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A generalized Newton method for contact problems with friction

Cet article pease en revue lea m6thodes num6riques utilia6es depuis quelques ann6es dans le programme TACT pour r6soudre dee probl~mes de contact avec frottement non-associ6 de Coulomb. Ces m6thodes comprennent : une m6thode de p6nalit6 pour imposer lea conditions de contact et d'adh6rence, une m6thode de projection implicite pour int6grer la loi de glissement, la m6thode des 616ments finis pour effectuer la diecr6tieation epatiale et une'm6thode de Newton g6n6ralia!e pour r6aoudre lee nonlin!arit!a dues au contact et au frottement.

Des progr~s r6cente am6liorant la robuatesee de 1' algorithms global de contact avec frottement sont diacut6a. En particulier, une condition n6cessaire et suffieante sur le coefficient de frottement garantissant 1' unicit6 de la solution du contact plat est 6nonc!e et un facteur d'amortiaaement garantiaaant la convergence de l'algorithme vera cette solution est introduit dans le cas bidimensionnel. le probl~me du poin~on plat sert a illustrer ala foie la pr!cision et l'efficacit6 de la m6thode.

I. IDITIMJII4 AN> CliNT ACT MECHANICS BACKGROIN)

The type of problems adressed in this article falls in the class of quasi-static contact problems* between deformable solids with interface friction. The continuum and contact formulations of such problems are summarized below as an introduction.

I.1 Solid •echanics su..ary , Solid mechanics problems are conveniently formulated in the materi~l lagrangean description which can be summarized as follows [START_REF] Gurtin | An Introduction to Continuu[END_REF]. The position after defor~ation, of a material particle identified by its location X in an undeformed configuration, is given by the placement x = x(X) • The displacement vector of the particle X is defined by u(X) = x(X) -X • The deformation of an infinitesimal fiber is captured by the (unsymmetric) deformation gradient defined through dx = fdX • The corresponding transformations for an oriented surface element and s volume element are da = Jf-T dA and dv = JdV , where J = detf • Excluding body forces for clarity, the "contact" force dQ(X) exercised on a particle X by its neighbors, is regarded as the resultant of a nominal stress vector** p(X) acting on an oriented material surface i.e. dQ = p(X)dA • The state of stress at a particle is recorded by the (unsymmetric) nominal stress tensor** P(X) defined by the fundamental formula p = P.N where N(X) refers to the unit normal to the reference surface dA • Conservation of mass and moment equilibrium are built in the material description and the only principle of mechanics which remains to be satisfied is the equation of static equilibrium Div P = 0 , in V , where Div P = tr(aP/aX) denotes the material divergence of P • This field equation must be completed by proper boundary conditions (BC) for the problem to be well-posed e.g. u(X) = u and p(X) = p on complementary subsets of the undeformed configuration boundary A • A weak form of the equation of equilibrium, more suitable for diacretiaation, is the principle of virtual .ark f tr(GTP) dV = f wT p dA

V A " w (1) 
where w = w(X) is an arbitrary test function, best interpreted as s virtual displacement, with material gradient G = aw/aX and tr(GTP) = G•P = Gil Pil • The same BC as above must be prescribed, except for the force BC p(X) = p , which has been inserted in (1) since w(X)=O wherever u(X) = u . Principle [START_REF] Gurtin | An Introduction to Continuu[END_REF] govern the equilibrium of all deformable bodies, regardless of their constitutive materials. A constitutive law is needed to complete the formulation. for instance, an elastic-plastic law based on Drucker-Prager criterion [START_REF] Green | [END_REF] represents an instructive model to keep in mind for understanding Coulomb's friction formulation to come.

I.2 Contact ~hanics su..ary A dry static contact occurs when two bodies, gradually pressed together, coalesce over s certain portion of their boundaries. By hypothesis, the two bodies can come in contact, deform each other and then se~arate, but they cannot penetrate each other across the interface. Along the contact aurfsce, they may stick, slip or rub against each other. The formulation of a Accordingly, normal contact is characterized by two complementary unilateral constraints the kinematic condition of "impenetrability" and the static condition of "intensility" dn > 0 Pn < 0 (6) Thus, either x 1 and X 2 (X 1 ) are separated (dn>O , Pn=O) or they are in contact (dn=O , Pn<O) the later alternative showing that the relationship Pn(d) = Pn<dn) is a multivalued function.

