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Abstract—Following the finalization of the state-of-the-art High
Efficiency Video Coding (HEVC) standard in January 2013, sev-
eral new services are being deployed in order to take advantage
of the superior coding efficiency (estimated at 50% less bitrate
for the same visual quality) that this standard provides over its
predecessor: H.264 / Advanced Video Coding (AVC). However,
the switch from AVC to HEVC is not trivial as most video
content is still encoded in AVC. Consequently, there is a growing
need for fast AVC to HEVC transcoders in the market today.
While a trivial transcoder can be made by simply cascading an
AVC decoder and an HEVC encoder, fast transcoding cannot be
achieved. In this paper, we present an AVC to HEVC transcoder
where decoded AVC blocks are first fused according to their
motion similarity. The resulting fusion map is then used to limit
the quadtree of HEVC coded frames. AVC motion vectors are
also used to determine a better starting point for integer motion
estimation. Experimental results show that significant transcoder
execution time savings of 63% can be obtained with only a 1.4%
bitrate increase compared to the trivial transcoder.

Index Terms—HEVC, AVC, transcoding, quadtree limitation.

I. I NTRODUCTION

T HE state-of-the-art High Efficiency Video Coding stan-
dard [1], developed by the Joint Collaborative Team

on Video Coding (JCT-VC) of ISO and ITU, reached Final
Draft International Status (FDIS) in January 2013. HEVC
allows up to 50% bit-rate reduction at the same visual quality
compared to its predecessor, the H.264 / Advanced Video
Coding (AVC) standard [2]. These gains reduce the bandwidth
load of content providers and enable Ultra High Definition
(UHD) applications which were difficult to deploy with pre-
vious codec generations due to the large bit-rates required
to code such high resolution videos. Today, while dedicated
HEVC encoder systems are not yet deployed on a large scale,
HEVC software decoders have already started to surface.
HEVC codecs are even being included in the latest generation
of smartphones [3]. However, most of the video content is
still encoded in AVC, due to the wide adoption of AVC in
broadcast over cable and satellite, conversational applications
over wireless and mobile networks, and multimedia streaming
services. Consequently, there is a need in the market for a
fast, possibly real-time, AVC to HEVC transcoder to enable
interoperability between AVC streams and HEVC services
when they will be deployed, or simply to take advantage of
the improved coding efficiency that HEVC provides. Indeed,
our preliminary experiments show that in a random access
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configuration, transcoding AVC streams into HEVC brings up
to 20.7% bit-rate reduction compared to AVC.

Video transcoders serve many purposes [4]–[6]. They come
in two types: homogeneous and heterogeneous transcoders.
Homogeneous transcoders keep the video content in the same
format used in the initial encoding stage. They are used for
instance to reduce bit-rate or to adjust spatial or temporal
resolutions [4]. Another application consists in adaptingthe
coding rate to the user requirement or to the constraints of
the network or of the storage devices. Other applications of
homogeneous transcoders include rate control (VBR to CBR
and vice versa) and adding scalability layers . as suggested
for example in [7] in order to address video distribution on
mobile devices. From this point of view, transcoding is seen
as a preeminent part of any multimedia distribution system
aiming to provide universal access. Heterogeneous transcoders
are mostly used to perform a change between different coding
standards [4], [8]. As for the transcoder architecture, the
literature typically distinguishes open-loopversusclosed loop
architectures and spatial (or pixel) domainversusfrequency
domain architectures. This classification is very well described
[4], [6] to which, for the sake of conciseness, we refer the
interested reader.

In the case of heterogeneous transcoding, such as the AVC-
to-HEVC case considered in this paper, a trivial transcodercan
be formed by simply cascading an AVC decoder and an HEVC
encoder. This approach, called “Full Decode Full Encode”
(FD-FE), achieves the best coding performance but it is also
the most complex and time consuming. Basically, the target of
transcoding is to achieve a significant execution time reduction
with the least bit-rate increase. In order to do so, decoded
information from the input AVC stream must be exploited
to reduce the number of operations performed by the HEVC
encoder. Indeed, HEVC uses a quadtree coding structure [9]
and in the current reference software HM-13.0 [10], a complex
Rate Distortion Optimization (RDO) process is used at each
depth level of the quadtree to evaluate the Lagrangian (or
RD) cost of each coding mode / partition size combination
and to select afterward the configuration yielding the lowest
coding cost. Several tests are thus performed. The most time
consuming tests are Inter mode tests where motion estimation
is performed. In HM-13.0, a motion search area is defined
where several positions at integer, half and quarter pixel
accuracy are tested.

The AVC to HEVC transcoding schemes found in literature
can be classified into either mode mapping schemes or motion
vector reuse schemes. In the mode mapping category, AVC
information is used by the HEVC encoder to decide to either
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skip some coding modes / partition size tests, or to stop the
quadtree splitting operation [11]–[15]. In the motion vector
reuse schemes, the motion estimation process within Inter tests
is simplified by skipping some positions to test using decoded
AVC motion information [16]–[20]. A detailed analysis of the
state of the art for AVC-to-HEVC transcoder is provided later
on in this paper (Section II-C).

Although AVC macroblocks have a fixed size of 16×16,
we find that adjacent AVC blocks sharing the same motion
information can be fused into a larger block at a lower
depth level. By recursively fusing AVC blocks up to the
corresponding maximum block size in HEVC, the fused AVC
coding structure becomes similar to an HEVC quadtree, and
can thus be used to limit it. In this paper, we propose a fusion
algorithm and a quadtree limitation method (inspired by a
similar work of ours in the context of 3D-HEVC [21]) coupled
with a motion vector reuse scheme where AVC motion vectors
are used to determine a better starting point for integer motion
estimation. The proposed solution achieves 63% transcoder
execution time savings while only increasing the bit-rate by
1.4% on average compared to the trivial transcoder in a
random access configuration.

While it is true that some state-of-the-art transcoders al-
ready employ block fusion, the particular way the fusion is
performed here and the criterion on which the fusion is based
are original. Furthermore, the quadtree limitation schemeis
different from the scheme proposed in [21], and is particularly
adapted to the AVC-to-HEVC transcoding problem where
it serves as an original mode mapping technique. Finally,
while the motion vector reuse scheme used in this paper
has been used in prior state-of-the-art work, we find that
it completes rather intuitively the proposed solution while
providing additional gains that are interesting to report.This
makes the proposed method substantially novel; it cannot
simply be deduced from previous works.

In summary, the main contributions of this work are the
following:

1) a fusion algorithm (FA) allowing to obtain, from the
H.264/AVC stream, a quadtree that will be used to guide
the HEVC encoder;

2) a quadtree limitation algorithm (QTL) that reduces the
number of partitions to be tested by the HEVC encoder
— FA and QTL are intended to reproduce the same
coding structure as (or a coding structure very close to)
a FD-FE transcoder but with reduced computation;

3) the combination of FA+QTL with two existing motion
vector reuse strategies (MVR and MVR2) that further
improve the trade-off between execution time and com-
pression performance of the transcoder;

4) and finally, an extensive experimental validation of the
proposed transcoder on the full HEVC sequence test
set, and a comparison with available state-of-the-art
transcoders.

