

rotation matrix?. The rotation matrix can be written as follow:
cos —sin
R [s®) ()
sin(p)  cos(p)
wherey is the angle of rotation. The rotation matrix. for the estimated curve can
cos(@p.) —sin(¢,
g o [0 —sin(6)
sin(ge)  cos(¢e)

February 10, 2014 DRAFT
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Fig. 9. The backward curvg;(t) (left, frame number), the forward curveﬂf( ) (right, frame numbeB) and the estimated
curve B:(t) (center,r = 1) between the backward and forward curves
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Fig. 10. The backward curvg(t) (left, frame numben of Stefan sequence) the forward curzﬁi'ja(t (right, frame number

5) and the three estimated curvg§(t) for r = i

3
£ and § (center curves).

where¢, = £. The curves’(t) can be estimated as follows

Bit) = / (R () ||(Redi (5)) | ds (18)

Fig. 9 shows an application example of this algorithm, wheeeshow the backward curve
Bi(t) (left curve) of frame numbet of Stefan sequence, the forward cur¥g(t) (right curve)
of frame numbei3 of this sequence, and the estimated cusyg) (center curve) between the
backward and forward curves using this algorithm. Moreokéay. 10 shows the backward curve
Bi(t

(t) (left) of frame numberl of Stefan sequence, the forward curﬂ?;(t (right) of frame
number5 of Stefan sequence and the estimated cupj¢s for r =

1,2 and2(center curves).
The obtained curves;(t) are then used to obtain the foreground objects magkby covering

all the pixels lying inside the curves. The makk is defined as the union of all masRg!

No
M, =M (19)
=1

Then, to generate SlI, the pixels inside the mdgk are selected from MCTI Sl and the
background pixels from GMC SI

MCTI Sl(z, if M.(2,y) =1

Si(z.y) = (z,y) (z,y) (20)
GMC Sl(z,y) otherwise

February 10, 2014
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Fig. 11. Foreground objects of frames numbeand9 of Foreman sequence, split inté x 16 blocks.

This fusion method is referred to as 'FusElastic’.

C. Fusion using local motion compensation

In this section, we propose to apply the MCTI technique [8hi® foreground objects in order
to estimate the local motion. Then, a new scheme for localanastimation is proposed.

1) Applying MCTI on the foreground objectk this approach, the MCTI technique is applied
to the backward foreground objek};, and the forward foreground objegt., in order to estimate
the foreground objectyy, in Sl. In this case, there are blocks entirely black, parthch, or
entirely white. Fig. 11 shows foreground objects for framemberl and9 of Foreman sequence,
split into 16 x 16 blocks. In contrast, the classical MCTI Sl is estimated bylydpg the MCTI
technique to the whole (Background and Foreground) referé&naenes. LetFyct be the union

of all foreground objects in SI, which are estimated using MCTI technique:

N,
Fuen = | Fier (21)

The maskMycT is generated from the estimated foreground objégisr as follows:

0 if Fycni(z,y) =0
MMCTl(xay) = (22)
1 otherwise

Here, we propose two approaches for the combination of gktdilocal motion estimations,
based on the generated makk,ct;. The first approach consists in fusing GMC Sl with the

estimated foreground objecfg,ct, using:

Sl(m,y) _ Fyei (35,3/) if Mucri (%Z/) =1 (23)

GMC Sl(z,y)  otherwise

February 10, 2014 DRAFT
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Fig. 12. Proposed method for foreground objects estimation.

This method is referred to as 'FOMCTI'.
The second approach makes the fusion of GMC Sl and MCTI SI ritakéhin the masks)

and is defined as follows:

’ GMC Sl(z,y)  otherwise

This method is referred to as 'FOMCTI2'.

2) Proposed local motion estimatiomn this section, we propose a new method for estimating
the foreground objects in SI, using the backward and forviarelground objects. The proposed
scheme is illustrated in Fig. 12. This technique is refet@das Foreground Object Motion
Compensation (FOMC).

« Low-Pass Filtering: The backward and foreground™:. foreground objects are low-pass
filtered in order to improve the motion vectors reliability.