Using the formalism of convex analysis, this law can be compacted in a ~ingle statement [B,9]

where yft+ is the indicator function of the positive half-line and a¥ its generalized gradient* [START_REF] Clarke | Opti•ization and nona.ooth analysis[END_REF], Inclusion [START_REF] Curnier | TACT Methodology Summary[END_REF] shows that Pn derives from a non-differentiable potential. If the intensility condition (6b) is general, the impenetrability condition (6a) is restricted to small curvatures and fairly straight approach trajectories. b, Isotropic rigid-adherence perfect-friction law. Adherence is associated t.o sticking resia-• tance whereas friction is reserved for sliding resistance, "Rigid" adherence neglects reversible microslips (due to elastic deformations of asperities) whereas "perfect" friction excludes wearing-in mechanisms, More specifically, the tangential friction law considered here is based on Coulomb's criterion to delimit adherence from friction and a non-associated slip rule for governing the slip velocity [11 1 [START_REF][END_REF]13,14,15,16]

a > 0 a Y = 0 (B)
where ~ is the (constant) coefficient of friction, lptl = lptl in 20 and = ~~ + Pt~, in 30 and a is a positive multiplier introduced to express the colinearity of the slip velocity with the friction force. Thus, either x 1 and X 2 (x 

In this non-smooth analysis formalism, the lack of normality (i.e. the absence of a potential) is reflected by the dependence of the convex set on the normal stress. Provided the identification of the slave particle X~(X 1 ) which first came in contact with x 1 is correct, the initial condition for the slip rule is merely dto = 0 • * In essence, the generalized gradient is the convex hull of all the "adjacent" gradients : af(x) =co {lim Vf(xi), Xi+ x} e.g. af(x) = [f~(x), f+(x)] if x and fare scalar. The generalized ,9radient reduces to the classical gradient wherever f(~) is smooth and to the aubgradient LB] whenever f(x) is convex.

II. CONTACT AND fRICTION LAW TREATMENT

The multivalued character of the rigid laws (6/7-8/9) and the rate nature of the slip rule (8/9) require specific treatments.

II.1 Adherent contact penalization ~thod

Perhaps the simplest method to model the "rigid" aspects of the contact and adherence laws (6)[START_REF] Curnier | TACT Methodology Summary[END_REF][START_REF] Moreau | New Variational Techniques in Mathematical Physics, Capriz & Stampacchia (coord[END_REF][START_REF] Panagiotopoulos | [END_REF] is to allow for a slight penetration proportional to the ca.pression in the normal direction and a microslip proportional to the shear in the tangential direction. To this end, the tangential contact distance dt is partitioned into the sum of a (reversible) adhesive part d~ , proportional to the shear Pt , and an (irreversible) slip part dr , governed by the slip rule [START_REF] Panagiotopoulos | [END_REF] [14]. The adherent contact law resulting from this treatment (after elimination of d~ = dt-dr) is

( 1 0)
where 1/£ is a penalty coefficient, taken large in co~parison to the stiffnesses of the contacting solids, to keep the penetration and microslip infinitesimal, The penalization metho~epla cea the exact inclusions [START_REF] Curnier | TACT Methodology Summary[END_REF] and [START_REF] Panagiotopoulos | [END_REF] by approximate (but continuous) functions without introducing any additional variable. An exact treatment of the rigid laws (6-9) requires the introduction of one extra variable (namely a dual Lagrange multiplier) in addition to the displacement and one extra equation (typically the complementarity condition) in addition to the equilibrium one, This technique has been widely used for the normal contact law [5,6] but more seldomly applied to the tangential friction law.

II.2. friction projection ~thud

Explicit forms of the friction law (8/9) depend on the algorithm used to integrate the slip rule in time. The predictor-corrector algorithm described here is an adaptation of the radial return algorithm used in plasticity (17], also called the catching-up algorithm [START_REF] Moreau | New Variational Techniques in Mathematical Physics, Capriz & Stampacchia (coord[END_REF] or implicit projection algorithm.