The remainder of this paper is organized as follows: Sec-
tion II gives an overview of the AVC and HEVC coding
structures, of the motion estimation process in HM-13.0,
and of the AVC to HEVC transcoders found in literature.
Section III presents the proposed method. Experimental results

are reported in Section IV and compared to those of the
state of the art. Finally, Section V concludes this paper while
highlighting possibilities for future work.

II. BACKGROUND

A. AVC and HEVC coding structures

In AVC, slices are divided into macroblocks (MB) of fixed
size 16×16 [2]. Each MB is associated with a coding mode.
There are three main coding modes in AVC: Inter, Intra and
Skip / Direct. The Skip / Direct mode can be considered as
a particular Inter mode where the motion parameters (motion
vectors and reference indexes) of the MB are derived from
decoded information (no motion estimation is performed). A
MB coded in a particular mode can be partitioned in the
following way:

• Skip / direct: 16×16
• Intra: 16×16, 8×8, 4×4
• Inter: 16×16, 16×8, 8×16, 8×8

In Inter mode, if the MB is partitioned into four 8×8 blocks,
each 8×8 block can be further partitioned into either two
8×4, 4×8 or four 4×4 sub-blocks. It is important to note
that each partition has its own prediction information (motion
parameters in Inter or Skip / Direct modes, Intra directionsin
Intra mode).

In HEVC [1], a slice is divided into coding tree units
(CTUs). Each CTU can then be split into four coding units
(CU), and each CU can be further split into four CUs, and
so on. A maximum CU size and a maximum depth level are
set to limit the CU split recursion. This quadtree approach
allows having different block sizes inside the same image,
making the encoding more adapted to the image content.
Note that a specific coding mode (Intra, Inter, or Merge) is
chosen at the CU level. Note also that the Merge mode is
a particular Inter mode in HEVC where motion parameters
are derived from neighboring blocks. A CU can further be
partitioned into prediction units (PUs) where all PUs are coded
in the same coding mode, but each PU has its own prediction
information. The PUs however cannot be further partitioned.
Different coding modes imply different possible PU partitions:

• Merge: 2N×2N
• Intra: 2N×2N, N×N (only possible at the maximum

depth level)
• Inter: 2N×2N, 2N×N, N×2N, 2N×nU, 2N×nD,

nL×2N, nR×2N and N×N (only possible at the max-
imum depth level)

In HM, the RDO process computes an RD costJ (J =

D+λR, whereR is the rate,D the distortion, andλ a weight
factor) for each coding mode / partition size combination. The
cost of splitting the CU is also computed and the configuration
yielding the lowest cost is selected. In HM-13.0, the maximum
and minimum CU sizes are respectively 64×64 and 8×8, and
Inter N×N is disabled. Fig. 1 illustrates all the possible coding
modes and partition sizes in AVC and HEVC.

B. Motion estimation in HM-13.0

In HM-13.0, an integer motion estimation (ME) is per-
formed, followed by a half-pel and a quarter-pel ME.
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Fig. 1. Coding modes and partition sizes in AVC and HEVC

1) Integer ME: When estimating a motion vector (MV) for
a PU, a motion vector predictor (MVP) is first derived from
neighboring PUs [22]. A search window is defined, centered
around the pixelp pointed to by the MVP. Instead of per-
forming a time-consuming full search wherein all the positions
inside the search window are tested by RDO (by computing
an RD costJ), a more intelligent search pattern, called TZ
search [23], is used to reduce the number of tested positions
while minimizing coding losses. However we observe that
this motion estimation strategy, even though very efficient,
is by no mean mandatory. In HM-13.0, a diamond search is
performed, during which different diamonds, centered around
p, and of different sizes, are considered. A diamond of size
1 is first processed, then at each iteration, the size doubles
and the corresponding diamond is processed until reaching
the maximal size which corresponds to the search window.
For each diamond pattern, only a small number of points on
the diamond perimeter are tested by RDO. In the end, the
point with the least RD cost is selected as the best point. If
the best point is different thanp, another diamond search is
performed, this time centered around the best point. The same
process is repeated recursively until the best point resulting
from the diamond search corresponds to the center itself.

Figure 2 illustrates this process. In this example, the search
window equals 6. Three diamond sizes are thus considered in
each search: 1, 2 and 4 (the next diamond is of size 8 which
exceeds the search window). The red point corresponds to the
MVP (p). After a first diamond search, the green point is found
to be the best point, and hence another diamond search is
performed, centered around the latter. After the second search,
the blue point is found to be the best point, and similarly,
a third diamond search centered around the blue point is
performed. In this example, after the third diamond search,
the best point is still found to be the blue point. Hence, the
search stops.

2) Sub-pixel ME: The 8 half-pel positions directly sur-
rounding the best integer position are tested by RDO. The one
minimizing an RD cost is selected as the best point. Then,
the 8 quarter-pel positions directly surrounding the half-pel

MVP

Search window

Fig. 2. Diamond search in integer motion estimation in HM-13.0 (red:
iteration 1, green: iteration 2, blue: iteration 3)

best point are tested by RDO. The best quarter-pel position is
finally set as the MV of the tested PU.

C. AVC to HEVC transcoders in literature

AVC to HEVC transcoders in literature employ mode map-
ping and motion vector reuse techniques to reduce the HEVC
encoding complexity. A mode-mapping transcoder is proposed
in [11], where CUs are classified into either background,
foreground or hybrid CUs by comparison with a background
frame generated using previously decoded frames. Based on
the CU classification, either the CU split is stopped or certain
modes / partition sizes are not tested. The HEVC decoder is
also modified since the method proposes to insert the generated
background frame in the list of temporal references of the
frames to encode / decode. The transcoder brings -45.6%
Bjontegaard Delta Rate (BD-Rate) gain and achieves 53%
execution time savings on average compared to the trivial
transcoder. The gains come from a normative change which,
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in general, is not desired, and the execution time savings
may only hold for surveillance video content for which this
transcoder is aimed.

Most transcoders employ both mode mapping and motion
vector reuse schemes. In [16], a fast AVC to HEVC transcoder
is proposed for multi-core processors implementing Wavefront
Parallel Processing (WPP) and Single Instruction Multiple
Data (SIMD) acceleration. Two conditions are set to limit
the CU split recursion for 32×32 CUs and smaller CUs.
Furthermore, for 32×32 CUs, some Inter and Intra partition
sizes are not tested depending on the number and configuration
of 16×16 MBs covered by the CU. For smaller CUs, only
the coding mode and partition size of the corresponding AVC
block are tested. The mode-mapping and motion vector reuse
parts of this transcoder bring 77% execution time savings but
the coding losses are not reported.

Zhang et al. [17] propose a Power Spectrum RDO (PS-
RDO) model to determine the quadtree and the best motion
vector of each PU in Inter frames. In Intra frames, only
the quadtree is determined. In an all-Intra and a low delay
configurations, the proposed method brings around 70% and
60% encoder execution time savings respectively. However,
the coding losses are not provided. Also, the method was
implemented in HM-4.0 which, today, is a relatively old HM
software version.

