Marouane Hachicha 
  
Member, IEEE J Ér Ôme Darmont 
  
A Survey of XML Tree Patterns

Keywords: XML Querying, Data Tree, Tree Pattern, Tree Pattern Query, Twig Pattern, Matching, Containment, Tree Pattern Minimization, Holistic Matching, Tree Pattern Mining, Tree Pattern Rewriting

With XML becoming an ubiquitous language for data interoperability purposes in various domains, efficiently querying XML data is a critical issue. This has lead to the design of algebraic frameworks based on tree-shaped patterns akin to the treestructured data model of XML. Tree patterns are graphic representations of queries over data trees. They are actually matched against an input data tree to answer a query. Since the turn of the twenty-first century, an astounding research effort has been focusing on tree pattern models and matching optimization (a primordial issue). This paper is a comprehensive survey of these topics, in which we outline and compare the various features of tree patterns. We also review and discuss the two main families of approaches for optimizing tree pattern matching, namely pattern tree minimization and holistic matching. We finally present actual tree pattern-based developments, to provide a global overview of this significant research topic.

INTRODUCTION

S INCE its inception in 1998, the eXtended Markup Language (XML) [START_REF] Quin | Extensible Markup Language (XML)[END_REF] has emerged as a standard for data representation and exchange over the Internet, as many (mostly scientific, but not only) communities adopted it for various purposes, e.g., mathematics with MathML [START_REF] Carlisle | Mathematical Markup Language (MathML) Version 3.0[END_REF], chemistry with CML [START_REF] Murray-Rust | Chemical Markup Language -CML[END_REF], geography with GML [START_REF] Lake | Geography Mark-Up Language: Foundation for the Geo-Web[END_REF] and e-learning with SCORM [START_REF] Adl | SCORM 2004 4th Edition Version 1.1 Overview[END_REF], just to name a few. As XML became ubiquitous, efficiently querying XML documents quickly appeared primordial and standard XML query languages were developed, namely XPath [START_REF] Clark | XML Path Language (XPath) Version 1.0[END_REF] and XQuery [START_REF] Boag | XQuery 1.0: An XML Query Language[END_REF]. Research initiatives also complemented these standards, to help fulfill user needs for XML interrogation, e.g., XML algebras such as TAX [START_REF] Jagadish | TAX: A Tree Algebra for XML[END_REF] and XML information retrieval [START_REF] Trotman | XML-IR Users and Use Cases[END_REF].

Efficiently evaluating path expressions in a treestructured data model such as XML's is crucial for the overall performance of any query engine [START_REF] Michiels | Put a Tree Pattern in Your Algebra[END_REF]. Initial efforts that mapped XML documents into relational databases queried with SQL [START_REF] Deutsch | Storing Semistructured Data with STORED[END_REF], [START_REF] Shanmugasundaram | Relational Databases for Querying XML Documents: Limitations and Opportunities[END_REF] induced costly table joins. Thus, algebraic approaches based on treeshaped patterns became popular for evaluating XML processing natively instead [START_REF] Paparizos | Pattern Tree Algebras: Sets or Sequences?[END_REF], [START_REF] Paparizos | The Importance of Algebra for XML Query Processing[END_REF]. Tree algebras indeed provide a formal framework for query expression and optimization, in a way similar to relational algebra with respect to the SQL language [START_REF] Chamberlin | SEQUEL: A Structured English Query Language[END_REF].

In this context, a tree pattern (TP), also called pattern tree or tree pattern query (TPQ) in the literature, models a user query over a data tree. Simply put, a tree pattern is a graphic representation that provides an easy and intuitive way of specifying the interesting parts from an input data tree that must appear in • Marouane Hachicha and Jérôme Darmont are from the Université de Lyon (ERIC Lyon 2), 5 avenue Pierre Mendès-France, 69676 Bron Cedex, France. E-mails: marouane.hachicha@univ-lyon2.fr, jerome.darmont@univ-lyon2.fr query output. More formally, a TP is matched against a tree-structured database to answer a query [START_REF] Amer-Yahia | Minimization of Tree Pattern Queries[END_REF]. Figure 1 exemplifies this process. The upper left-hand side part of the figure features a simple XML document (a book catalog), and the lower left-hand side a sample XQuery that may be run against this document (and that returns the title and author of each book). The tree representations of the XML document and the associated query are featured on the upper and lower right-hand sides of Figure 1, respectively. At the tree level, answering the query translates in matching the TP against the data tree. This process can be optimized and outputs a data tree that is eventually translated back as an XML document.

Fig. 1. Tree representation of XML documents and queries

Since the early 2000s, a tremendous amount of research has been based on, focusing on, or exploiting TPs for various purposes. However, few related reviews exist. Gou and Chirkova extensively survey querying techniques over persistently stored XML data [START_REF] Gou | Efficiently Querying Large XML Data Repositories: A Survey[END_REF]. Although the intersection between their paper and ours is not empty, both papers are complementary. We do not address approaches related to the relational storage of XML data. By focusing on native XML query processing, we complement Gou and Chirkova's work with specificities such as TP structure, minimization approaches and sample applications. Moreover, we cover the many matching optimization techniques that have appeared since 2007. Other recent surveys are much shorter and focus on a particular issue, i.e., twig queries [START_REF] Lakshmanan | XML Tree Pattern, XML Twig Query[END_REF] and holistic matching [START_REF] Grimsmo | Towards unifying advances in twig join algorithms[END_REF].

The aim of this paper is thus to provide a global and synthetic overview of more than ten years of research about TPs and closely related issues. For this sake, we first formally define TPs and related concepts in Section 2. Then, we present and discuss various alternative TP structures in Section 3. Since the efficiency of TP matching against tree-structured data is central in TP usage, we review the two main families of TP matching optimization methods (namely, TP minimization and holistic matching approaches), as well as tangential but nonetheless interesting methods, in Section 4. Finally, we briefly illustrate the use of TPs through actual TP-based developments in Section 5. We conclude this paper and provide insight about future TP-related research in Section 6.

BACKGROUND

I N this section, we first formally define all the concepts used in this paper (Section 2.1). We also introduce a running example that illustrates throughout the paper how the TPs and related algorithms we survey operate (Section 2.2).

Definitions

XML document

XML is known to be a simple and very flexible text format. It is essentially employed to store and transfer text-type data. The content of an XML document is encapsulated within elements that are defined by tags [START_REF] Quin | Extensible Markup Language (XML)[END_REF]. These elements can be seen as a hierarchy organized in a tree-like structure.

XML fragment

An XML document may be considered as an ordered set of elements. Any element may contain subelements that may in turn contain subelements, etc. One particular element, which contains all the others, is the document's root. Any element (and its contents) different from the root is termed an XML fragment. An XML fragment may be modeled as a finite rooted, labeled and ordered tree.

Data tree

An XML document (or fragment) may be modeled as a data tree t = (r, N, E), where N is a set of nodes, r ∈ N is the root of t, and E is a set of edges stitching together couples of nodes (n i , n j ) ∈ N × N .

Data tree collection

An XML document considered as a set of fragments may be modeled as a data tree collection (also named forest in TAX [START_REF] Jagadish | TAX: A Tree Algebra for XML[END_REF]), which is itself a data tree.

Data subtree

Given a data tree t = (r, N, E), t ′ = (r ′ , N ′ , E ′ ) is a subtree of t if and only if:

1) N ′ ⊆ N ; 2) let e

′ ∈ E ′ be an edge connecting two nodes (n ′ i , n ′ j ) of t ′ ; there exists an edge e ∈ E connecting two nodes (n i , n j ) of t such that n i = n ′ i and n j = n ′ j .

Tree pattern

A tree pattern p is a pair p = (t, F ) where:

1) t = (r, N, E) is a data tree;

2) F is a formula that specifies constraints on t's nodes. Basically, a TP captures a useful fragment of XPath [START_REF] Flesca | On the minimization of Xpath queries[END_REF]. Thus, it may be seen as the translation of a user query [START_REF] Chen | From Tree Patterns to Generalized Tree Patterns: On Efficient Evaluation of XQuery[END_REF]. Translating an XML query plan into a TP is not a simple operation. Some XQueries are written with complex combinations of XPath and FLWOR expressions, and imply more than one TP. Thus, such queries must be broken up into several TPs. Only a single XPath expression can be translated into a single TP. The more complex a query is, the more its translation into TP(s) is difficult [START_REF] Michiels | Put a Tree Pattern in Your Algebra[END_REF]. Starting from TPs to express user queries in a first stage, and optimize them in a second stage is a very effective solution used in XML query optimization [START_REF] Chen | From Tree Patterns to Generalized Tree Patterns: On Efficient Evaluation of XQuery[END_REF].