In short, given a new contact distance dt and an old slip d~0 , the new final shear stress Pt ia obtained by projecting a trial adhesive stress Pta = To complete this description, it is emphasized that the slip history d: is updated at convergence only, to avoid premature adherence during iterations.

III. SPATIAL DISCRETISATIDN BY THE FINITE ELEMENT METHOD

The rEM replaces the exact problem continuous in space by an approximate discrete problem, more amenable to computations.

III.1 Solid discretisation su.aary

Within the solids, the basic idea is to approximate the virtual and real displacement nodes. Substitution of these expansions in (1) results in a ayst~ of nonlinear equations [START_REF] Oden | finite Eleaents of nonlinear Continua[END_REF] K

(U) = Q ( 12)
where U denotes the displacement vector, K(U) the internal force vector and Q the external force vector. Of course, BC are also discretized. Expressions for K(U) and Q in case of axiaymmetry (from which the 20 and 30 cases are easily recovered) can be found in [START_REF] Rakotomanana | [END_REF].

Contact discretisation

The spatial discretiaation of the contact term ( 4) is leas classical. Consistent with the asymmetric definition of the continuous contact surface A 1 , the discrete contact surface is defined as the set of nodes I located on the mesh boundary of body-1. The definition of a discrete contact depends then on the meshes and the kinematics of the two bodies. If a one-toone correspondence between the boundary nodes of the two bodies can be established and maintained throughout the contact duration (adherent or small slip contact), then a node-on-node geometry is quite adequate. Otherwise a node-on-facet contact must be used to account for initial mismatching as well as subsequent sliding (moderate slip contact).

With the node-on-node geometry, the slave node J(I) on mesh-2 which is the closest to I can be assigned in advance and the discrete contact distance is defined as the nodal distance (J(I) known) (13) This definition supposes that nodes I and J come in contact exactly one on top of the other which is exceptionally the case. Slight deviations from this situation may be conveniently accounted for by initializing the slip history to d~ = o! (instead of 0) at impact time. In this case, the identification of the slave particle x 21 (i.e. the solution of the contact equation D 1 = 0) is the crucial step for s correct evaluation of the contact distance. Since this operation depends on the interpolation functions used, it is not described here. Particular treatments may be found i~ [START_REF] Curnier | Appendix C of Contact-Impact Problems[END_REF][START_REF] Curnier | TACT Methodology Summary[END_REF][START_REF] Sima | [END_REF].

Consistent with an isoparametric approximation of the geometry and displacement of body-1, an approximate contact distance is then defined in both cases as dh(X 1 ) = ~11 (x 1 ) D 1 • Because this approximate contact distance is continuous and piecewise differentiable, the contact stress may be assumed discontinuous (e.g. piecewise constant) over each master facet and the integral in (4) can be approximated by a discrete sum over the master contact nodes* [5,21,[START_REF] Johansson | -583[END_REF] (

In ( 15), F 1 (o 1 ) = p(D 1 ) A 1 where A 1 can be interpreted ass tributary ares of master node I , are contact forces concentrated at the master nodes and o 1 is the variation of DI For the node-on-node contact, o 1 = w 2 J -w 11 produces two equal and opposite nodal forces at nodes I and J (a discrete version of the principle of action and reaction). For the nodeon-facet arrangement, the contact distance variation ~I is more complicated to derive (due to the dependence of x 2 J on x 1 I) and the reaction distribution on the facet nodes also [START_REF] Curnier | Appendix C of Contact-Impact Problems[END_REF][START_REF] Sima | [END_REF]. The nodal contact distance and force are resolved into normal and tangential components as in (5). For the node-on-node contact, the contact normal.ia assumed to be known s priori and to remain fixed throughout the process i.e. n = n 1 [x 1 (X 1 )] = n 1 (x 1 I) • For the node-on-facet contact, the facet normal n = -t1 x t2 =n 2 [x 2 (x 2 I)] is used for this purpose. The continuous frictional-contact law [START_REF] Clarke | Opti•ization and nona.ooth analysis[END_REF][START_REF] Seguchi | Proc. Conf. on Camp. Meth. in Nonl. Mech[END_REF] is directly transformed into a discrete law upon replacing d by D and p by F • From a progr.-.dng standpoint, it is convenient to look at discrete contacts formed by a •aster node I and a slave node or s slave facet J as a node-on-node or s node-on-facet element respectively (in spite of their unconventional node pattern). In this perspective, if F(U) denotes the global vector obtained by assembling the contact element forces +FI , the global equilibriua of two discrete bodies in frictional contact can be uu.~arized by