Peixoto and Izquierdo, in [18], propose two transcoders. A
simple transcoder, Motion Vector Reuse Transcoder (MVRT),
based on motion vector reuse is first introduced, where the
Intra mode is tested for a CU only if any part of the CU
in AVC is coded in Intra, and where only the vectors of AVC
blocks covered by an Inter-coded PU are tested at integer pixel
level (the default HEVC search is applied at half and quarter
pixel accuracy). Another transcoder, Motion Vector Variance
Distance (MVVD), is proposed where a similarity metric is
computed for each possible CU. It represents the variance of
the motion vectors of the AVC blocks covered by the CU. All
possible coding mode / partition size combinations are divided
into four groups, and based on the similarity metric, for each
CU, only certain groups are tested and the CU splitting can
be stopped. Also, only the MVs of the AVC blocks covered
by a PU are tested at integer pixel level. The two transcoders
are evaluated in a low delay configuration with four temporal
reference frames. The first scheme achieves 32% execution
time savings with 3.6% coding loss, while the second one
achieves 54% execution time savings with 6.3% coding loss.

A transcoder based on region feature analysis (RFA) is
proposed in [19], where CTUs are classified as low, high or
medium complexity CTUs based on the number of bits used
to code the corresponding MBs in AVC. Then, the depth range
of a CTU is limited based on its class. Furthermore, the AVC
MVs covered by a CU are clustered into two regions and based
on the clustering shape, certain partition sizes are no longer
tested. Also, new MVP candidates are set for each cluster
region and the MV search range is limited. This results in
48% execution time savings with 1.7% coding loss in a low
delay configuration with four reference frames.

Peixotoet al. propose, in [20], a transcoder referred to as
Linear Discriminant Functions (LDF) and which is based on

content modeling. It involves a training stage during which
the frames are fully encoded in HEVC. For each of the CUs
coded in these training frames, a set of features is stored as
well as the decision to split the CU or not chosen by RDO.
In the transcoding stage, the class of a CU is determined by
comparing its set of features to the saved ones in the training
stage and based on the class, the CU split recursion can be
stopped. This results in 63% execution time savings with a
3.6% coding loss in a random access configuration, and 65%
and 4.1% respectively in a low delay configuration with four
reference frames.

In [24], Diaz-Honrubiaet al.proposed a multiple frame
transcoder that for the motion estimation process, only consid-
ers the frames used in H.264/AVC as reference for temporal
predictions. In [25], and in a more complete fashion in [15],
it is presented a transcoder based on adaptive fast quadtree
level decision (AFQLD). The basic idea is to determine the
CU depth using a Bayesian probabilistic model. The threshold
for decision is computed on line and both information from
HEVC and H.264 stream are used in the Bayesian model.
The core of the algorithm consists in a data-driven classifier
that decider whether splitting or not the current HEVC CU
based on a suitable set of features, among which the QP, the
characteristics of the residual, the cost function values of the
coding modes, see [15] for more details.

Chenet al. propose in [13] a fast mode decision combined
with a fast motion estimation algorithm for transcoding (FMD-
FME). As for the motion estimation, the H.264 motion vector
that is closest to the PU centroid is used for HEVC. If several
H.264 are available for the same PU, the median of them
is used. The mode decision algorithm is more complicated
and depends on the partition of H.264 macroblocks (see [13]
for more details). Finally, in [14] FMD-FME is enhanced by
considering PU-level information. The proposed transcoding
scheme is still complicated but the transcoding performance
in terms of BD-Rate increase and transcoding speedup are very
close to [13].

While some of these state-of-the-art transcoders can be
efficient, the fact remains that the AVC coding structure is
never directly used to control the HEVC quadtree in order to
reduce transcoding execution time. Indeed, most schemes only
influence the HEVC quadtree by avoiding some partition tests
or CU splits, but the rationale behind these mode mappings
schemes is not based on the AVC coding structure itself. This
is understandable because AVC uses MBs of fixed size 16×16
while HEVC CUs can range for instance from 64×64 to 8×8.
Therefore the AVC and HEVC coding structures cannot be
directly compared as the AVC one (like the one shown in
Figure 3(a)) is in general always more partitioned than the
HEVC one (Figure 3(b)). Our method translates the MB-
based AVC coding structure into a quadtree comparable to
that of HEVC. This is done by merging AVC blocks with
similar motion together to obtain larger blocks that can be
seen as AVC “CU”s and “PU”s. The fused quadtree can then
be used to limit the HEVC quadtree and reduce execution
time. This mode mapping scheme can also be coupled with
a motion vector reuse scheme to obtain additional execution
time savings.
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(a) AVC (b) HEVC (c) Proposed fused AVC

Fig. 3. AVC, HEVC, and proposed fused AVC quadtrees of a frame in the BQSquare sequence

III. PROPOSED METHOD

Our proposed method consists in an AVC fusion algorithm
(FA) followed by an HEVC quadtree limitation algorithm
(QTL), combined with a motion vector reuse scheme (MVR).
We first perform an AVC decoding, which has a relatively
low complexity. Then, let us assume that the HEVC encoder
is encoding a frameF . The FA provides a quadtree that is
used to limit the complexity of the HEVC encoder.

A. Fusion algorithm

The AVC coding structure ofF is fused in order to get a
fusion map.F is processed CTU by CTU. The fusion within
different CTUs can be done in parallel as the fusion of one
CTU is completely independent from the fusion of another
CTU.

The fusion of a CTU consists in specifying a maximum
depth level for CUs and a specific partition for each CU
within the CTU. This can be seen as a “fusion” of deeper
level CUs, hence its name. The fusion is performed by low
complexity processing of AVC decoded information (namely,
MVs) and is recursive with respect to the HEVC quadtree
structure. More precisely, the fusion of a CTU is described as
follows: first, the fusion using a 2N×2N partition is tested.
If the fusion is successful (i.e. maximum depth level equals
0), the algorithm terminates and the next CTU is processed.
Otherwise, the 2N×N partition is tested. In this case, for the
fusion at the CTU level to be successful, the fusion in each
of the two PUs must be successful and if so, the algorithm
terminates. Otherwise, the N×2N partition is tested, followed
by the AMPs: 2N×nU, 2N×nD, nL×2N and nR×2N. If none
of the partition sizes leads to a successful fusion, the CTU
is split into four CUs and the same algorithm is ran again
recursively for each CU until a minimum CU size (the same
as the one used in the HEVC encoder) is reached. Figure 4
shows how the fusion algorithm works for one CTU.

Let us assume that a PU coversn AVC MBs, m AVC blocks
(m ≥ n since a MB can be split into multiple blocks) and
that in this blocks we havek0 and k1 AVC motion vectors,
respectively in the L0 and L1 reference lists. For example, in
Figure 4, the 2N×2N PU coversn = 16 MBs, andm = 27

blocks. In a 2N×N partitioning, PU0 coversn = 8 MBs and
m = 13 blocks while PU1 coversn = 8 MBs andm = 14

blocks. We define themotion typeof an AVC Inter coded block
b as a scalar whose value equals:

• 0 if the MV of b is in the L0 reference list
• 1 if it is in the L1 reference list

• 2 if b has two MVs, one in each list

We also define thesimilarity metric (s) computed on a set of
MVs, as:

s =

√

σ2
x + σ2

y (1)

whereσx andσy are respectively the standard deviations of the
horizontal and vertical components of the MVs. For a specific
PU, the fusion is considered successful if all the following
conditions are met:

1) All n AVC MBs are coded in Inter
2) All m AVC blocks are of the same motion type
3) All ki MVs (i = 0, 1) point to the same reference frame
4) The similarity metricss0 and s1 computed on thek0

and thek1 MVs respectively are both less than or equal
to a certain thresholdT

The threshold value plays a central role in the trade-off
between RD performance and transcoding execution time.
When the threshold is very high, all the MB of the same
motion type and pointing to the same reference, are fused
at the LCU level. This limits quite a lot the complexity of
the transcoder but risks to generate high coding losses since
small CU partitions are never tested. On the contrary, when
T = 0, the AVC partitions are not fused together but are still
used to limit the HEVC quadtree, as shown in the following
section. In this case our algorithm has small coding losses but
larger execution times, as shown in Section IV-B. In the same
section we also give some values ofT that are found to work
well in practice. However, one could conceive some adaptive
threshold adjustment,e.g. in order to control the losses or the
execution time by reducing or increasing the threshold as a
function of the performance on past frames.