Tree pattern matching

Matching a TP p against a data tree t is a function f : p → t that maps nodes of p to nodes of t such that:

• structural relationships are preserved, i.e., if nodes (x, y) are related in p through a parentchild relationship, denoted PC for short or by a simple edge / in XPath (respectively, an ancestordescendant relationship, denoted AD for short or by a double edge // in XPath), their counterparts (f (x), f (y)) in t must be related through a PC (respectively, an AD) relationship too; • formula F of p is satisfied. The output of matching a TP against a data tree is termed a witness trees in TAX [START_REF] Jagadish | TAX: A Tree Algebra for XML[END_REF].

Tree pattern embedding

Embedding a TP p into a data tree t is a function g : p → t that maps each node of p to nodes of t such that structural relationships (PC and AD) are preserved.

The difference between embedding and matching is that embedding maps a TP against a data tree's structure only, whereas matching maps a TP against a data tree's structure and contents [START_REF] Lakshmanan | On Testing Satisfiability of Tree Pattern Queries[END_REF]. In the remainder of this paper, we use the more general term matching when referring to mapping TPs against data trees. Fig. 2. Sample data tree (a), tree pattern (b) and witness tree (c) 2.1.9 Boolean tree pattern A Boolean TP b yields a "true" (respectively "false") result when successfully (respectively unsuccessfully) matched against a data tree t. In other words, b has no output node(s) [START_REF] Wang | Independence of Containing Patterns Property and Its Application in Tree Pattern Query Rewriting Using Views[END_REF]: it yields a "true" result when t structurally matches (embeds) p.

Running example

Let us consider the data tree from Figure 2(a), which represents a collection of books. The root doc gathers books, each described by their title, author(s), editor, year of publication and summary. Data tree nodes are connected by simple edges (/), i.e., PC relationships. Books do not necessarily bear the same structure. For instance, a summary is not present in all books, and some books are written by more than one author.

The TP from Figure 2(b) selects book titles, authors, and years. Moreover, formula F indicates that author must be different from Jill. Generally, a formula is a boolean combination of predicates on node types (e.g., $1.tag = book) and/or values (e.g., $3.value ! = "Jill"). Matching this TP against the data tree from Figure 2(a) outputs the data tree (or witness tree) from Figure 2(c). Only one book is selected from Figure 2(a), since the other one (title = "A dummy for a computer"):

1) does not contain a year element; 2) is written by author Jill, which contradicts formula F . Finally, the AD relationship $1//$3 in Figure 2(b)'s TP is correctly taken into account. It is not the structure of the book element with title = "A dummy for a computer" that disqualifies it, but the fact that one of its authors is Jill. If this author was Gill, the book would be output.

TREE PATTERN STRUCTURES

W E review in this section the various TP struc- tures found in the literature. Most have been proposed to support XML algebras (Section 3.1), but some have also been introduced for specific optimization purposes (Section 3.2). We conclude this section by discussing their features in Section 3.3.

Tree patterns in algebraic frameworks

The first XML algebras have appeared in 1999 [START_REF] Beech | A formal data model and algebra for XML[END_REF], [START_REF] Beeri | SAL: An Algebra for Semistructured Data and XML[END_REF] in conjunction with efforts aiming to define a powerful XML query language [START_REF] Chamberlin | Quilt: An XML Query Language for Heterogeneous Data Sources[END_REF], [START_REF] Deutsch | XML-QL: A Query Language for XML[END_REF], [START_REF] Ishikawa | The Design of a Query Language for XML Data[END_REF], [START_REF] Mecca | Do we really need a new query language for XML?[END_REF], [START_REF] Shinagawa | X 2 QL: An eXtensible XML Query Language Supporting User-Defined Foreign Functions[END_REF]. Note that they have appeared before the first specification of XQuery, the now standard XML query language, which was issued in 2001 [START_REF] Boag | XQuery 1.0: An XML Query Language[END_REF]. The aim of an XML tree algebra is to feature a set of operators to manipulate and query data trees. Query results are also data trees.

TAX tree pattern

The Tree Algebra for XML (TAX) [START_REF] Jagadish | TAX: A Tree Algebra for XML[END_REF] is one of the most popular XML algebras. TAX's TP preserves PC and AD relationships from an input ordered data tree in output, and satisfies a formula that is a boolean combination of predicates applicable to nodes. The example from Figure 2(b) corresponds to a TAX TP, save that node relationships are simple edges labeled AD or PC in TAX instead of being expressed as single or double edges. The TAX TP is the most basic TP used in algebraic contexts. It has thus been greatly extended and enhanced.

Generalized tree pattern

The idea behind generalized tree patterns (GTPs) is to associate more options with TP edges in order to enrich matching. In TAX, one absent pattern node in the matched subtree prevents it to appear in output. A GTP extends the classical TAX TP by creating groups of nodes to facilitate their manipulation, and by enriching edges to be extracted by the mandatory/optional matching option [START_REF] Chen | From Tree Patterns to Generalized Tree Patterns: On Efficient Evaluation of XQuery[END_REF]. Figure 3 shows an example of GTP, where the edge connecting the year element to its parent book node is dotted (i.e., optional), and title and author nodes are connected to the same parent book node with solid (i.e., mandatory) edges. This GTP permits to match all books described by their title and author(s), mandatorily, and that may be described by their year of publication. Matching it against the data tree from Figure 2(a) outputs both books ("Maktub" and "A dummy for a computer"), even though the second one does not contain a year element, while ensuring that the title and author elements exist in the matched book subtrees.

Fig. 3. Sample generalized tree pattern

Finally, note that the GTP from Figure 3, unlike the TP from Figure 2(b), does not include an author != "Jill" clause in its formula. Retaining this predicate would not allow the second book (title = "A dummy for a computer") to be matched by this GTP, since the boolean combination of formula elements (related with and) cannot be verified.

Annotated tree pattern

A feature, more than a limitation, of the TAX TP is that a set of subelements from the input data tree may all appear in the output data tree. For example, a TP with a single author node can match against a book subtree containing several author subelements. Annotated pattern trees (APTs) from the Tree Logical Class (TLC) algebra [START_REF] Paparizos | Tree Logical Classes for Efficient Evaluation of XQuery[END_REF] solve this problem by associating matching specifications to tree edges. Matching options are:

• +: one to many matches; • -: one match only;

• * : zero to many matches; • ?: zero or one match. An APT, as a basic TAX TP, preserves the order output of nodes from the input data tree, whatever node order is specified in the TP. In other words, node order in witness trees is always the same as that of the input data tree. No reordering option is available, though it is essential when optimizing queries. To circumvent this problem, the APT used in TLC's Select and Join operators is supplemented with an order parameter (ord) based on an order specification (O-Spec) [START_REF] Paparizos | Pattern Tree Algebras: Sets or Sequences?[END_REF]. Four cases may occur:

1) empty: output node order is unspecified; O-Spec is empty; 2) maintain: input node order is retained; O-Spec duplicates input node order; 3) list-resort: nodes are wholly sorted with respect to O-Spec; input node order is forsaken; 4) list-add: nodes are partially sorted with respect to O-Spec. For example, associating the O-Spec specification [author, title] to the APT from Figure 4 permits to select books ordered by author first, and then title. Graphically, the author node would simply appear on the left hand side of the witness tree and the title node on the right hand side.

Tree patterns used in optimization processes

Many TP matching optimization approaches extend the basic TP (Figure 2(b)) to allow a broader range of queries. In this section, we survey the TPs that introduce new, interesting features with respect to those already presented in Section 3.1.

Global query pattern tree

A global query pattern tree (G-QPT) is constructed from a set of possible ordered TPs proposed for the same query [START_REF] Chen | Discovering Ordered tree patterns from XML queries[END_REF]. First, a root is created for the G-QPT. Then, each TP is merged with the G-QPT as follows:

• the TP root is merged with the G-QPT root; • TP nodes are merged with G-QPT nodes with respect to node ordering and PC-AD relationships. For example, TPs p 1 and p 2 from Figure 5 together answer query "select title, authors and year of publication of books" and merge into G-QPT g.