G(U) -K(U) + F(U) = Q equilibrium (a) F(U) assembly (b) n n D ) 0 0 < 0 (16) IOt-0~01 + 1.1-Dn < 0 IDt-Drol + 11-Dn > 0 s F(D] = 0 1 (D -D 8 ) 1 (0 n -1.1-Dn Dt-Dto ) E to E n 1Dt-D@0 1 (c) gap adherent contact slip contact
* The same result can be obtained by assuming a continuous piecewise differentiable contact stress distribution and using special quadrature rules to lump the contact forces at the nodes such as the trapezoidal rule for piecewise linears and Simpson 'a rule for piecewi se quadratics.

IV. A GENERALIZED NEWTON METHOD FOR NON-SIIIOTH OPERATORS

Based on successive linearizations, the Newton method replaces the discrete nonlinear problem ( 16) by an iterative sequence of linear problems, directly solvable by standard methods of linear algebra. formally, the algorithm may be summarized as follows [START_REF] Ortega | Iterative Solutions of Nonlinear Equations in Several Variables[END_REF] (a)

(b) ( 17) (c)
where AU is the displacement increment, k the iteration index and E(U) = dK/dU is called the tangent stiffness aatrix and J(U) = df/dU the t.ngent contact •atrix. Stricly speaking, these two jacobian matrices are not defined everywhere since the internal and contact force vectors K and f are only piecewise differentiable, At singularities, they should be replaced by elements of the generalized jacobian defined in the next section, where Newton's method is also properly generalized (thus the title of this article), However, the probability for an iterate uk to fall right at a singularity is close to null in finite arithmetic and if by exception this situation arises, then anyone of the "adjacent" jacobians turns out to be adequate, so that ( 17) is acceptable for all practical purposes.

The expression of the tangent stiffness matrix in case of sxisymmetry (from which the 20 and 30 expressions are easily derived) can be found in [START_REF] Rakotomanana | [END_REF]. for a plastic law, it involves a tangent elasto-plaatic tensor which can be found in [17]. Just like the contact force r in (16b), the global jacobian J can be obtained by assembly of local contact jacobians Jl

(= t [_) 11> (18) 
The element matrix pattern indicated in parentheses in [START_REF] Oden | finite Eleaents of nonlinear Continua[END_REF] corresponds to the node-on-node configuration. for this node-on-node esse with fixed normal, the discrete contact jacobian J = df/dD can be derived from (16c) to be J = .!QTI

1 .!rn E 0 1 £ E 0 (20) 
In local coordinates

~OID 1 ~0~ 1 tp 8 2
-psc -j 30 : (t1,t2,n)

0 0 0 £ 0 1 0 - pc2 E -p~c -~s 0 0 0 0 0 1 0 ( 21 
)
where 1 = 6ij is the-identity matrix, t = (Dt-0~0 )/IDt-0~0 1 is the trial slip increment unit vector, p = -~n/IDt-0~0 1 E (0,1] is the projection scaling factor, a denotes the diadic product tan = tnT = tinj and s = sinO = t,t 1 and c = cosO = t. 

¥.2. Algoritha convergence

A rigorous and straightforward extension of Newton's method (17) to solve Lipschitzian equations such ss ( 16) consists in replacing (17b) by

k Q -G(U ) , (25) 
where ac(Uk) is the generalized jacobian of G at Uk . Newton's method is well known for its fast rate of local convergence but also for its small radius of convergence. for instance, the method may cycle between forward and backward slip (when the solution is stick) in an as simple problem as the 20 truss in fig. 1 a [START_REF] Alert | Document[END_REF]. Ensuring its global convergence usually requires either drastic conditions (G of class c 1 , monotony, convexity) or special damping techniques difficult to implement [START_REF] Ortega | Iterative Solutions of Nonlinear Equations in Several Variables[END_REF]. However, in the present context a simple ~ing method and an even simpler control procedure can be successfully applied.

a. 20 systematic damping method. In the 20 case where the contact operator is conewise linear, it is possible to adapt a damping technique, originally developed by [32] and [33] for piecewise linear operators, which guarantees global convergence (provided the s~lution is unique).