« Backward Motion Estimation: A Block Matching Algorithm (BMA) is applied to estimate
the backward motion vector field. This estimation is donengisa block sizel6 x 16, a
search areaS|) of +32 pixels, and a step size a@fpixels. First, if all the pixels in the current
block b in F% and the co-located block if; are black (corresponding to non-object pixels),
the motion vector is set t0 for this block (see Fig. 11). In the case when the blédk
partly black, the BMA is used to find the corresponding bloiok,(BMA can find the most
similar shape).

In the BMA, the Weighted Mean Absolute Difference (WMAD) criten is used to compute
the similarity between the target bloékin the forward foreground object framg. and
the shifted block in the backward foreground object frafffe by the motion vecton =

(vg,vy) € S, as follows:

February 10, 2014 DRAFT
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WMAD (b,v) = 1%2(1+A\/\|vu> (25)

x> |Fp(p) = Fi(p+v)|

pEEB

A a penalty factor used to penalize the MAD by the length of traion vector||v| =
V/v2+ 2 (it is empirically set t00.05). An extended blockE's of (16 + 2,16 + 2¢) (e
being empirically set t@) is used in the WMAD, angb = (z, y) represents the coordinates
of each pixel in the extended blodks. The best backward motion vectdh, for the block

b is obtained by minimizing the WMAD as follows:
Vi, = argmin WMAD (b, v;). (26)
A4S

Motion Vector Splitting: Here, the obtained motion vectors are divided in such a way
to obtain bi-directional motion vectors for the blocks irethstimated foreground object
Fiomc- For each block in Fiq,c, the distances between the center of the blbekd the
center of each obtained motion vector are computed. Thesti@sotion vector to the block

b is selected. Then, the selected motion vector is associatélte center of the block,

and divided by symmetry to obtain the bidirectional moticeldi

Bi-directional Motion Compensation: Once the final bidirectional motion vectors are es-

timated, theF},,,c can be interpolated using bidirectional motion compensadis follows:

Fiowc(p) = 5(Fh(p+ ) + Fi(p — 1), @7)

wheres, and—s, are the bidirectional motion vectors, associated to th&ipogp = (z,y),

toward theF; and I respectively.

The Fioye is estimated for each foreground objec{: = 1,2,..., N,). Then, all F{,,, are

combined to formFromc using:

N,
Frome = | Frome (28)

i=1

Furthermore, the mask/romc is generated usingromc as follows:

0 |f Fpomc(l’, y) =0
Mromc(z,y) = (29)
1 otherwise
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Here, two approaches are proposed to combine the globalasmadl ihotion estimations using

MFeomc. The first one aims at combining GMC Sl af@ouc using:

F , if M, y) =1
Sl(z,y) = Fomc(z,y) Fomc(Z,y) (30)
GMC Sl(z,y)  otherwise
This method is referred to as 'BmEst'.
The second approach consists in combining GMC Sl and MCTI Sbolaswvs:

Sl(z.y) = MCTI Sl(z,y) if Meomc(z,y) =1 (31)
’ GMC Sl(z,vy) otherwise

This method is referred to as 'BmMCTI'.

D. Oracle fusion method

In this section, we describe the oracle fusion method whimfsists in fusing GMC S| and
MCTI Sl using the foreground objects masks of the original WAket M,z be the union of
all foreground objects masks in the original WZF

No
Muze = ) Miyze (32)

=1
M- is thei" foreground object mask in the WZF. The oracle fusion methadhines GMC
Sl and MCTI SI as follows:
Sl(z.y) = MCTI Sl(z,y)  if Mwze(z,y) =1 (33)
GMC Sl(z,y) otherwise
This method is of course impractical, but it allows us toraate the ideal upper bound limit
that can be achieved by combining GMC SI and MCTI Sl, using tredground objects masks

of the original WZF.