Twig pattern

Twig patterns are designed for directed and rooted graphs [START_REF] Kimelfeld | Twig Patterns: From XML Trees to Graphs[END_REF]. Here, XML documents are considered having a graph structure, thanks to ID references connecting nodes. Twig patterns respect PC-AD node relationships and express node constraints in formula F (called twig condition here) with operators such as equals to, contains, ≥, etc. In Figure 6, we represent the twig pattern that is equivalent to the TP from Figure 2(b).

Fig. 6. Sample twig pattern

Moreover, distance-bounding twigs (DBTwigs) extend twig patterns to limit the large number of answers resulting from matching a classical twig pattern against a graph [START_REF] Kimelfeld | Twig Patterns: From XML Trees to Graphs[END_REF]. This method is called Filtering + Ranking. Its goal is to filter data to be matched by indicating the length of paths corresponding to descendant edges. DBTwigs also permit to indicate the number (0, 1...) of nodes to be matched. All these parameters are indicated in the graphical representation of DBTwigs.

Logical operator nodes

Izadi et al. include in their formal definition of TPs a set O of logical operator nodes [START_REF] Izadi | S 3 : Evaluation of Tree-Pattern Queries Supported by Structural Summaries[END_REF]. ∧, ∨ and ⊕ represent the binary AND, OR, and XOR logical operators, respectively. ¬ is the unary NOT operator. These operator nodes go further than GTPs' mandatory/optional edge annotations by specifying logical relationships between their subnodes. For instance, Figure 7 features a TP that selects book titles and either a set of authors or an editor. 

Node degree and output node specification

In a TP, the degree of a tree node x, denoted degree(x), represents its number of children [START_REF] Miklau | Containment and Equivalence for an XPath Fragment[END_REF]. Miklau and Suciu define a maximal value for degree(x) within a path expression optimization algorithm. This approach is mainly designed to check containment and equivalence of XPath fragments (Section 4.1.1). Then, translating XPath expressions into TPs requires the identification of an output node marked with a wildcard ( * ) in the TP. For example, suppose that we are only interested in book titles from Figure 2(a). Then, we would simply associate a * symbol with the title node in the TP from Figure 2(b). Note that the other nodes must remain in the TP if they appear in formula F and thus help specify the output node.

Extended formula

Lakshmanan et al. further specify how formula F is expressed in a TP [START_REF] Lakshmanan | On Testing Satisfiability of Tree Pattern Queries[END_REF]. They define F as a combination of tag constraints (TCs), value-based constraints (VBCs) and node identity constraints (NICs). TCs specify constraints on tag names, e.g., node.tag = "book". VBCs specify selection and join constraints on tag attributes and values using the operators =, =, ≤, ≥, > and <. NICs finally determine whether two TP nodes are the same (≈) or not. In addition to TCs, VBCs and NICs, wildcards ( * ) are associated with untagged nodes.

For example, in Figure 8, we extend the TP from Figure 2(b) with a VBC indicating that books to be selected must be of type "Novel". We suppose here that a type is associated with each book node, that the first book (title = "Maktub") is of type "Novel", and that the second book (title = "A dummy for a computer") is of type "Technical book". Then, the output tree would of course only include the book entitled "Maktub". 

Extended tree pattern

Extended TPs complement classical TPs with a negation function, wildcards and an order restriction [START_REF] Lu | Extended XML Tree Pattern Matching: Theories and Algorithms[END_REF]. For example, in Figure 9, the negative function (denoted ¬) helps specify that we look for an edited book, i.e., with no author node. The wildcard node * can match any single node in a data tree. Note that the wildcard has a different meaning here than in Section 3.2.4, where it denotes an output node, while output node names are underlined in extended TPs. Finally, the order restriction denoted by a < in a box means that children of node book are ordered, i.e., title must come before the * node. 

Discussion

In this section, we discuss and compare the TPs surveyed in Sections 3.1 and 3.2. For this sake, we introduce four comparison criteria.

• Matching power: Matching encompasses two dimensions. Structural matching guarantees that only subtrees of the input data tree that map the TP are output. Matching by value is verifying formula F . We mean by matching power all the matching options (edge annotations, logical operator nodes, formula extensions...) beyond these basics. Improving matching power helps filter data more precisely. • Node reordering capability: Order is important in XML querying, thus modern TPs should be able to alter it [START_REF] Paparizos | Pattern Tree Algebras: Sets or Sequences?[END_REF]. We mean by node reordering capability the ability of a TP to modify output node order when matching against any data tree.

Note that node reordering could be classified as a matching capability, but the importance of ordering witness trees leads us to consider it separately.

• Expressiveness: Expressiveness states how a logical TP, i.e., a TP under its schematic form, translates into the corresponding physical implementation.

The physical form of a TP may be either expressed with an XML query language (XQuery, generally), or an implementation within an XML database offering query possibilities. Using a TP for other purposes but querying, e.g., in optimization algorithms, is not accounted toward expressiveness. Note that a TP that cannot be expressed in physical form is usually considered useless.

• Supported optimizations: TPs are an essential element of XML querying [START_REF] Amer-Yahia | Minimization of Tree Pattern Queries[END_REF], [START_REF] Amer-Yahia | Tree Pattern Relaxation[END_REF]. Hence, many optimization approaches translate XML queries into TPs, optimize them, and then translate them back into optimized queries. Optimizing a TP increases its matching power. This criterion references the different kinds of optimizations supported by a given TP. TP comparison with respect to matching power, node reordering capability, expressiveness and supported optimizations follows (Sections 3.3.1, 3.3.2, 3.3.3 and 3.3.4, respectively), and is synthesized in Section 3.3.5.

Matching power

The most basic TP is TAX's [START_REF] Jagadish | TAX: A Tree Algebra for XML[END_REF]. Thus, matching a TAX TP against a data tree collection is very simple: it is only based on tree structure and node values specified in formula F . If F is absent, a TAX TP matches all possible subtrees from the input data tree.

Associating a mandatory/optional status to GTP edges [START_REF] Chen | From Tree Patterns to Generalized Tree Patterns: On Efficient Evaluation of XQuery[END_REF] increases the number of matched subtrees in output. Only one absent edge in a TAX TP with respect to a subtree containing all the other edges in this TP prevents matching, while the candidate subtree is "almost perfect". If this edge is labeled as optional in a GTP, matching becomes successful. Even more flexibility is achieved by logical operator nodes [START_REF] Izadi | S 3 : Evaluation of Tree-Pattern Queries Supported by Structural Summaries[END_REF], which allow powerful matching options, especially when logical operators are combined.

With APTs, matching precision is further improved through edge annotations [START_REF] Paparizos | Tree Logical Classes for Efficient Evaluation of XQuery[END_REF]. Annotations in APTs force the matching process to extract data according to their nature. For example, a classical TAX TP such as the one from Figure 2(b), extracting books by titles and authors, does not allow controlling the number of authors. APTs help select only books with, e.g., more than one author, as in the example from Figure 4. Unfortunately, annotations only allow two maximum cardinalities: one or several. DBTwigs [START_REF] Kimelfeld | Twig Patterns: From XML Trees to Graphs[END_REF] complement APTs in this respect, by allowing to choose the exact number of nodes to be matched. Node degree (number of children) [START_REF] Miklau | Containment and Equivalence for an XPath Fragment[END_REF] or the negation function of extended TPs [START_REF] Lu | Extended XML Tree Pattern Matching: Theories and Algorithms[END_REF] can also be exploited for this sake.

Finally, up to now, we focused on TP structure because few differences exist in formulas. Graphically, twig patterns associate constraints with nodes directly in the schema [START_REF] Kimelfeld | Twig Patterns: From XML Trees to Graphs[END_REF] while in the TAX TP and its derivatives, they appear in formula F , but this is purely cosmetic. Only TCs, VBCs and NICs help further structure formula F [START_REF] Lakshmanan | On Testing Satisfiability of Tree Pattern Queries[END_REF].

Node reordering capability

Despite many studies model XML documents as unordered data trees, order is essential to XML querying [START_REF] Paparizos | Pattern Tree Algebras: Sets or Sequences?[END_REF]. In XQuery, users can (re)order output nodes simply through the Order by clause inherited from SQL [START_REF] Chamberlin | SEQUEL: A Structured English Query Language[END_REF]. Hence, modern TPs should include ordering features [START_REF] Amer-Yahia | Minimization of Tree Pattern Queries[END_REF], [START_REF] Amer-Yahia | Tree Pattern Relaxation[END_REF].