In essence, when progressing from Uk towards uk+ 1 in the direction Hk-[Q-G(Uk)], this method consists in stopping on the first encountered hyperplane delimiting the cone containing Uk • The next iteration is carried out using the jacobian matrix associated with the next cone on the other side of the hyperplane. More specifically, if the cone C containing uk is indexed with the iteration counter k to simplify notations, then Newton's update step (17c) is amended into

ul<+1 = uk + a 1\U E ck n ck+1 ( 26 
)
where a is a damping factor determined by solving the inclusion in (26} as follows. Because the global contact operator F(U) is the assembly of N local contact contributions f[O] , each global cone Ck is the cartesian product of N local cones (chosen among 4N combinations) the operator r is -conewiee linear in 2D (linear on 4N convex cones with apex -Do where Do = X 2 -X 1 -or0 and N denotes the number of master contact nodes), -raywiae linear in 3D (linear on 2N convex cones and on an infinite number (•) of half-lines with origin -Do). Due to these additional properties, the following specialization of theorem 1 to flat contacts (i.e. for which the normal n is constant along the contact surface A 1 ) is proved in [START_REF] Alert | Document[END_REF].

'

Theorem 2 A necessary and sufficient condition for the discrete frictio~al flat contact problem E.U + f(U) = Q to have a unique solution for any Q , is that the extre.e matrices of ita generalized jacobian evaluated at the origin be non singular : [START_REF] Johansson | -583[END_REF] In ( 22), ()F[-Do] represents the extreme matrices obtainable by assembly of the contact element jacobian matrices [START_REF] Rakotomanana | [END_REF], in all possible combinations. They are in finite number (4N) in 2D and an infinity (2N-) in 3D. Necessity of ( 22) is obvious from linear algebra but sufficiency is not trivial, as indicated by several counter examples [START_REF] Alert | Document[END_REF]. When applied to a specific problem, conditions [START_REF] Johansson | -583[END_REF] provides the sharpest possible bound on Coulomb's frict.ion coefficient for a unique solution as illustrated by the following two elementary examples. 
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where a is a damping factor determined by solving the inclusion in (26} as follows. Because the global contact operator F(U) is the assembly of N local contact contributions f[O] , each global cone Ck is the cartesian product of N local cones (chosen among 4N combinations)

Consequently the global damping factor a each discrete contact

a = min a 1 1=1 ,N
is the minimum of N local fact.ors

I a relative to 1 } 0(0,1] } (27)
Convergence occurs in a finite number ( (4 N) of iterat.ions. In essence, the proof [START_REF] Alert | Document[END_REF] relies on the fact that, while Uk wanders along a broken line in displacement apace, C(Uk)

progresses, in force space, along the straight segment [C(UP),Q] which lrosses the convex image of each ck at most once. From a finite element standpoint, the procedure consists in changing the status of only one contact elea~ent per iteration, which is a common strategy in optimization [15). An advantage of the present technique is that it can be turned on only when cycling is detected. The technique can be applied to the 30 problem provided Coulomb's cone is replaced by a prism with a finite number of facets as in [15). b. Slip reversal control technique. Another technique which has proved very reliable in practice (to the extent that it is prefered to the above damping technique even in 20) consist~n enforcing adherent contact wherever and whenever a slip reversal is detected between two successive iterations. More specifically ( 16) and ( 19) are modified by enforcing

F[D] : 1 (D-D 5 t ) E 0 J = 1, e i f
and

+ 1.1 Dk ' 0 n -0~0 ) • (0~ -0~0 ) < 0 (28) 
It ia in order to recall that the slip history 0~ is updated at convergence only (to prevent erroneous adherence during iterations) and to add that the adherent contact status ( 28) is enforced at the first iteration of each new load increment if ~< 0 , (to detect unloading as early as possible). Unlike [START_REF] Demkowicz | [END_REF], procedure (28) may change the status of several contact elements per iteration, presumably progressing faster towards the solution. However convergence has not been established for this ad hoc procedure. It is applicable to 20 and 30 problems and easier to implement than [START_REF] Demkowicz | [END_REF].