IV. EXPERIMENTAL RESULTS

Here, the segmentation masks for the reference frames suened to be known. The per-
formance of the proposed methods are assessed using egtansiulations under the same
test conditions as in DISCOVER [6], [7]. An example is illeged in Fig 13 for several test
sequences with the corresponding foreground objectsaisi@ine object45 frames), Foreman
(one object,150 frames), Bus (three object§) frames), and Coastguard (two object$0)
frames). The obtained results of the proposed methods anpared to the DISCOVER codec,
VISNET II, GMC technique, and to our previous fusion techugdSADDbin.
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Fig. 13. The foreground objects in the test sequences: Stefan (geet)pl-oreman (one object), Bus (three objects), and

Coastguard (two objects).

Fig. 14. Comparison between the original curve and the estimated caivg the elastic curve [10] for frame numb2rof

Stefan sequence.

1) Sl performance assessmefig. 14 shows the original curve and the estimated curvegusin
the elastic curve algorithm [10], for frame numbkof Stefan sequence, for a GOP size2of
It is clear that the difference between the two curves is kmal

We performed a first set of experiments in order to assess fteetieeness of the elastic
deformation tool in providing an accurate segmentation migthe WZFs. Since we use the
contours to classify the pixels as background or foregroancklevant metric is the confusion
matrix [34]. More precisely, we consider the ground-truldsssification and we compare it to the
classification obtained with the elastic curves. The clfasdion results (averaged over all the data
set images) are given in terms of “true positivesg.(the foreground pixels correctly classified
as foreground), “false negatives” (foreground pixels sifeesd as background), “false positives”
(background classified as foreground) and “true negatiésially, we compute the foreground
accuracy as the number of true foreground pixels over thebeurof actual foreground pixels,

and similarly for the background. These results are regdareTab. |, for all GOP sizes. We
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TABLE |
CONFUSION MATRIX (PER-IMAGE AVERAGE) FOR THE BACKGROUNDFOREGROUND CLASSIFICATION USED THE ELASTIC
DEFORMATION OF OBJECT CONTOURSFOR ALL GOPSIZES

’ ‘ Foreground (Predictedi Background (Predictedi Accuracy(%)

GOP =2
Foreground (Actual) 2718 122 93.52
Background (Actual) 200 22302 98.96
Overall Accuracy (%) 98.73
GOP =4
Foreground (Actual) 2708 147 92.45
Background (Actual) 228 22259 98.81
Overall Accuracy (%) 98.52
GOP =8
Foreground (Actual) 2690 179 90.66
Background (Actual) 249 22224 98.72
Overall Accuracy (%) 98.31
TABLE 1l

SI AVERAGE PSNRFOR A GOPSIZE EQUAL TO2, 4, AND 8 (QI =8).

S| Average PSNR [dB]
Method [ MCTI [ GMC | sADbin | FusElastic | BmEst | BmMCTI | FoMCTI | FoMCTI2 | Oracle fusion
GOP =2
Stefan 2517 | 27.70 | 28.16 2843 | 2872 | 2853 28.69 28.49 28.71
Foreman 29.38 | 30.70 | 30.82 3109 | 3097 | 3111 30.99 3113 31.15
Bus 2537 | 2310 | 27.30 2730 | 2692 | 27.56 27.30 27.48 27.90
Coastguard | 31.47 | 29.28 | 32.00 31.80 | 3191 | 31.91 32.03 31.89 32.07
GOP = 4
Stefan 23.49 | 2722 | 27.18 2772 | 2795 | 27.86 27.87 27.79 28.14
Foreman 27.64 | 2062 | 29.27 2979 | 2971 | 29.82 29.71 20.83 29.88
Bus 24.00 | 2253 | 26.27 2629 | 2602 | 2654 26.28 26.39 26.91
Coastguard | 29.91 | 28.19 | 30.76 3068 | 3077 | 30.73 30.88 30.72 30.88
GOP =8
Stefan 22.84 | 27.06 | 26.91 2735 | 2767 | 2755 27.55 27.46 27.80
Foreman 2629 | 2862 | 28.09 2874 | 2864 | 2875 28.65 28.77 28.83
Bus 2295 | 21.95 | 25.26 2533 | 2513 | 2555 25.36 25.45 25.94
Coastguard | 28.82 | 27.50 | 29.85 2977 | 2988 | 29.83 20.96 29.82 30.00

observe that the classification produced with the elastiorg@tion is quite accurate, and this

explains the good rate-distortion performance of our tephe and we can observe that the
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Fig. 15. Visual result of Sl estimated by SADbin (PSNR23.66 dB) and FusElastic (PSNR 26.61 dB), for frame number