However, among TAX TP derivatives, only ordered APTs and extended TPs feature reordering features. In G-QTPs, preorders associated with ordered TP nodes help determine output order [START_REF] Chen | Discovering Ordered tree patterns from XML queries[END_REF]. Unfortunately, order is disregarded in all other TP proposals.

Expressiveness

TAX TPs and their derivatives (GTPs and APTs) do not translate into an XML query language, but they are implemented, through the TLC physical algebra [START_REF] Paparizos | Tree Logical Classes for Efficient Evaluation of XQuery[END_REF], in the TIMBER XML database management system [START_REF] Paparizos | TIMBER: A Native System for Querying XML[END_REF]. TIMBER permits to store XML in native format and offers a query interface supporting both classical XQuery fragments and TAX operators. Note that TAX operators include a Group by construct that has no equivalent in XQuery.

Translating TAX TPs for XML querying follows nine steps:

1) identify all TP elements in the FOR clause; [START_REF] Katz | XQEngine at SourceForge[END_REF]. The other TPs we survey are used in various algorithms (containment and equivalence testing, TP rewriting, frequent TP mining...). Hence, their expressiveness is not assessed.

Supported optimizations

Approaches purposely proposing TPs (i.e., algebraic approaches) are much fewer than approaches using TPs to optimize XML querying. Moreover, even algebraic approaches such as TAX do address optimization issues. Since XML queries are easy to model with TPs, researchers casually translate any XML query in TPs, which are then optimized and implemented in algorithms, XML queries or any other optimization framework.

Hence, the biggest interest of the TP community lies in enriching and optimizing matching. Matching opportunities offered by TAX TPs, optional edges of GTPs, annotations, ordering specification and duplicate elimination of APTs, and extended TPs aim to achieve more results and/or better precision. GTP and APT matching characteristics prove their efficiency in TIMBER [START_REF] Paparizos | TIMBER: A Native System for Querying XML[END_REF].

Finally, satisfiability is an issue related to containment, a concept used in minimization approaches. Satisfiability means that there exists a database, consistent with the schema if one is available, on which the user query, represented by a TP, has a non-empty answer [START_REF] Lakshmanan | On Testing Satisfiability of Tree Pattern Queries[END_REF], [START_REF] Hidders | Satisfiability of XPath Expressions[END_REF], [START_REF] David | Complexity of Data Tree Patterns over XML Documents[END_REF], [START_REF] Benedikt | XPath satisfiability in the presence of DTDs[END_REF].

Synthesis

We recapitulate in Table 1 the characteristics of all TPs surveyed in this paper with respect to our comparison criteria.

In summary, matching options in TPs are numerous and it would probably not be easy to set up a metric to rank them. The best choice, then, seems to select a TP variant that is adapted to the user's or designer's needs. However, designing a TP that pulls together most of the options we survey is certainly desirable to maximize matching power.

With respect to output node ordering, we consider the ord order parameter introduced in APTs the simplest and most efficient approach. A list of ordered elements can indeed be associated with any TP, whatever the nature of the input data tree (ordered or unordered). However, it would be interesting to generalize the ord specification to other, possibly more complex, operators beside Select and Join, the two only operators benefiting from ordering in APTs.

Expressiveness is a complex issue. Translating XML queries into TPs is indeed easier than translating TPs back into an XML query plan. XQuery, although the standard XML query language, suffers from limitations such as the lack of a Group by construct. Thus, it is more efficient to implement TPs and exploit them to enrich XML querying in an ad-hoc environment such as TIMBER's. We think that the richer the pattern, with matching options, ordering specifications, possibility to associate with many operators (and other options if possible), the more efficient querying is, in terms of user need satisfaction. Finally, minimization, relaxation, containment, equivalence and satisfiability issues lead the TP community to optimize these tasks. However, most TPs used in this context are basic, unlike TPs targeted at matching optimization, which allows optimizing XML queries wherein are translated optimized TPs. In short, the best-optimized TP must be minimal, satisfiable, and offer as many matching options as possible.

TREE PATTERN MATCHING OPTIMIZATION

T HE aim of TPs is not only to provide a graphi- cal representation of queries over tree-structured data, but also and primarily, to allow matching queries against data trees. Hence, properly optimizing matching is primordial to achieve good query response time.

In this section, we present the two main families of approaches for optimizing matching, namely minimization methods (Section 4.1) and holistic matching approaches (Section 4.2). We also survey a couple of other specific approaches (Section 4.3), before globally discussing and comparing all TP matching optimization methods (Section 4.4).

Tree pattern minimization

The efficiency of TP matching depends a lot on the size of the pattern [START_REF] Amer-Yahia | Minimization of Tree Pattern Queries[END_REF], [START_REF] Flesca | On the minimization of Xpath queries[END_REF], [START_REF] Ramanan | Efficient algorithms for minimizing tree pattern queries[END_REF], [START_REF] Chen | Minimization of tree pattern queries with constraints[END_REF]. It is thus essential to identify and eliminate redundant nodes in the pattern and do so as efficiently as possible [START_REF] Amer-Yahia | Minimization of Tree Pattern Queries[END_REF]. This process is called TP minimization.

All research related to TP minimization is based on a pioneer paper by Amer-Yahia et al. [START_REF] Amer-Yahia | Minimization of Tree Pattern Queries[END_REF], who formulate the problem as follows: given a TP, find an equivalent TP of the smallest size. Formally, given a data tree t and a TP p of size (i.e., number of nodes) n, let S = {p i } be the set of TPs of size n i contained in p (p i ⊆ p and n i ≤ n ∀i). Minimizing p is finding a TP p min ∈ S of size n min such that:

• p min ≡ p when matched against t;

• n min ≤ n i ∀i. Moreover, a set C of integrity constraints (ICs) may be integrated into the problem. There are two forms of ICs:

1) each node of type A (e.g., book) must have a child (respectively, descendant) of type B (e.g., author), denoted A → B (respectively, A ⇒ B); 2) each node of type A (e.g., book) must have a descendant of type C (e.g., name), knowing that C is a descendant of B (e.g, author), i.e., A ⇒ C knowing that B ⇒ C. Since TP minimization relies on the concepts of containment and equivalence, we first detail how containment and equivalence are tested (Section 4.1.1). Then, we review the approaches that address the TP minimization problem without taking ICs into account (Section 4.1.2), and the approaches that do (Section 4.1.3).

Containment and equivalence testing

Let us first further formalize the definitions of containment and equivalence. Containment of two TPs p 1 and p 2 is defined as a node mapping relationship h : p 1 → p 2 such that [START_REF] Amer-Yahia | Minimization of Tree Pattern Queries[END_REF], [START_REF] Miklau | Containment and Equivalence for an XPath Fragment[END_REF]:

• h preserves node type, i.e., ∀x ∈ p 1 , x and h(x) must be of the same type. Moreover, if x is an output node, h(x) must be an output node too; • h preserves node relationships, i.e., if two nodes (x, y) are linked through a PC (respectively, AD) Fig. 10. Simple minimization example relationship in p 1 , (f (x), f (y)) must also be linked through a PC (respectively, AD) relationship in p 2 . Note that function h is very similar to function f that matches a TP to a data tree (Section 2.1.7), but here, h is a homomorphism between two TPs [START_REF] Chandra | Optimal Implementation of Conjunctive Queries in Relational Data Bases[END_REF]. Moreover, containment may be tested between a TP fragment and this TP as a whole. h is then an endomorphism.

Finally, equivalence between two TPs is simply considered as two-way containment [START_REF] Amer-Yahia | Minimization of Tree Pattern Queries[END_REF], [START_REF] Flesca | On the minimization of Xpath queries[END_REF]. Formally, let p 1 and p 2 be two TPs. p 1 ≡ p 2 if and only if p 1 ⊆ p 2 and p 2 ⊆ p 1 .