B. Quadtree limitation

After applying our fusion algorithm, the resulting fused
AVC quadtree as in Figure 3(c) can be directly compared
to that of HEVC (Figure 3(b)). In general, we find that the
first is more partitioned than the latter. This is expected since
the HEVC encoder encodes already compressed video with
smoother content due to the filtering of high frequency com-
ponents in the initial AVC encoding stage. Indeed, smoother
content can easily be predicted without the need for excessive
splits. This phenomenon becomes more frequent as the QP
used in the AVC encoding increases. Furthermore, HEVC
employs Advanced Motion Vector Prediction (AMVP) to
reduce the cost of sending MVs in the bitstream. In HEVC,
even if an estimated MV does not yield the best possible
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Fig. 4. Proposed fusion algorithm of a CTU

prediction (minimizing the Mean Square Error) for a PU, its
reduced coding cost using AMVP can still yield a low overall
RD cost. AVC does not employ such a scheme, and hence, the
lack of a good Inter prediction of a MB often leads to splitting
the MB in four to achieve a more accurate prediction in each
of the four sub-blocks.

Consequently, in this paper, we make the following assump-
tion on which our work is based:

Assumption 1. An HEVC CU is, at most, as partitioned as
its collocated CU in the fused AVC quadtree

Table I gives the percentage of HEVC CUs where Assump-
tion 1 is true for several test sequences. The experimental
setting used to obtain these results is described in SectionIV-A
(we used the random access configuration here and a threshold
T = 1 in the fusion algorithm). We can see from Table I

Class Sequence QP
22 27 32 37

Class A
(2560×1600)

Traffic 67 74 82 89
PeopleOnStreet 66 70 75 80

Class B
(1920×1080)

Kimono1 73 78 80 79
ParkScene 66 71 75 77
Cactus 66 70 75 78
BasketballDrive 71 75 78 79
BQTerrace 63 68 72 73

Class C
(832×480)

BasketballDrill 69 73 80 87
BQMall 70 75 81 87
PartyScene 61 69 75 83
RaceHorses 69 75 81 87

Class D
(416×240)

BasketballPass 71 74 80 86
BQSquare 54 69 77 85
BlowingBubbles 64 74 82 90
RaceHorses 70 74 81 87

Class F
BasketballDrillText 68 70 77 83
ChinaSpeed 72 75 80 86
SlideEditing 86 87 89 93
SlideShow 85 88 90 93

TABLE I
PERCENTAGE OFHEVC CUS WHEREASSUMPTION1 IS TRUE

that the assumption seems reasonable. As the QP increases,
the decoded AVC video becomes smoother and hence, the
HEVC encoder uses larger CUs (and consequently less splits)
to code the frames. As the HEVC quadtree becomes coarser,

the assumption failures are bound to decrease as can be seen
in Table I. There are indeed some cases where this assumption
is false (i.e. an HEVC CU is more partitioned than its
collocated CU in the fused AVC quadtree). For instance, AVC
compression artifacts may exist in the AVC decoded video.
These may lead the HEVC encoder to split the corresponding
CUs to account for these artifacts, non-existent at the AVC
encoding stage. However, since these cases are rare judging
from Table I, if the HEVC quadtree is forced to be limited to
the fused AVC one, significant execution time savings can be
obtained with a reasonable loss in coding efficiency.

This is precisely what the proposed method does. After
fusing the AVC coding structure ofF , when coding an HEVC
CU in F , the limitation shown in Figure 5 is forced so that
the CU cannot be more partitioned than its collocated CU in
the fusion map (CUcol).

CUcol Allowed HEVC CU partitions

Fig. 5. Quadtree limitation algorithm

Our limitation algorithm is the following: if CUcol is split
or coded in an N×N partition, the HEVC encoder tests all PU
sizes and also tries splitting the CU into four smaller CUs,
as normally done: No limitation is applied in this case. If
CUcol is partitioned in 2N×2N, only 2N×2N modes are tested
in HEVC (Merge 2N×2N, Inter 2N×2N, Intra 2N×2N) and
the CU split recursion is stopped: the PU is coincident with
the CU. If CUcol is partitioned in any way other than 2N×2N,
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only the 2N×2N modes and the partition of CUcol into PUs
with the same shape as CUcol are tested in HEVC and here
also, the split recursion is stopped. Note that the proposed
quadtree limitation algorithm is not applied for I slices: the
coding of these slices remains unchanged in our method. The
reason is that, on one hand, the coding time of I slices is only
a very small fraction of the coding time of a GOP, so little
can be gained in terms of execution time reduction; on the
other hand, reducing quality of the I slices may have a huge
impact on the quality of all slices in the GOP, since the latter
are predicted from the former. This intuitive reasoning is fully
supported by experimental results, as shown in Section IV-C.

Also note that the limitation algorithm is inherently different
than MVVD, presented in [18], because our method ultimately
tries to make the HEVC quadtree similar to what would
have been the quadtree coding structure of the AVC frame
if CUs and PUs were used instead of MBs, whereas MVVD
only analyzes the scene complexity using MVs and offers
accordingly a different subset of possible partitions at a time.

C. Motion vector reuse

In the integer motion estimation of HM-13.0, the starting
point for the diamond search is the MVP. However, a better
starting point can make the search converge more quickly to
the best vector. For instance, in Figure 2, choosing directly
the green point as starting position instead of the red point
(MVP) allows avoiding one whole diamond search iteration.
In this paper, we propose to change the starting position of
the integer motion estimation in HM-13.0: the MVP, as well
as all the MVs covered by the currently tested HEVC PU
in the fused AVC quadtree are tested by RDO and the one
minimizing an RD cost is selected as the best starting position
for the diamond search.

IV. EXPERIMENTAL RESULTS

A. Experimental setting

The JM-18.6 [26] reference software for AVC is used
to encode the original video. We limit our scenario to the
case where the AVC encoder is properly designed and run
using a reasonable configuration of parameters. In particular,
since our method relies on motion vectors extracted from
the AVC bitstream, we assume that the motion estimation
process was run with a reasonably effective configuration. We
acknowledge the fact that it would be very interesting, for
practical applications, to test the proposed transcoder inthe
case of a poorly designed AVC encoding step. This study
would require much more space and will be the subject of
future works; we only mention here that in principle it is
possible to detect a poorly estimated motion vector field,
at least when the AVC encoded sequence has a reasonable
PSNR1: it suffices to re-estimate MV with a well-configured
ME algorithm and to check if the result is coherent with the
AVC motion vector field. However in the following we only
consider the case of properly configured AVC encoder.