VI. THE FLAT PUNCH BENCHMARK PROBLEM

The indentation of a linear elastic half space by a rigid cylindrical flat punch with Coulomb's friction slang the interface represents a good problem to test a tangential friction algorithm. Indeed, if the normal contact problem poses little difficulty (edge singularity excepted) since the contact area remains constant, the tangential frict.ion problem is delicate because the partition of the contact area into stick and slip bands varies rapidly with Coulomb's coefficient of friction and Poisson's contraction ratio and changes drastically upon unloading. Moreover, the flat punch problem is one of the rare contact. problems involving friction for which a (semi-f analytical solution is known [34] and several numerical solution~re available [35,[START_REF] Klarbring | Proc. ASCE/ASME Conf[END_REF]. A rigid axisymmetric flat punch of unit radius is pressed against a linearly elastic half space aa shown in Fig. 2. The mechanical and material data are specified besides.

Punch a. Loading case. The closed form solution obtained in [34) is a complicated combination of slip and stick solutions. Resulting from a displacement (rather than a velocity) formulation, it is exclusively limited to monotonic loadings (p ) 0) • In its purely analytical form, it assumes that the normal pressure is unaffected by the tangential shear which happens to be exact for an incompressible material only. By using an iterative numerical scheme, which in essence solves the pressure and the shear problems in alternance, (34] succeeds to compute the exact solution for compressible materials as well.

The main characteristic of the solution is the division of the contact area int.o an inner stick disk and an outer slip annulus. Psradoxaly, slip is directed inward. The radius c of the circle delimiting the stick part from the slip part depends exclusively on Coulomb's coefficient of friction at the interface and on Poisson's contraction rat~o of the elastic half apace : c = c(v,~) • The values v = 0. and ~ = .4 are selected for lhe numerical test.becauae they maximize the coupling between pressure and shear (which is essential in Coulomb 'a friction) as well as the sensitivity of c on ~ • The moat representative aspect of the solution is the radial distribution of the tangential shear normalized by the product of the normal pressure by the coefficient of friction as shown in Fig. 4. The outer plateau corresponds to the slip annulus.

The numerical solution is obtained with the program TACT developed in the authors laboratory [START_REF] Curnier | TACT Methodology Summary[END_REF]. The shear distribution is obtained from the contact nodal forces and is plotted over the analytical curve. The good agreement provides a first indication of the correct functioning of the friction algorithm. (Note that the solution does not depend on the number of load increments i.e. it is path independent as already discussed). b. Unloading case. Numerical solutions to the unloading problem have been obtained by [35,[START_REF] Klarbring | Proc. ASCE/ASME Conf[END_REF]. The results show that a second stick annulus develops from the punch edge as soon as unloading is initiated, pushing the inward-slip annulus towards the center. For even lighter loads, a second outward-slip annulus develops from the punch edge pushing both the first slip and the second stick annuli towards the center. This complex (stick I inward-slip I stick I outwardslip) pattern represents a severe test for friction algorithms. In particular, convergence to the exact solution may require several load decrements in order to track this path dependent process with accuracy.

The results presented here were obtained after unloading the punch down to one fourth of the original load (PI4=nl2). The shear distribution obtained after 1, 3 and 6 load decrements, using slip reversal control, are plotted in Fig. 5 to show the convergence to the presumed solution. The solution is in qualitative agreement with the ones obtained in [35,[START_REF] Klarbring | Proc. ASCE/ASME Conf[END_REF] with different data.
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3 111~~- ---6 , .. ,R. Here, the robustness and efficiency of the generalized newton method without damping nor control, with systematic damping and with slip reversal control are compared on the basis of the 20 flat punch loading and unloading problem just described. The numbers of iterations (i) and seconds (s) of CPU time (on a DEC-VAX-780) are retained sa comparative elements. The results are listed in Table I. As anticipated, the loading problem is too easy to assess the robustness of a friction algorithm. All three variants converge. The damping technique spends superfluous iterations on this path independent problem. The unloading problem is much more selective. The plain Newton method di verges (except for a very small initial decrement) which disqualifies i t to solve frictional contact problems. Both the damping and control techniques make it converge. Their rate of convergence is comparable. Another measure which gives an idea of the overall efficiency of the algorithm is the ratio of the CPU time taken to solve the contact problem with friction over that taken for the linear elasticity problem with a fixed interface. This ratio comes out roughly proportional to the number of iteration as p = 3i/2 , showing that conta~t elements consume as much as 50 ~ of th~ime used by the elastic elements.