Miklau and Suciu show that containment testing is intractable in the general case [START_REF] Miklau | Containment and Equivalence for an XPath Fragment[END_REF]. They nonetheless propose an efficient algorithm for significant particular cases, namely TPs with AD edges and an output node. This algorithm is based on tree automata, the objective being to reduce the TP containment problem to that of regular tree languages. In summary, given two TPs p 1 and p 2 , to test whether p 1 ⊆ p 2 :

• p 1 's nodes and edges are matched to deterministic finite tree automaton A 1 's states and transitions, respectively; • p 2 's nodes and edges are matched to alternating finite tree automaton A 2 's states and transitions, respectively;

• if lang(A 1 ) ⊆ lang(A 2 ), then p 1 ⊆ p 2 ,
where lang(A i ) is the language associated with automaton A i (i = {1, 2}). Similar approaches further test TP containment under Document Type Definition (DTD) constraints [START_REF] Neven | XPath Containment in the Presence of Disjunction, DTDs, and Variables[END_REF], [START_REF] Wood | Containment for XPath Fragments under DTD Constraints[END_REF]. For instance, Wood exploits regular tree grammars (RTGs) to achieve containment testing [START_REF] Wood | Containment for XPath Fragments under DTD Constraints[END_REF]. Let D be a DTD and G 1 and G 2 RTGs corresponding to p 1 and p 2 , respectively. Then p 1 ⊆ p 2 if and only if

(D ∩ G 1 ) ⊆ (D ∩ G 2 ).

Unconstrained minimization

The first TP minimization algorithm, Constraint Independent Minimization (CIM) [START_REF] Amer-Yahia | Minimization of Tree Pattern Queries[END_REF], eliminates redundant nodes from TP p by exploiting the concept of images. Let there be a node x ∈ p. Its list of images, denoted images(x), is composed of nodes from p that bear the same type as x, but are different from x. For each leaf x ∈ p, CIM searches for nodes of the same type as x in the set of descendants of images(parent(x)), where parent(x) is x's parent node in p. If such nodes are found, x is redundant and thus deleted from p. CIM then proceeds similarly, in a bottom-up fashion, on parent(x), until all nodes in p (except output nodes that must always be retained) have been checked for redundancy.

For example, let us consider TP p from Figure 10. Without regarding node order, let us check leaf node $5 for redundancy. parent($5) = $4, images($4) = {$2}, descendants($2) = {$3}, where descendants(x) is the set of descendants of node x. $3 bears the same type as $5 (author), thus $5 is deleted. Similarly, $4 is then found redundant and deleted, outputting p min in Figure 10. Further testing $1, $2 and $3 does not detect any new redundant node. Moreover, deleting another node from p min would break the equivalence between p and p min . Hence, p min is indeed minimal.

All minimization algorithms subsequent to CIM retain its principle while optimizing complexity. One strategy is to replace images by more efficient relationships, i.e., coverage [START_REF] Chen | Efficient Processing of XML Tree Pattern Queries[END_REF], [START_REF] Che | Efficient Minimization of XML Tree Pattern Queries[END_REF], also called simulation [START_REF] Ramanan | Efficient algorithms for minimizing tree pattern queries[END_REF]. Let p be the TP to minimize, and x, y ∈ p two of its nodes. If y covers x (x y) [START_REF] Abiteboul | Queries and computation on the web[END_REF]:

• the types of x and y must be identical;

• if x has a child (respectively descendant) node

x ′ , y must have a child (respectively descendant) node y ′ such that x ′ y ′ . cov(x) denotes the set of nodes that cover x. cov(x) = x if x is an output node. Then, the minimization process tests node redundancy in a top-down fashion as follows: ∀x ∈ p, ∀x ′ ∈ children(x) (respectively descendants(x)), if ∃x ′′ ∈ children(x) (respectively descendants(x)) such that x ′′ ∈ cov(x ′ ), then x ′ and the subtree rooted in x ′ are deleted. children(x) (respectively descendants(x)) is the set of direct children (respectively, all descendants) of node x.

Another strategy is to simply prune subtrees recursively [START_REF] Chan | Tree Pattern Aggregation for Scalable XML Data Dissemination[END_REF]. The subtree rooted at node x, denoted subtree(x), is minimized in two steps:

1) ∀x ′ , x ′′ ∈ children(x), if subtree(x ′ ) ⊆ subtree(x ′′ ) then delete subtree(x ′ ); 2) ∀x ′ ∈ children(x) (remaining children of x),
minimize subtree(x ′ ). A variant proceeds similarly, by first searching in a TP p for any subtree p i redundant with sp, where sp is p stripped of its root [START_REF] Flesca | On the minimization of Xpath queries[END_REF]. Formally, the algorithm tests whether p -sp i ⊆ p i . Redundant subtrees are removed. Then, the algorithm is recursively executed on unpruned subtrees sp i .

Minimization under integrity constraints

Taking ICs into account in the minimization process is casually achieved as follows.

1) Augment the TP to minimize with nodes and edges that represent ICs. This is casually achieved with the classical chase technique [START_REF] Ullman | Principles of Database and Knowledge-Base Systems[END_REF].

For instance, if we had a book → author IC (nodes of type "book" must have a child of type "author"), we would add one child node of type author to each of the nodes $2 and $4 from Figure 10. Note that augmentation must only apply to nodes from the original TP, and not to nodes previously added by the chase. 2) Run any TP minimization algorithm, without testing utilitarian nodes introduced in step #1 for redundancy, so that ICs hold. 3) Delete utilitarian nodes introduced in step #1. This process has been applied onto the CIM algorithm, to produce ACIM (Augmented CIM) [START_REF] Amer-Yahia | Minimization of Tree Pattern Queries[END_REF], as well as on its coverage-based variants [START_REF] Ramanan | Efficient algorithms for minimizing tree pattern queries[END_REF], [START_REF] Chen | Efficient Processing of XML Tree Pattern Queries[END_REF], [START_REF] Chen | Minimization of XML Tree Pattern Queries in the Presence of Integrity Constraints[END_REF]. Since the size of an augmented TP can be much larger than that of the original TP, an algorithm called Constraint Dependant Minimization (CDM) also helps identify and prune all TP nodes that are redundant under ICs [START_REF] Amer-Yahia | Minimization of Tree Pattern Queries[END_REF]. CDM actually acts as a filter before ACIM is applied. CDM considers a TP leaf x ′ of type T ′ redundant and removes it if one of the following conditions holds.

• parent(x ′ ) = x (respectively ancestor(x ′ ) = x) of type T and there exists an IC T → T ′ (respectively

T ⇒ T ′ ). • parent(x ′ ) = x (respectively ancestor(x ′ ) = x)
of type T , ∃x ′′ /parent(x ′′ ) = x (respectively ancestor(x ′′ ) = x) of type T ′′ , and there exists an IC T ′ = T ′′ (respectively, there exists one of the ICs T ′′ ⇒ T ′ or T ′ = T ′′ ). An alternative simulation-based minimization algorithm also includes a similar prefilter, along with an augmentation phase that adds to the nodes of cov(x) their ancestors instead of using the chase [START_REF] Ramanan | Efficient algorithms for minimizing tree pattern queries[END_REF].

Finally, the scope of ICs has recently been extended to include not only forward and subtype (FT) constraints (as defined in Section 4.1), but also backward and sibling (BS) constraints [START_REF] Chen | Minimization of tree pattern queries with constraints[END_REF]:

• each node of type A (e.g., author) must have a parent (respectively, ancestor) of type B (e.g., book), i.e., A ← B (respectively, A ⇐ B);

• each node of type A (e.g., book) that has a child of type B (e.g., editor) must also have a child of type C (e.g, address), i.e., if A → B then A → C. Under FBST constraints, several minimal TPs can be achieved (vs. one only under FT constraints), which allows further optimizations of the chase augmentation and simulation-based minimization processes.

Holistic tree pattern matching

While TP minimization approaches (Section 4.1) wholly focus on the TP side of the matching process, holistic matching (also called holistic twig join [START_REF] Grimsmo | Towards unifying advances in twig join algorithms[END_REF]) algorithms mainly operate on minimizing access to the input data tree when performing actual matching operations. The initial binary join-based approach for matching proposed by Al-Khalifa et al. [START_REF] Al-Khalifa | Structural Joins: A Primitive for Efficient XML Query Pattern Matching[END_REF] indeed produces large intermediate results. Holistic approaches casually optimize TP matching in two steps [START_REF] Lu | Benchmarking Holistic Approaches to XML Tree Pattern Query Processing -(Extended Abstract of Invited Talk)[END_REF]:

1) labeling: assign to each node x in the data tree t an integer label label(x) that captures the structure of t (Section 4.2.1); 2) computing: exploit labels to match a twig pattern p against t without traversing t again (Section 4.2.2). Moreover, recent proposals aim at reducing data tree size by exploiting structural summaries in combination to labeling schemes. We review them in Section 4.2.3.