1We note that a bad motion vector field would affect the rate of the encoded
sequence, not its PSNR that mainly depends on the quantization step.

After AVC decoding, the video is inputted to HM-13.0
where the proposed method is implemented. The trivial
transcoder following the “Full Decode-Full Encode” approach
is used as anchor for the results presented in this section.

The videos are encoded in two different configurations: a
random access configuration (RA-MAIN) with a GOP size of 8
and an Intra period dependent on the sequence, and a low delay
configuration (LD-P-MAIN) with four reference frames. Each
configuration is used in both JM-18.6 and HM-13.0 encoders
(the configuration files used:encoderJM RA B HE.cfg and
encoderrandom accessmain.cfgfor random access, anden-
coder JM LP HE.cfg and encoder lowdelay P main.cfgfor
low delay, are included in the JM-18.6 and HM-13.0 packages
respectively). The maximum and minimum CU sizes are set
to 64×64 and 8×8 respectively in HM. Furthermore, the
following options are all enabled in HM: fast search (during
the motion estimation process), fast encoder decision (FEN),
and fast decision for Merge RD cost (FDM). These options
allow reducing the encoding execution time by exploiting local
sequence characteristics. Hence, it is important to note that our
method brings execution time savings over an already “fast”
HM encoder.

Four QPs (22, 27, 32, 37) are selected to perform the sim-
ulations. The same QP is used in both JM and HM encoders.
Coding results have been evaluated using the Bjontegaard
Delta Rate (BD-Rate) [27] metric. The rate considered in the
computation of this metric is the one reported by the HM
encoder. The PSNR considered is evaluated between the output
of the HM decoder and the original uncompressed video. Tests
have been performed on the sequences of the HEVC dataset.
They are divided into six classes, based on either resolution
or content (class F contains screen-content sequences with
different resolutions). Ten seconds of video have been coded
for each sequence. Note that results are not given for class
E sequences in the random access configuration, nor for
class A sequences in the low delay configuration because
random access is not typically used to code video conferencing
content (class E), and neither is low delay for high resolution
sequences (class A). This is also why contributions to JCT-
VC have never reported such values in their experimental
results. Finally, the tests have been launched on a cluster
of nine machines, four of which use an Intel Xeon X5670
processor with 24 cores while the remaining five use an
Intel Xeon E5430 processor with 8 cores2. In order to obtain
stable results we obtained time measurements as averages over
twenty repetitions.

B. Results of the proposed method

Tables II and III show the results of the proposed method
in a random access (RA) and a low delay (LD) configuration
respectively. In these tables, TET is the transcoder execution
time, expressed as percent of the reference execution time in
the case of the trivial (full decode-full encode) transcoder.
The thresholdT in the fusion algorithm is set empirically

2In order to reduce the dependency of our results from the hardware
configuration, we also run the tests in a single PC scenario, obtaining results
very close to those of the cluster.
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to 0.5 as this value offers a good tradeoff between execution
time savings and coding losses. The method achieves 63%
(resp. 56%) execution time savings with an average coding
loss of 1.4% (resp. 3.7%) in the RA (resp. LD) configuration.
For some screen content sequences, such as SlideEditing and
SlideShow, results in LD configuration may be improved by
using a smaller threshold: withT = 0, the coding loss passes
from 5.6% to 5.0% for SlideEditing and from 7.6% to 6.3%
for SlideShow, with the same execution times.

Class Sequence Coding loss TET
Class A
(2560×1600)

Traffic 0.6% 46%
PeopleOnStreet 2.4% 62%

Class B
(1920×1080)

Kimono1 -0.1% 39%
ParkScene 0.4% 36%
Cactus 1.1% 35%
BasketballDrive 0.7% 42%
BQTerrace 0.1% 27%

Class C
(832×480)

BasketballDrill 1.5% 40%
BQMall 2.2% 35%
PartyScene 1.8% 40%
RaceHorses 1.1% 48%

Class D
(416×240)

BasketballPass 2.4% 45%
BQSquare 1.6% 35%
BlowingBubbles 1.7% 36%
RaceHorses 2.0% 50%

Class F
BasketballDrillText 2.0% 43%
ChinaSpeed 3.0% 51%
SlideEditing 0.8% 10%
SlideShow 1.4% 24%

Average 1.4% 37%

TABLE II
CODING RESULTS AND TRANSCODER EXECUTION TIMES(TET) USING

THE PROPOSEDFA+QTL+MVR METHOD IN A RA CONFIGURATION

Class Sequence Coding loss TET
Class B
(1920×1080)

Kimono1 0.6% 54%
ParkScene 2.6% 44%
Cactus 3.7% 57%
BasketballDrive 2.1% 61%
BQTerrace 2.5% 38%

Class C
(832×480)

BasketballDrill 3.7% 50%
BQMall 3.9% 49%
PartyScene 3.9% 49%
RaceHorses 3.2% 53%

Class D
(416×240)

BasketballPass 4.0% 70%
BQSquare 5.3% 47%
BlowingBubbles 4.3% 66%
RaceHorses 4.3% 66%

Class E
(1280×720)

FourPeople 3.7% 26%
Johnny 1.9% 22%
KristenAndSara 2.3% 31%

Class F
BasketballDrillText 4.7% 55%
ChinaSpeed 4.2% 68%
SlideEditing 5.6% 11%
SlideShow 7.7% 29%

Average 3.7% 44%

TABLE III
CODING RESULTS AND TRANSCODER EXECUTION TIMES(TET) USING

THE PROPOSEDFA+QTL+MVR METHOD IN A LD CONFIGURATION

Figure 6 shows, for the two configurations, the average
coding results and execution times of the proposed method
for various values of the thresholdT used in the fusion

algorithm. Note that a threshold of 0 means that no fusion
is performed on the AVC MBs. In the RA configuration,
varying the threshold beyond 0.5 only increases the coding
losses while maintaining the execution time around 38%. We
have observed that in the RA configuration, the number of
blocks after fusion varies only slightly with the threshold. This
explains the little variation in the execution time in Figure 6(a),
mainly due to to more or less concurrent CPU load of the
machines. For the LD configuration however, we can see that
as the threshold increases, the execution times decrease and the
coding losses increase. We observed that is due to the fact that
in this configuration, the threshold value has a larger impact
on the number of blocks after fusion. Hence, an advantage
of the proposed method is that in a LD configuration, a new
coding loss / execution time savings trade-off can be achieved,
depending on the desired application, by simply varying a
single threshold value.
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Fig. 6. Evolution of the coding losses and execution times with the threshold

C. Results of some variants of the proposed method

In order to single out the contributions of the different tools
that constitute our technique, we implemented some variation
of the proposed method. In a first variation, referred to as
FA+QTL, we perform the fusion algorithm and the quadtree
limitation, but the motion estimation step is unchanged, that
is we use the default motion estimation of the HM software.
In opposition to this variant, we refer to the main method
(described in Section III) as FA+QTL+MVR. We also consider
a version of our transcoder where the quadtree limitation
is also performed on Intra slices. This version is referred
to as FA+QTLI. Finally, since the main contribution of our
technique lies in the fusion and the quad-tree limitation, we
also consider a version of the proposed method where these
FA and QTL are turned off and only motion vector reuse, as
described in Sec. III-C, is employed. This allows us estimating
the actual contribution of the most innovative part of the
proposed technique. We refer to this last method as MVR.