VII. CONCLUSION Aft) RECIHEN>ATIONS

In this article, a combination of numerical methods has been proposed to solve contact problems involving friction. The resulting frictional contact algorithm has proved both robust and efficient for 20 and 30 small slip problems. Several developments would be welcome however. They include A symmetric definition of the contact distance, applicable to large slip problems and better suited for finite element discretisation. More sophisticated contact and friction laws, accounting for adhesion,!wear, rate .

dependence, anisotropy ••• -Uniqueness condition(s) for the continuous contact problem and convergence proof{s) for the 30 algorithm. Extension of the current contact methodology to impact problems.

  functions occuring in[START_REF] Gurtin | An Introduction to Continuu[END_REF] by means of finite expansions* in the form uh{X) = ~ (X)U (M = 1, NB.NODES) where uM are discrete displacement values at the nodes M ~and ~M(X) are piecewise polynomial basis functions, equal to unity at node M and to zero at all the other

  With the node-on-facet geometry, the slave particle location X 2 : X 2 (X 1 ) on the slave facet can be expressed in terms of the facet corn. er coordinates x 2 J (J=1 ,nb. corners) by means of the interpolation functions used for body-2 : x 2 ~= ~2J(X 2 I)X 2 J. The discrete contact distance becomes (J(I) known, x 21 unknown) (1.11) * Summation on repeated indexes is assumed throughout.
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 21 The slip contact jacobian is derived as follows : df 1 = £ n 11 dO-~ t a dO-~ On dO] where dO= n and ~ = 1Dt-D~0 1 [1 -nan -tat] b. 30 truss example (30]. Turn now to the 30 truss shown in fig. 1b. The stiffness matrix may be partitioned into where K is a 2x2 tangential stiffness submatrix, kn the normal stiffness and k a coupling vector of ft2 • The contact generalized jacobian extremes evaluated at Do = 0 are now the three matrices listed in (21), the last being variable. The uniqueness condition det(E+Jsl > 0 , Vs,c, implies the restriction K ll < Ainin/lkl (= cos+/I:Zsin+ if + = w in fig. 1b) Ani in denotes the smallest eigenvalue of K • This 30 condition degenerates well in the 20 esse.
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 1 and 3D truss examples a. 2D truss example[15]. Consider the 2D truss depicted in fig.1s, with its only free node in grazing contact with a rigid plane. Let E = [kt ktn] ktn kn denote the stiffness matrix of the truss condensed at the free node.The generalized jacobian extremes of the frictional contact operator r evaluated at 2 l s ( ) Do = X -X -Dt = 0 are the four matrices listed in 20 and the generalized jacobian is their 0 00 convex hull ()f(O) = {(20)} and ()f(O) =co ()iF(O) • Enforcement of the conditions det(E + Ji) > 0 produces for i:3 (forward slip) the condition (23)A direct analysis of the truss, shows that (23) is indeed the exact uniqueness condition[15]. b. 30 truss example[START_REF] Alert | Document[END_REF]. Turn now to the 30 truss shown in fig.1b. The stiffness matrix may be partitioned into where K is a 2x2 tangential stiffness submatrix, kn the normal stiffness and k a coupling vector of ft2 •The contact generalized jacobian extremes evaluated at Do = 0 are now the three matrices listed in(21), the last being variable. The uniqueness condition det(E+Jsl > 0 , Vs,c, implies the restriction K ll < Ainin/lkl (= cos+/I:Zsin+ if + = w in fig.1b)Ani in denotes the smallest eigenvalue of K • This 30 condition degenerates well in the 20 esse.
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