Let us finally highlight that, given the tremendous number of holistic matching algorithms proposed in the literature, it is quite impossible to review them all. Hence, we aim in the following sections at presenting the most influential. The interested reader may further refer to Grimsmo and Bjørklund's survey [START_REF] Grimsmo | Towards unifying advances in twig join algorithms[END_REF], which uniquely focuses on and introduces a nice history of holistic approaches.

Labeling phase

The aim of data tree labeling schemes is to determine the relationship (i.e., PC or AD) between two nodes of a tree from their labels alone [START_REF] Lu | Benchmarking Holistic Approaches to XML Tree Pattern Query Processing -(Extended Abstract of Invited Talk)[END_REF]. Many labeling schemes have been proposed in the literature. We particularly focus in this section on the region encoding (or containment) and the Dewey ID (or prefix) labeling schemes that are used in holistic approaches. However, other approaches do exist, based on a treetraversal order [START_REF] Li | Indexing and Querying XML Data for Regular Path Expressions[END_REF], prime numbers [START_REF] Wu | A Prime Number Labeling Scheme for Dynamic Ordered XML Trees[END_REF] or a combination of structural index and inverted lists [START_REF] Kaushik | On the Integration of Structure Indexes and Inverted Lists[END_REF], for instance.

The region encoding scheme [START_REF] Bruno | Holistic twig joins: optimal XML pattern matching[END_REF] labels each node x in a data tree t with a 3-tuple (start, end, level), where start (respectively, end) is a counter from the root of t until the start (respectively, the end) of x (in depth first), and level is the depth of x in t. For example, the data tree from Figure 2(a) is labeled in Figure 11, with the region encoding scheme label indicated between Fig. 11. Sample data tree labeling parentheses. In Figure 11, node x(title = "Maktub") is labeled [START_REF] Murray-Rust | Chemical Markup Language -CML[END_REF][START_REF] Lake | Geography Mark-Up Language: Foundation for the Geo-Web[END_REF][START_REF] Murray-Rust | Chemical Markup Language -CML[END_REF]. start = 3 because x is the first child of the node with start = 2; end = 4 because x has no children (thus end = start + 1); and level = 3 (level 1 being the root's). Now, let x and x ′ be two nodes labeled (S, E, L) and (S ′ , E ′ , L ′ ), respectively. Then:

• x ′ is a descendant of x if and only if S < S ′ and E ′ < E; • x ′ is a child of x if and only if S < S ′ , E ′ < E and L ′ = L + 1.
For example, in Figure 11, node (author = "Jack") labeled [START_REF] Lakshmanan | XML Tree Pattern, XML Twig Query[END_REF][START_REF] Grimsmo | Towards unifying advances in twig join algorithms[END_REF][START_REF] Lake | Geography Mark-Up Language: Foundation for the Geo-Web[END_REF]) is a descendant from the node book labeled (12, 25, 2) and a child of node authors labeled (15, 20, 3). The Dewey ID scheme [START_REF] Tatarinov | Storing and querying ordered xml using a relational database system[END_REF] labels tree nodes as a sequence. The root node is labeled ǫ (empty). Its children are labeled 0, 1, 2, etc. Then, at any subsequent level, the children of node x are labeled label(x).0, label(x).1, label(x).2, etc. More formally, for each nonroot element x ′ , label(x ′ ) = label(x).i, where x ′ is the i th child of x. Thus, each label embeds all ancestors of the associated node. For example, in Figure 11, the Dewey ID label is featured on the right hand side of the "/", for each node. Node (author = "Jack"), labeled 1.1.1, is the second child of the node labeled 1.1 (i.e., authors), and a descendant of the node labeled 1 (i.e., the right hand side book).

The Dewey ID scheme has been extended to incorporate node names [START_REF] Lu | From Region Encoding To Extended Dewey: On Efficient Processing of XML Twig Pattern Matching[END_REF], by exploiting schema information available in a DTD or XML schema. Encoding node names along a path into a Dewey label provides not only the labels of the ancestors of a given node, but also their names. Moreover, the Dewey ID scheme suffers from a high relabeling cost for dynamic XML documents where nodes can be arbitrarily inserted and deleted. Thus, variant schemes, namely ORD-PATH [START_REF] O'neil | ORDPATHs: Insert-Friendly XML Node Labels[END_REF] and Dynamic DEwey (DDE) [START_REF] Xu | DDE: from Dewey to a fully dynamic XML labeling scheme[END_REF], have been devised to dynamically extend the domain of label component values, so that no global relabeling is required.

The main difference between the region encoding and Dewey ID labeling schemes lies in the way structural relationships can be inferred from a label. While region encoding necessitates two nodes to determine whether they are related by a PC or AD relationship, Dewey IDs directly relate to ancestors and thus only require to know the current node's label. A Dewey ID-labeled data tree is also easier to update than a region encoded data tree [START_REF] Lu | Efficient Processing of XML Twig Pattern Matching[END_REF].

Computing phase

Various holistic algorithms actually achieve TP matching, but they all exploit a data list that, for each node, contains all labels of nodes of the same type. In this section, we first review the approaches based on the region encoding scheme, which were first proposed, and then the approaches based on the Dewey ID scheme.

As their successors, the first popular holistic matching algorithms, PathStack and TwigStack, proceed in two steps [START_REF] Bruno | Holistic twig joins: optimal XML pattern matching[END_REF]: intermediate path solutions are output to match each query root-to-leaf path, and then merged to obtain the final result. For example, let us consider the TP represented on the left hand side of Figure 12, to be matched against the data tree from Figure 11. Intermediate path solutions follow, expressed as labels.

• book/title: • (2, 11, 2) (3, 4, 3) (7, 8, 3) • (12, 25, 2) (13, 14, 3) [START_REF] Chen | From Tree Patterns to Generalized Tree Patterns: On Efficient Evaluation of XQuery[END_REF][START_REF] Lakshmanan | On Testing Satisfiability of Tree Pattern Queries[END_REF][START_REF] Murray-Rust | Chemical Markup Language -CML[END_REF] One issue with TwigStack is that it only considers AD relationships in the TP and does not consider level information. Hence, it may output many useless intermediate results for queries with PC relationships. Moreover, it cannot process queries with order predicates.

On one hand, in order to reduce the search space, path summaries that exploit schema information may be used [START_REF] Barta | Benefits of Path Summaries in an XML Query Optimizer Supporting Multiple Access Methods[END_REF]. If a pattern subtree matches a data tree several times, TwigStack loads streams for all distinct paths, whether these streams contribute to the output or not. Path summaries help distinguish whether the occurrences of each pattern subtree are output elements or not. Those that do not are pruned.

On the other hand, TwigStackList better controls the size of intermediate results by buffering parent elements in PC relationships in a main-memory list structure [START_REF] Lu | Efficient processing of XML twig patterns with parent child edges: a look-ahead approach[END_REF]. Thus, only AD relationships in branching edges 1 are handled by TwigStackList, and not in all edges as with TwigStack. OrderedTJ builds upon TwigStackList by handling order specifications in TPs [START_REF] Lu | Efficient Processing of Ordered XML Twig Pattern[END_REF]. OrderedTJ additionally checks the order conditions of nodes before outputting intermediate paths, with the help of a stack data structure.

Since TwigStack and OrderedTJ partition data to streams according to their names alone, two new data streaming techniques are introduced in iTwigJoin [START_REF] Chen | On Boosting Holism in XML Twig Pattern Matching using Structural Indexing Techniques[END_REF]: the tag+level and prefix path schemes. In the Or-deredTJ algorithm, only AD relationships in branching edges are taken into account. The tag+level scheme also takes PC relationships in all edges into account. The prefix path scheme further takes 1branching into account.

An eventual enhancement has been brought by Twig 2 Stack, which optimizes TwigStack by further reducing the size of intermediate results [START_REF] Chen | Twig 2 stack: Bottom-up processing of generalized-tree-pattern queries over xml documents[END_REF]. Twig 2 Stack associates each query node x with a hierarchical stack. A node x ′ is pushed into hierarchical stack HS[x] if and only if x ′ satisfies the subtwig query rooted at x. Matching can be determined when an entire sub-tree of x ′ is seen with respect to post-order data tree traversal. Baca et al. also fuse TwigStack and Twig 2 Stack along the same line, still to reduce the size of intermediate results [START_REF] Baca | On the efficient search of an XML twig query in large DataGuide trees[END_REF].