Variant Coding loss TET
FA+QTL 2.2% 42%
FA+QTLI 4.5% 42%

TABLE IV
AVERAGE CODING RESULTS AND EXECUTION TIMES(TET) OBTAINED

USING VARIANTS OF THE PROPOSED METHOD IN ARA CONFIGURATION

The results for the first two variants are shown in Table IV
for the RA configuration (average coding loss and average ex-
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ecution time on the set of test sequences). The same threshold
T = 0.5 as for the main method is used in these variants.
Comparing with the average results of FA+QTL+MVR in
Table II, we observe that the MVR technique improves both
the execution time (from 42% to 37%) and the coding loss
(from 2.2% to 1.4%). We explain this behavior as follows.
First, we observed that the FQ+QTL+MVR scheme converges
more quickly to the best integer motion vector. On average,
we measured a reduction of total number of tested motion
vectors of 7% in the RA configuration compared to FA+QTL.
In addition, the MVR scheme also allows to converge to a
better (RD-wise) final point than what would have been found
in the diamond search which uses systematically the MVP as
its starting point.

Comparing FA+QTL and FQ+QTLI, we can see that by
not applying QTL on I slices (as done in the main method),
the coding losses are halved while maintaining the same
execution time. This is because, on one hand, I slices only
represent, on average, 3% of the total number of slices coded
for each sequence and moreover the encoding time of I slices
is already small enough to begin with due to the lack of motion
estimation. Hence, applying the QTL on these slices does not
significatevely reduce the total transcoding time. On the other
hand, QTL may reduce the quality of the I slices, and this have
a large impact on all the slices of a GOP. This explains why
not applying QTL on I slices the reduces the coding losses.

As far as the MVR method is concerned, since no fusion
nor quad-tree limitation are performed, it risks to be not
very effective: several macroblock may correspond to a single
HEVC prediction unit, and so several motion vectors have to
undergo the RDO test in order to select the new starting point
of the diamond search. In other words, without fusion and
quad-tree limitation, MVR may lead to test many MVs. These
intuitions have been confirmed by our experiments. In the
same experimental conditions as FA+QTL+MVR, the MVR
technique leads to a small coding rate increase, but with no
transcoding execution time reduction (actually we observed a
small transcoding time increase of2% with respect to FD-
FE). We conclude that MVR works well only when it is
used jointly with other methods that effectively reduce the
number of MVs to be tested, keeping the “good ones” in the
bundle. FA+QTL is effective in this task, since when used with
MVR the global performance is improved. On the other hand,
this experiment also proved that the most relevant part of the
proposed technique is the novel FA+QTL rather than the well
known MVR.

Finally consider a further variant of the proposed method
with a different MVR scheme (FA and QTL are unchanged),
referred to as FA+QTL+MVR2. In this variant, after selecting
the best starting position out of the MVP and the AVC
MVs covered by the current PU, the diamond search is not
performed. The best starting position is directly set as theMV
of the PU, so we may expect further time savings but possible
coding loss. We also observe that this motion vector reuse
technique corresponds to the one used in [18]. The results, in
both RA and LD configurations and for a thresholdT = 0.5,
are given in Tables V and VI.

We observe that FA+QTL+MVR2 is faster than

Class Sequence Coding loss TET
Class A
(2560×1600)

Traffic 0.9% 42%
PeopleOnStreet 2.7% 57%

Class B
(1920×1080)

Kimono1 0.9% 33%
ParkScene 0.5% 39%
Cactus 1.1% 30%
BasketballDrive 0.8% 35%
BQTerrace 0.4% 29%

Class C
(832×480)

BasketballDrill 1.6% 33%
BQMall 2.2% 34%
PartyScene 1.7% 41%
RaceHorses 1.9% 38%

Class D
(416×240)

BasketballPass 2.4% 44%
BQSquare 1.6% 39%
BlowingBubbles 1.8% 35%
RaceHorses 2.5% 45%

Class F
BasketballDrillText 2.0% 40%
ChinaSpeed 3.9% 41%
SlideEditing 1.1% 10%
SlideShow 2.8% 23%

Average 1.7% 35%

TABLE V
CODING RESULTS AND TRANSCODER EXECUTION TIMES(TET) USING

THE FA+QTL+MVR2 METHOD IN A RA CONFIGURATION

Class Sequence Coding loss TET
Class B
(1920×1080)

Kimono1 1.1% 44%
ParkScene 3.5% 44%
Cactus 4.1% 45%
BasketballDrive 2.8% 42%
BQTerrace 3.4% 39%

Class C
(832×480)

BasketballDrill 4.3% 34%
BQMall 4.3% 38%
PartyScene 4.6% 52%
RaceHorses 4.4% 39%

Class D
(416×240)

BasketballPass 4.7% 45%
BQSquare 5.9% 49%
BlowingBubbles 4.8% 55%
RaceHorses 5.6% 41%

Class E
(1280×720)

FourPeople 4.3% 22%
Johnny 2.0% 17%
KristenAndSara 2.6% 26%

Class F
BasketballDrillText 6.0% 38%
ChinaSpeed 6.6% 39%
SlideEditing 10.1% 9%
SlideShow 10.4% 18%

Average 4.8% 34%

TABLE VI
CODING RESULTS AND TRANSCODER EXECUTION TIMES(TET) USING

THE FA+QTL+MVR2 METHOD IN A LD CONFIGURATION

FA+QTL+MVR (35% vs. 37% TET in RA and 34%
vs. 44% TET in LD) but also higher coding losses (1.7% vs.
1.4% in RA and 4.8% vs 3.7% in LD). In order to explain
this, we have measured that with the FA+QTL+MVR2
variant, the number of tested motion vectors is significantly
reduced (by 98% in the RA configuration) compared to
FA+QTL+MVR, thus explaining the time saving. However,
without the refinement, the estimated motion vector will not
be as accurate, thus incurring the additional coding losses.

D. Comparison with state-of-the-art methods

We have compared our proposed method to other re-
cent transcoding techniques found in the literature. Existing



10

methods are not consistently tested over all the HEVC test
sequences and configurations. Hence, we have evaluated our
method in the same testing conditions (coding configuration
and sequences) as the ones used for each state-of-the-art
technique in order to perform the most fair comparison.

1) Random access configuration:Under a random access
configuration, reference results are only available for three
techniques: two of them, MVVD and LDF, have been proposed
by Peixotoet al. in [20]; a third one has been introduced by
Diaz-Onrubiaet al. in [15]. Indeed, the results of the MVRT
and RFA transcoders in this configuration are not available
in the respective papers. Also, the presented results in [20]
are limited to only two sequences: Kimono1 and ParkScene.
Table VII compares our method to the two transcoders in [20].
A threshold of 0.5 was selected in the FA. We can see that

Sequence MVVD [20] LDF [20]
FA+QTL+MVR

(T=0.5)
Loss TET Loss TET Loss TET

Kimono1 1.6% 52% 3% 40% -0.1% 39%
ParkScene 4.3% 44% 4.2% 34% 0.4% 36%

Average 3% 48% 3.6% 37% 0.1% 37.5%

TABLE VII
COMPARISON BETWEEN OUR METHOD AND OTHER TRANSCODERS IN THE

RA CONFIGURATION

in a random access configuration, our method is better than
MVVD and LDF because it produces lower coding losses for
lower (or similar) encoding execution times. Note that as in
our method, MVVD and LDF also employ a threshold.