27 of Stefan sequence, for a GOP size4ofQI = 8). The bottom images represents the visual differences of theserségra

accuracy is decreased with the GOP size.

Table Il shows the average PSNR of S| obtained with MCTI, GMCDS$#, FusElastic,
BmEst, BmMCTI, FOMCTI, FOMCTI2, and Oracle fusion for Stefan, &man, Bus, and Coast-
guard sequences, for GOP sizes2f4, and 8. The average PSNR of the KFs (& 8) is
up to 33.45 dB, 39.25 dB, 34.41 dB, and37.11 dB for Stefan, Foreman, Bus, and Coastguard
sequences respectively. It is clear that the proposedrfusiethods can improve the quality of
S| compared to MCTI and GMC for all test sequences and all G@&ssiThe proposed method
FusElastic can achieve a gain compared to the previousnfi&Dbin for Stefan and Foreman
sequences. For Bus sequence, the PSNR average of the twaepgsSADbIn and FusElastic
is almost the same. For Coastguard sequence, the SADbin b&vaa slight gain compared
to FusElastic.

Concerning BmEst and BmMCTI fusion methods, BmEst can achieveiraaganpared to
BmMCTI for Stefan and Coastguard sequences, while BmMCTI ouwiped BmEst for Fore-
man and Bus sequences. According to this comparison, we gathaathe estimation of the
foreground objects in MCTI Sl is better than the estimationhef foreground objects using our

FOMC method for Foreman and Bus sequences. However, FOMCttisr hean MCTI in the
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estimation of the foreground objects for Stefan and Coastigs@guences.

Concerning FOMCTI and FOMCTI2, we can see the same comparisbatagen BmEst and
BmMCTI. Therefore, when the MCTI technique is only applied oe tbreground objects, the
quality of the estimated foreground objects is better than duality of MCTI SlI, for Stefan
and Coastguard sequences. For Foreman and Bus sequencestjritagien of the foreground
objects in MCTI Sl is better than the quality of the generateédround objects by applying
MCTI only on the foreground objects.

It is important to note that the oracle fusion method represéhe fusion of GMC Sl and
MCTI SI using the foreground objects of the original WZF. HoeevBmEst and FOMCTI
methods represent the fusion of GMC Sl and the estimatedrowed objects. Thus, the oracle
fusion represents the upper bound limit that can be achieyethe proposed fusion methods
excluding BmEst and FOMCTI. For this reason, the average P3iti&tned by BmEsta8.72 dB)
is slightly better than that the average PSNR of the orad®fu@8.71 dB), for Stefan sequence,
with a GOP size ob.

Fig. 15 shows the visual results and the visual differendeSldor frame number oR7 of
Stefan sequence, for a GOP size4ofThe Sl obtained by SADbin fusion may contain block
artifacts (top-left -23.66 dB). The proposed fusion FusElastic can improve the quafitgldor
this frame (top-right 26.61 dB), with a gain 0f2.95 dB compared to SADbin.

The RD performance of the proposed methods GMC, SADbin, FesEl8mEst, BmMCTI,
FoMCTI, and FOMCTI2 is shown along with VISNET Il and the Oratfilsion, for Stefan, Bus,
Foreman, and Coastguard sequences in Table Ill, in compatigsithe DISCOVER codec, using
the Bjontegaard metric [35], for GOP sizes )4, and8.