Simply replacing the region encoding labeling scheme by the Dewey ID scheme would not particularly improve holistic matching approaches, since they would also need to read labels for all tree nodes. However, exploiting the extended Dewey labeling scheme allows further improvements.

TJFast constructs, for each node x in the TP, an input stream T x [START_REF] Lu | From Region Encoding To Extended Dewey: On Efficient Processing of XML Twig Pattern Matching[END_REF]. T x contains the ordered extended Dewey labels of nodes of the same type as x.

1. A branching node is a node whose number of children is greater than one. All edges originating from a branching node are called branching edges [START_REF] Lu | Efficient processing of XML twig patterns with parent child edges: a look-ahead approach[END_REF].

As TwigStackList, TJFast assigns, for each branching node b, a set of nodes S b that are potentially query answers. But with TJFast, the size S b is always bounded by the depth of the data tree. TJFast+L further extends TJFast by including the tag+level streaming scheme [START_REF] Lu | Efficient Processing of XML Twig Pattern Matching[END_REF].

Eventually, Lu et al. have recently identified a key issue in holistic algorithms, called matching cross [START_REF] Lu | Extended XML Tree Pattern Matching: Theories and Algorithms[END_REF]. If a matching cross is encountered, a holistic algorithm either outputs useless intermediate results and becomes suboptimal, or misses useful results and looses its matching power. Based on this observation, the authors designed a set of algorithms, collectively called TreeMatch, which use a concise encoding to present matching results, thus reducing useless intermediate results. TreeMatch has been proved optimal for several classes of queries based on extended TPs (Section 3.2.6).

Structural summary-based approaches

These approaches aim at avoiding repeated access to the input data tree. Thus, they exploit structural summaries similar to the DataGuide proposed for semi-structured documents [START_REF] Goldman | DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases[END_REF]. A DataGuide's structure describes using one single label all the nodes whose labels (types) are identical. Its definition is based on targeted path sets, i.e., sets of nodes that are reached by traversing a given path. For example, the DataGuide corresponding to the data tree from Figure 2(a) is represented in Figure 13.

Fig. 13. Sample DataGuide

While a DataGuide can efficiently answer queries with PC edges (by matching the query path against the label path directly), it cannot process queries with AD edges nor twig queries, because it does not preserve hierarchical relationships [START_REF] Haw | TwigX-Guide: An Efficient Twig Pattern Matching System Extending DataGuide Indexing and Region Encoding Labeling[END_REF]. Combining a DataGuide with a labeling scheme that captures AD relationships allows the reconstruction, for any node x in a data tree t, of the specific path instance x belongs to. Thus, in the computing phase, node labels can be compared without accessing labels related to inner TP nodes [START_REF] Izadi | S 3 : Evaluation of Tree-Pattern Queries Supported by Structural Summaries[END_REF].

For instance, TwigX-Guide combines a DataGuide to the region encoding labeling scheme [START_REF] Haw | TwigX-Guide: An Efficient Twig Pattern Matching System Extending DataGuide Indexing and Region Encoding Labeling[END_REF]. Version Tree is an annotated DataGuide in which labels include a version number for nodes of the same type (e.g., all book nodes) [START_REF] Wu | XML twig pattern matching using version tree[END_REF]. Combined to the Dewey ID labeling scheme, it supports a matching algorithm called TwigVersion. Finally, QueryGuide labels DataGuide nodes with Dewey ID lists and is part of the S 3 matching method [START_REF] Izadi | S 3 : Evaluation of Tree-Pattern Queries Supported by Structural Summaries[END_REF]. All three approaches have been experimentally shown to perform matching faster than previous holistic algorithm such as TwigStack and TJFast.

Other pattern tree matching approaches

We present in this section matching approaches of interest that do not fall into the minimization and holistic families of methods, namely tree homeomorphism matching (Section 4.3.1) and TP relaxation (Section 4.3.2).

Tree homeomorphism matching

The tree homeomorphism matching problem is a particular case of the TP matching problem. More precisely, the considered TPs only bear descendant edges. Formally, given a TP p and a data tree t, tree homeomorphism matching aims at determining whether there is a mapping θ from the nodes of p to the nodes

t such that if node x ′ is a child of x in p, then θ(x ′ ) is a descendant of θ(x) in t.
G ötz et al. propose a series of algorithms that aim at reducing the time and space complexity of previous homeomorphism matching algorithms [START_REF] Koch | Efficient algorithms for descendant-only tree pattern queries[END_REF]. Their whole work is based on a simple matching procedure called MATCH. Let x be a node of TP p and y a node of data tree t. MATCH tests whether the subtree rooted at x, subtree(x), matches subtree(y). If y matches x, children of x are recursively tested to match any child of y. If y does not match x, then x is recursively tested to match any child of y. MATCH uses the recursion stack to determine which function call to issue next or which final value to return, e.g., to determine the data node y onto which x's parent was matched in t before proceeding with x's siblings. In opposition, L-MATCH recomputes the information necessary to make the decision with a backtracking function.

MATCH and L-MATCH are space-efficient top-down algorithms, but involve a lot of recomputing and thus bear a high time complexity. Thus, G ötz et al. also introduce a bottom-up strategy. It is based on algorithm TMATCH that addresses the tree homeomorphism problem. TMATCH exploits a left-to-right post-order ordering < post on nodes, and returns the largest (w.r.t. < post ) TP node x in an interval [x f rom , x until ] (still w.r.t. < post ) such that subtree(y) matches [x f rom , x] if x exists; and x f rom -1 (the predecessor of x f rom w.r.t. < post ) otherwise. Finally, TMATCH-ALL generalizes TMATCH to address the tree homeomorphism matching problem, i.e., TMATCH-ALL computes all possible exact matches of p against t.

Tree pattern relaxation

TP relaxation is not an optimization of the matching process per se, but an optimization of its result with respect to user expectations. TP relaxation indeed allows approximate TP matching and returns ranked answers in the spirit of Information Retrieval [START_REF] Amer-Yahia | Tree Pattern Relaxation[END_REF]. Four TP relaxations are proposed, the first two relating to structure and the last two to content.

1) Edge generalization permits a PC edge in the TP to be generalized to an AD edge. For example, in Figure 14, the book/title edge can be generalized to allow books with any descendant title node to appear in the witness tree. 2) Subtree promotion permits to connect a whole subtree to its grandparent by an AD edge. For example, in Figure 14, the address node can be promoted to allow book nodes that have a descendant address node to be output even if the address node is not a descendant of the editor node. 3) Leaf node deletion permits a leaf node to be deleted. For example, in Figure 14, the summary node can be deleted, allowing for books to appear in the witness tree whether they bear a summary or not. 4) Node generalization permits to generalize the type of a query node to a supertype. For example, in Figure 14, the node book could be generalized to node doc (document) from Figure 2(a). Answer ranking is achieved by computing a score. To this aim, the weighted TP is introduced, where each node and edge is associated with an exact weight ew and a relaxed weight rw such that ew ≥ rw. Figure 14 features a sample weighted TP. In this example, the score of exact matches of the weighted TP is equal to the sum of the exact weight of its nodes and edges, i.e., 41. If the node book was generalized to doc, the score of an approximate answer that is a document is the sum of rw(book) and the exact weight of the other nodes and edges, i.e., 35.

Fig. 14. Sample weighted tree pattern

Discussion

In this section, we discuss and compare the TP matching optimization approaches surveyed in Sections 4.1, 4.2 and 4.3; except TP relaxation, whose goal is quite different (i.e., augmenting user satisfaction rather than matching efficiency). Choosing objective comparison criteria is pretty straightforward for algorithms. Time and space complexity immediately come to mind, though they are diversely documented in the papers we survey.

We could also retain algorithm correctness as a comparison criterion, although proofs are quite systematically provided by authors of matching optimization approaches. Thus, we only notice here that none of the minimization algorithms reviewed in Section 4.1 actually test the equivalence of minimal TP p min to original TP p. More precisely, containment (i.e., p min ⊆ p) is checked a posteriori, but the minimization process being assumed correct, equivalence is not double-checked.

Algorithm comparison with respect to complexity follows (Sections 4.4.1 and 4.4.2), and is synthesized in Section 4.4.3, where we also further discuss the complementarity between TP minimization and holistic approaches.