In Tab. VIII we show the comparison of the two variants of
our method with AFQLD proposed in [15]. We first observe
that AFQLD can be limited to level zero of the HEVC quadtree
(L0, first and second column in Tab. VIII). In this case, the
transcoding is not very different from the anchor: the TET is
on the average 80% of FD-FE and the rate increase is small
(0.6%). More interesting results are obtained when AFQLD
is run up to levels 1 and 2 (L1 and L2 columns). However,
compared to both the two version of our proposed algorithm,
AFQLD has larger losses (around twice as ours) for smaller
accelerations. We conclude that our method has globally better
performance than AFQLD in RA configuration.

2) Low delay configuration:In a low delay configuration,
we can compare our method to four different transcoders:
MVRT, MVVD, LDF, and RFA. For MVRT, results are
presented in [18] for three sequences only: BasketballDrill,
BQMall and RaceHorses (results are also given for the
Vidyo sequence, but this sequence was not considered in
our experiments because it is not in the current HEVC test
set). For MVVD, results are provided for five sequences:
BasketballDrill, BQMall, RaceHorses (in [18]), Kimono1 and
ParkScene (in [20]). For LDF, results for only two sequences
are given in [20]: Kimono1 and ParkScene. Finally, for RFA,
results are given for classes B to E in [19]. Tables IX, X, XI,
and XII compare our method to these four transcoders. Note
that in those experiments, the threshold in the fusion algorithm
was set with an aim to achieve the same average execution
time as the technique to compare to, and thus be able to fairly
compare coding losses. This, however, was not possible when

comparing with LDF and RFA (Tables XI and XII) because
no threshold used in the fusion algorithm can match the TET
values achieved with these two state-of-the-art transcoders.
Indeed, varying the threshold only gives us a limited range
of possible TET values as the TETs begin to saturate past a
certain threshold value.

Sequence MVRT [18] FA+QTL+MVR (T=0.5)
Loss TET Loss TET

BasketballDrill 2.8% 71% 3.7% 50%
BQMall 3.2% 64% 3.9% 49%
RaceHorses 7.7% 56% 3.2% 53%

Average 4.6% 64% 3.6% 51%

TABLE IX
COMPARISON BETWEEN OUR METHOD ANDMVRT IN THE LD

CONFIGURATION

Sequence MVVD [18], [20] FA+QTL+MVR (T=1.5)
Loss TET Loss TET

BasketballDrill 6.3% 39% 4.4% 46%
BQMall 7.8% 43% 7.5% 45%
RaceHorses 4.7% 56% 4.9% 54%
Kimono1 3.0% 46% 1.7% 41%
ParkScene 9.8% 34% 5.6% 39%
Average 6.3% 44% 4.8% 45%

TABLE X
COMPARISON BETWEEN OUR METHOD ANDMVVD IN THE LD

CONFIGURATION

Sequence LDF [20] FA+QTL+MVR (T=1.5)
Loss TET Loss TET

Kimono1 3.8% 37% 1.7% 41%
ParkScene 4.4% 33% 5.6% 39%
Average 4.1% 35% 3.7% 40%

TABLE XI
COMPARISON BETWEEN OUR METHOD ANDLDF IN THE LD

CONFIGURATION

Sequence RFA [19] FA+QTL+MVR (T=0.5)
Loss TET Loss TET

Kimono1 0.0% 50% 0.6% 54%
ParkScene 0.6% 52% 2.6% 44%
Cactus 0.1% 53% 3.7% 57%
BQTerrace 2.1% 52% 2.5% 38%
BasketballDrive 0.0% 50% 2.1% 61%
FourPeople 0.2% 51% 3.7% 26%
Johnny 4.3% 51% 1.9% 22%
KristenAndSara 1.8% 51% 2.3% 31%
RaceHorses (class C)0.7% 50% 3.2% 53%
BQMall 0.9% 52% 3.9% 49%
PartyScene 3.5% 55% 3.9% 49%
BasketballDrill 0.0% 51% 3.7% 50%
RaceHorses (class D)2.8% 50% 4.3% 66%
BQSquare 4.6% 56% 5.3% 47%
BlowingBubbles 4.4% 58% 4.3% 66%
BasketballPass 1.9% 50% 4.0% 70%

Average 1.7% 52% 3.2% 46%

TABLE XII
COMPARISON BETWEEN OUR METHOD ANDRFA IN THE LD

CONFIGURATION
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Sequence AFQLD L0 [15] AFQLD L1 [15] AFQLD L2 [15] FA+QTL+MVR FA+QTL+MVR2
Loss TET Loss TET Loss TET Loss TET Loss TET

Traffic 1.1% 66% 3.4% 48% 4.2% 37% 0.6% 46% 0.9% 42%
PeopleOnStreet 0.1% 89% 0.7% 75% 2.0% 58% 2.4% 62% 2.7% 57%
Kimono1 0.9% 72% 2.8% 53% 3.1% 41% -0.1% 39% 0.9% 33%
ParkScene 1.2% 69% 4.3% 51% 4.7% 40% 0.4% 36% 0.5% 39%
Cactus 0.7% 70% 3.1% 52% 3.8% 42% 1.1% 35% 1.1% 30%
BasketballDrive 0.8% 74% 5.2% 53% 5.8% 44% 0.7% 42% 0.8% 35%
BQTerrace 1.8% 63% 5.8% 48% 6.9% 36% 0.1% 27% 0.4% 29%
BasketballDrill 0.2% 80% 3.1% 62% 3.9% 48% 1.5% 40% 1.6% 33%
BQMall 0.5% 79% 3.0% 59% 3.7% 45% 2.2% 35% 2.2% 34%
PartyScene 0.2% 89% 1.4% 68% 1.9% 51% 1.8% 40% 1.7% 41%
RaceHorses 0.1% 90% 1.3% 69% 1.5% 68% 1.1% 48% 1.9% 38%
BasketballPass 0.2% 89% 4.5% 66% 5.1% 54% 2.4% 45% 2.4% 44%
BQSquare 0.7% 84% 2.8% 58% 3.2% 44% 1.6% 35% 1.6% 39%
BlowingBubbles 0.2% 88% 1.5% 69% 2.1% 51% 1.7% 36% 1.8% 35%
RaceHorses 0.1% 94% 0.5% 80% 1.6% 60% 2.0% 50% 2.5% 45%

Average 0.6% 80% 2.9% 61% 3.6% 48% 1.3% 41% 1.5% 38%

TABLE VIII
COMPARISON BETWEEN OUR METHOD ANDAFQLD [15] IN THE RA CONFIGURATION

.

Tables IX and X show that our method is better than
MVRT and MVVD in a LD configuration, because our method
produces lower coding losses at lower or comparable execution
times. Table XI shows that our method produces a different
coding loss / execution time trade-off than LDF. While LDF
achieves more execution time savings, our method achieves
lower coding losses. Two sequences may be insufficient to
choose a clear winner between our method and LDF, and
results on other sequences are unfortunately not reported
in [20]. Our method is however better than LDF in a RA
configuration as shown in Table VII.