All the fusion methods can achieve a gain compared to DISCO¥Bé&ec. The proposed
method FusElastic allows a gain compared to SADbin for &tefad Foreman sequences for a
GOP size o, and for all test sequences for a GOP siz&.0fhe gain is up tel.6 dB compared
to DISCOVER codec and.55 dB compared to SADbin, for a GOP size &fThe loss is up to
0.04 dB compared to SADbin for Bus sequence with a GOP siz2. of

The remaining fusion methods almost achieve the same gampared to DISCOVER. The
gain is up to4.73 dB compared to DISCOVER codec for Stefan sequence, for a G£2Ro$R.

Figs. 16, 17, and 18 show the RD performance curves of the DIFEFOWodec, SADbin,

FusElastic, and the Oracle fusion method, for Stefan, FareBus, and Coastguard sequences,
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Fig. 16. RD performance comparison among DISCOVER, SADIin, RsilE, and Oracle fusion method for Stefan, Foreman,

Bus, and Coastguard sequences, for a GOP size of

for GOP sizes of, 4, and8 respectively. The proposed fusion methods SADbin and FRssiEl
always achieve a gain compared to DISCOVER codec for all tegences. The proposed
fusion FusElastic can achieve a gain uptd3 dB, 0.45 dB, and0.55 dB compared to SADbin
fusion for a GOP size o2, 4, and8 respectively, for Stefan sequence. For Foreman sequence,
FusElastic fusion allows a gain up 14 dB, 0.43 dB, and0.64 dB respectively for a GOP
size of2, 4, and8. For Bus and Coastguard sequences, the two methods SADbinusidastic
almost achieve the same RD performance.

Finally, in order to validate our technique in a more reaigcenario, we evaluated the
effect of using non-ideal segmentation maps. More pregised implemented a simple video
segmentation algorithm, based on mathematical morphgloggessing of the difference between
the current image and the background (the latter obtainedylblgal motion compensation
on previous frames). This algorithm gives acceptable segation masks, even though some

inaccuracy is visible from time to time. However, using themputed segmentation maps
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Fig. 17. RD performance comparison among DISCOVER, SADIin, Rsii, and Oracle fusion method for Stefan, Foreman,

Bus, and Coastguard sequences, for a GOP size of

instead of the ideal ones in our system does not degrade tab mme global rate-distortion
performance: we observed a rate increase 2k (GOP= 2) to 0.8% (GOP= 8). This preliminary
experiment shows that the proposed method has the potefhtigdlod coding gains even when
the segmentation is not perfect.

To measure the encoding complexity of the proposed methe@duse a machine with a
dual core Pentium D processor, att GHz, with 2048 MB of RAM. We take the average of
the obtained encoding times of the Coastguard and Foremaresees. The encoding times of
DISCOVER, the proposed method, H.264/AVC Intra, and H.2648Ab motion are respectively
equal t028.4, 36.9, 49.9, and50.4 seconds. These results prove that the increase in compiexit
our proposed technique, w.r.t. DISCOVER encoder, remaindenate, and that the complexity
of the new encoder is still much lower than that of H.264/Avrd and H.264/AVC No motion.
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Fig. 18. RD performance comparison among DISCOVER, SADIin, RsilE, and Oracle fusion method for Stefan, Foreman,

Bus, and Coastguard sequences, for a GOP si#& of

V. CONCLUSION

In this paper, new approaches have been proposed to conitgngidbal and local motion
estimations, based on the foreground objects. In the first elastic curves are used to estimate
the contour of the foreground objects. Based on the estintatebur, the fusion of GMC Sl and
MCTI Sl is performed. Second, the foreground objects areneg&id using MCTI and FOMC
techniques. In this case, for the local motion, MCTI S| andek&émated foreground objects are
available. Thus, two approaches for the fusion are propoBeel first one aims at fusing GMC
Sl with the estimated foreground objects. The second onébceas GMC Sl and MCTI SlI.

The proposed fusion methods allow consistent performaagesgompared to DISCOVER
codec and to our SADbin fusion method. The gain is ug.@ dB compared to DISCOVER
codec, and up t0.68 dB compared to SADbin, for a GOP size equal8talt is important to
note that compared to SADbin, no complexity is added to tleoeéer, in all the proposed fusion

techniques, since contours and masks generation, as whklleggound object estimations, are
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all performed at the receiver side. Besides, since the guaiiSl is enhanced by the new fusion
techniques, a smaller number of decoder runs is generailyined for the channel decoder to
converge ice. less requests of parity bits through the feedback channel).

Future work will be focusing on further improvement of theifun in order to achieve a better
RD performance. We will investigate the use of the estimatadaurs by elastic curves in the
estimation of the foreground objects. In addition, we wiply an efficient algorithm to segment

the foreground objects from the decoded reference frames.
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TABLE 1l

31

RATE-DISTORTION PERFORMANCE GAIN FOFStefan Foreman Bus AND CoastguardSEQUENCES TOWARDSDISCOVER

CODEGC, USING BJONTEGAARD METRIG, FOR A GOPSIZE OF2, 4, AND 8.

Method VISNET Il | GMC | saDbin | FusElastic | BmEst | BmMCTI | FoMCTI | FoMCTI2 | Oradle fusion
GOP = 2
Stefan
Ar (%) 4.02 1821 | -1797 | -19.72 | 2006 | -19.98 -20.05 -19.79 -20.38
Apsnr [dB] -0.26 125 | 1.23 1.36 1.39 1.38 1.39 1.37 1.41
Foreman
AR (%) -2.87 842 | -7.58 -9.65 -8.51 -9.67 -8.37 -9.70 -10.07
Apsnr [dB] 0.13 052 | 045 0.59 0.52 059 0.49 0.59 0.61
Bus
Ar (%) 5.96 636 | -12.94 | -1251 | -1025| -13.34 -10.75 -11.25 -14.51
Apsn [dB] -0.35 032 | 079 0.75 0.61 0.80 0.64 0.68 0.87
Coastguard
AR (%) 2.01 1032 | -4.60 -4.32 -4.34 -4.74 -4.40 -4.33 5.36
Apsnr [dB] -0.10 048 | 023 0.22 0.22 0.24 0.22 0.21 0.27
GOP = 4
Stefan
AR (%) -4.08 -44.05| -4066 | -4518 | -45.73 | -4574 | -45.80 45.71 -46.42
Apsnr [dB] 0.17 326 | 293 3.38 3.42 3.44 3.44 345 351
Foreman
AR (%) 1168 | -2253| -1554 | 21072 | 2001 | -2181 | -20.34 -21.93 -22.41
Apsnr [dB] 0.52 137 | 0.90 133 1.25 1.32 1.19 133 1.36
Bus
AR (%) 1.95 182 | -2595 | 25097 | 2410 | -27.45 -22.19 -23.67 -28.60
Apsn [dB] -0.17 011 | 1.60 157 141 1.67 1.34 1.40 178
Coastguard
Ar (%) -0.27 843 | -1491 | -1648 | -1637 | -1659 -16.24 -15.70 -17.94
Apsnr [0B] -0.00 035 | 061 0.68 0.68 0.69 0.67 0.65 0.75
GOP =8
Stefan
Ar (%) -8.85 5520 | -51.56 | -55.95 | 5712 | -57.04 -57.10 -56.94 -57.84
Apsnr [dB] 0.43 451 | 4.05 4.60 472 4.72 473 4.72 4.83
Foreman
AR (%) 1884 | -31.81| -2229 | -3124 | 3000 | -31.01 | -20.12 -30.78 -31.80
Apsn [dB] 0.81 202 | 129 1.93 1.84 1.92 176 1.91 1.97
Bus
Ar (%) -4.15 -10.33| -3207 | -3282 | -31.58 | -3416 -27.87 -28.53 -35.50
Apsnr [0B] 0.06 058 | 2.04 2.07 1.97 219 172 1.74 231
Coastguard
AR (%) -8.59 557 | 2632 | 2950 | -3037 | 2973 | -20.48 -28.19 -31.32
Apsng [dB] 0.33 015 | 1.10 1.24 127 1.26 1.23 1.18 1.35
February 10, 2014 DRAFT