Table XII shows that the RFA transcoder produces lower
losses than our method (1.7% vs.3.2%), but it is slower (RFA
takes12% more time in the average than ours). Therefore, we
cannot conclude that our method is better than RFA, but that it
provides a time-quality trade-off that is not achievable byRFA.
This trade-off may be more valuable than the RFA’s one for
two reasons. First, in LD configurations, the focus is typically
on speed rather than on quality, otherwise one would choose an
RA configuration and in this case our technique outperforms
the state of the art; second, a typical application requiring a
low delay is video-conference: for this kind of content (class
E sequences), our techniques is much faster than RFA (26%

of FD-FE vs.51%, practically twice faster) with very close
rate increases (2.6% vs. 2.3%).

In summary, our technique provides operational points that
are not achievable by RFA; in addition, for the applications
and the content where the LD configuration is more relevant,
our technique is faster or much faster, with small (general
content) to negligible (video conference content) rate losses.
Our conclusion is that our technique is a valuable alternative
to the state of the art, and that for video conference contents
and applications (most relevant for LD), it seems more fit that
the state of the art (twice faster with practically no losses).

Considering the RFA algorithm, we observe that it includes
several steps: coding complexity region segmentation, adap-
tive searching depth range decision of CTU, motion vector
de-noise filter, motion vector clustering, adaptive minimum

searching depth and PU partitions selection, and optimization
of motion vector predictor and search window size. This
results in a complex algorithm which requires a one-frame
preprocessing delay, whereas ours only has a one-CTU prepro-
cessing delay (the encoding of the first CTU can be performed
in parallel with the fusion of the second). Comparing the two
techniques, ours is more adapted to the LD configurations
in the sense that it requires only one CTU pre-processing
delay, in opposition to one full image delay for RFA. Finally,
in light of the various steps performed in RFA, we believe
that our algorithm could be more easily adapted to hardware
implementation, and that, in conclusion, it is suited to cases
where RFA would be too slow or introduce too much delay.

FMD-FME [13] FMD-FME [14] FA+QTL+MVR
Loss TET Loss TET Loss TET
1.2% 60% 1.3% 59% 3.3% 45%

TABLE XIII
COMPARISON BETWEEN OUR METHOD ANDFMD-FME [13] AND [14] IN

THE LD CONFIGURATION, AVERAGE ON CLASS B, C & D SEQUENCES

In Tab. XIII we compare FA+QTL+MVR to FMD-
FME [13] and [14]. For brevity, we report here only the
average of the transcoding results, which were obtained on
the sequences of classes B, C and D. As for the RFA case,
we observe that the proposed method is faster than references
even though it provides a larger coding rate. This result is
relevant for low-delay application, where the processing time
is arguably preeminent.

Finally, in Tab. XIV, we compare the proposed method with
AFQLD in LD-P configuration. As for the RA case, we report
the results of AFQLD for the three levels L0, L1 and L2. As
for the RA configuration, the L0 level is not very relevant.
For the L1 and L2 levels, we observe again that AFQLD has
both larger BD-Rate losses and larger execution times than
FA+QTL+MVR. Compared to FA+QTL+MVR2, AFQLD has
similar or larger losses and definitely larger execution times.
We conclude that also for the LD configuration the proposed
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Sequence AFQLD L0 [15] AFQLD L1 [15] AFQLD L2 [15] FA+QTL+MVR FA+QTL+MVR2
Loss TET Loss TET Loss TET Loss TET Loss TET

Kimono1 0.4% 83% 2.6% 61% 3.0% 43% 0.6% 54% 1.1% 44%
ParkScene 0.4% 81% 5.7% 57% 6.4% 44% 2.6% 44% 3.5% 44%
Cactus 0.3% 79% 2.8% 65% 4.2% 50% 3.7% 57% 4.1% 45%
BasketballDrive 0.1% 86% 3.6% 63% 4.5% 50% 2.1% 61% 2.8% 42%
BQTerrace 0.4% 76% 9.5% 55% 10.2% 44% 2.5% 38% 3.4% 39%
BasketballDrill 0.0% 86% 1.7% 69% 3.3% 52% 3.7% 50% 4.3% 34%
BQMall 0.2% 88% 1.1% 75% 2.4% 53% 3.9% 49% 4.3% 38%
PartyScene 0.0% 93% 0.5% 79% 1.5% 60% 3.9% 49% 4.6% 52%
RaceHorses 0.0% 93% 0.6% 79% 1.3% 63% 3.2% 53% 4.4% 39%
BasketballPass 0.0% 92% 1.3% 75% 2.2% 61% 4.0% 70% 4.7% 45%
BQSquare 0.1% 93% 2.3% 70% 3.0% 56% 5.3% 47% 5.9% 49%
BlowingBubbles 0.0% 94% 0.3% 82% 1.5% 61% 4.3% 66% 4.8% 55%
RaceHorses 0.1% 94% 0.5% 81% 1.3% 66% 4.3% 66% 5.6% 41%
FourPeople 1.7% 52% 7.2% 39% 7.5% 30% 3.7% 26% 4.3% 22%
Johnny 5.6% 61% 13.4% 29% 11.9% 23% 1.9% 22% 2.0% 17%
KristenAndSara 3.7% 47% 9.4% 36% 10.0% 27% 2.3% 31% 2.6% 26%

Average 0.8% 81% 3.9% 63% 4.6% 49% 3.3% 48% 3.9% 39%

TABLE XIV
COMPARISON BETWEEN OUR METHOD ANDAFQLD [15] IN THE LD CONFIGURATION

algorithms outperform AFQLD.

V. CONCLUSION

In this paper, we have presented a novel AVC to HEVC
transcoder based on quadtree limitation. AVC blocks are first
fused using a fusion algorithm in order to translate the AVC
coding structure into one comparable to that of HEVC. The
HEVC quadtree is then limited to the fused AVC one. The
method is coupled with a motion vector reuse scheme to
further bring execution time savings. The proposed method
brings 63% execution time savings with only a 1.4% coding
loss in a random access configuration. It offers also other
advantages: the fusion algorithm can be executed in parallel on
multiple CTUs at once, hence allowing an efficient hardware
implementation of the method. Also, the trade-off between
coding losses and execution time savings can be fine-tuned
using a single threshold value. Compared to other state-
of-the-art transcoders, the proposed method is better in a
random access configuration. In a low delay configuration,
it offers better or similar performance, especially on video
conferencing content at which low delay coding configurations
are typically aimed.

The limitations of the present work lie in the following
issues. First, only a subset of the available information of
the H.264/AVC stream was exploited in our technique: in the
future, additional information from the AVC bitstream can be
used to further increase execution time savings. The energy
of the residuals, the number of non-zero DCT coefficients,
and the Intra directions are some examples of such AVC
information. These can be used to further reduce execution
time in other parts of the HEVC encoding process, such
as Intra tests, transform size selection, and entropy coding.
Second, the selection of the optimal threshold valueT = 1

has been performed on a quite complete test set, but for a
specific content or application other values may give better
results. An adaptive threshold selection technique will be
investigated in the future. Third, we did not take into account
the effects of a bad configuration of the H.264 encoder, neither

its specific artifacts. Finally, we have not considered the effect
of transmission on lossy channels. These relevant issues will
be the subject of future works.
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