Time complexity

Time complexity is quite well documented for minimization approaches. Except the first, naive matching algorithms [START_REF] Amer-Yahia | Minimization of Tree Pattern Queries[END_REF], all optimized minimization algorithms, whether they take ICs into account or not, have a worst-case time complexity of O(n 2 ), where n is the size (number of nodes) of the TP. A notable exception is Chen and Chan's extension of ICs to FSBT constraints [START_REF] Chen | Minimization of tree pattern queries with constraints[END_REF] that makes the matching problem more complex. Thus, their algorithms range in complexity, with respect to the combination of ICs that are processed, from O(n 2 ) (F and FS ICs) to O(n 3 • s + n 2 • s 2 ) (FSBT ICs), where s is the size of the set of element types in ICs.

On the other hand, in papers about holistic approaches, complexity is often disregarded in favor of the class of TP a given algorithm is optimal for. The class of TP may be [START_REF] Baca | Path-based Approaches to the Twig Pattern Query Searching[END_REF]:

• AD: a TP containing only AD edges, which may begin with a PC edge; • PC: a TP containing only PC edges, which may begin with an AD edge; • one-branching node TP: a TP containing at most one branching node; • AD in branches TP: a TP containing only AD edges after the first branching node; • PC before AD TP: a TP where an AD edge is never found before a PC edge. Holistic approaches indeed all have the same worstcase time complexity. It is linear in the sum of all sizes of the input lists they process and the output list. However, since these approaches match twigs, they enumerate all root-to-leaf path matches. Thus, their complexity is actually exponential in n, i.e., it is O(d n ), where d is the size (number of nodes) of the input data tree [START_REF] Chen | Twig 2 stack: Bottom-up processing of generalized-tree-pattern queries over xml documents[END_REF]. Only Twig 2 Stack has a lower complexity, in O(d • b), where b = max(b 1 , b 2 ) with b 1 being the maximum number of query nodes with the same label and b 2 the maximum total number of children of query nodes with the same labels (b ≤ n) [START_REF] Chen | Twig 2 stack: Bottom-up processing of generalized-tree-pattern queries over xml documents[END_REF]; as well as TreeMatch [START_REF] Lu | Extended XML Tree Pattern Matching: Theories and Algorithms[END_REF], which has been experimentally shown to outperform Twig 2 Stack. Structural summary-based approaches (Section 4.2.3) have been experimentally shown to perform matching faster than previous holistic algorithms such as TwigStack and TJFast. However, they have neither been compared to one another, nor to TreeMatch. Moreover, their time complexity is expressed in terms of DataGuide degree and specific features such as the number of versions in TwigVersion [START_REF] Wu | XML twig pattern matching using version tree[END_REF], so it is not easy to directly compare it to other holistic algorithms'. For instance, TwigVersion has a worst case time complexity of O(l v • n v + l p • e), where l v is the depth of version tree (annotated DataGuide) v, n v is the total number of versions on nodes of v whose tags appear in the leaf nodes of TP p, l p the depth of TP p, and e is the size of the edge set containing all edges that are on paths from nodes of v whose tags appear in the leaf nodes of p to the root node of v [START_REF] Wu | XML twig pattern matching using version tree[END_REF].

Finally, the complexity of tree homeomorphism matching is proved to be O(n

• d • l p ) [74].

Space complexity

Space complexity is intensively addressed in the literature regarding holistic approaches, which can produce many intermediate results whose volume must be minimized, so that algorithms can run in memory with as low response time as possible. On the other hand, space complexity is not considered an issue in minimization processes, which prune nodes in PTs that are presumably small enough to fit into any main memory.

Regarding holistic approaches, the worst-case space complexity of TwigStack is min(n • l t , s) [START_REF] Bruno | Holistic twig joins: optimal XML pattern matching[END_REF], where n is defined as in Section 4.4.1, l t is the depth of data tree t and s is the sum of sizes of the n input lists in the computing phase (Section 4.2.2). Subsequent holistic algorithms are more time-efficient than Twigstack because they are more space-efficient. TwigStackList and iTwigJoin both have a worst-case space complexity of O(n•l t ) [START_REF] Lu | Efficient processing of XML twig patterns with parent child edges: a look-ahead approach[END_REF], [START_REF] Chen | On Boosting Holism in XML Twig Pattern Matching using Structural Indexing Techniques[END_REF]. Noticeably, Twig 2 Stack's space complexity is indeed the same as its time complexity, i.e., O(d • b) (Section 4.4.1). Finally, TJFast and TreeMatch have a worst-case space complexity of O(l 2 t •bf + l t •f ), where bf is the maximal branching factor of the input data tree and f the number of leaf nodes in the TP [START_REF] Lu | Extended XML Tree Pattern Matching: Theories and Algorithms[END_REF], [START_REF] Lu | From Region Encoding To Extended Dewey: On Efficient Processing of XML Twig Pattern Matching[END_REF].

Structural summary approaches' space complexity, as is the case for time complexity, are difficult to compare because of their specifics. For example, the worst case space complexity of TwigVersion is O(l v • n v ), where l v and n v are defined as in Section 4.4.1 [START_REF] Ramanan | Efficient algorithms for minimizing tree pattern queries[END_REF] Recursive pruning [START_REF] Chan | Tree Pattern Aggregation for Scalable XML Data Dissemination[END_REF] Unspecified O(n 2 ) N/A Prune subtrees [START_REF] Flesca | On the minimization of Xpath queries[END_REF] Limited branched TP ACIM [START_REF] Amer-Yahia | Minimization of Tree Pattern Queries[END_REF] With output node O(n 6 ) N/A FS ICs CDM [START_REF] Amer-Yahia | Minimization of Tree Pattern Queries[END_REF] With output node O(n 2 ) N/A FS ICs

Chase + coverage [START_REF] Che | Efficient Minimization of XML Tree Pattern Queries[END_REF] With output node O(n 2 ) N/A FS ICs Chase + simulation [START_REF] Ramanan | Efficient algorithms for minimizing tree pattern queries[END_REF] FSBT [START_REF] Chen | Minimization of tree pattern queries with constraints[END_REF] With output node

From O(n 2 ) to N/A FSBT ICs O(n 3 • s + n 2 • s 2 )
TwigStack [START_REF] Bruno | Holistic twig joins: optimal XML pattern matching[END_REF] Twig pattern

O(d n ) min(n • lt, s) Region enc.
TwigStackList [START_REF] Lu | Efficient processing of XML twig patterns with parent child edges: a look-ahead approach[END_REF] Twig pattern

O(d n ) O(n • lt)
Region enc. OrderedTJ [START_REF] Lu | Efficient Processing of Ordered XML Twig Pattern[END_REF] Ordered twig iTwigJoin [START_REF] Chen | On Boosting Holism in XML Twig Pattern Matching using Structural Indexing Techniques[END_REF] Twig pattern Tag+level, Prefix

Twig 2 Stack [69] GTP O(d • b) O(d • b) Region enc.
TJFast [START_REF] Lu | From Region Encoding To Extended Dewey: On Efficient Processing of XML Twig Pattern Matching[END_REF] Twig pattern 

O(d n ) O(l 2 t • bf + lt • f ) Dewey ID TreeMatch [36] Extended TP O(d • b) O(l 2 t • bf + lt • f ) Dewey ID TwigX-
(n • d • lp) O(lt • log(bf ))
Left-to-right post-order [START_REF] Wu | XML twig pattern matching using version tree[END_REF]. Eventually, tree homeomorphism matching algorithms have a space complexity of O(l t • log(bf )) [START_REF] Koch | Efficient algorithms for descendant-only tree pattern queries[END_REF].

Synthesis

Table 2 recapitulates the characteristics of all matching optimization algorithms surveyed in this paper. In addition to the complexity comparison criteria discussed above, we also indicate in Table 2 the type of TP handled by each algorithm, in reference to Section 3, as well as each algorithm's distinctive features. The first third of Table 2 is dedicated to minimization approaches, the second to holistic approaches, and the third to tree homeomorphism matching.

In the light of this synthesis, we can notice again that TP minimization and holistic approaches have developed along separate roads. Papers related to one approach seldom refer to the other. Indeed, these two families of approaches cannot be compared, e.g., in terms of raw complexity, since TP minimization operates on TPs only, while holistic approaches optimize the actual matching of a TP against a data tree. TP minimization is actually implicitly considered as preprocessing TPs before matching [START_REF] Yao | A Fast Tree Pattern Matching Algorithm for XML Query[END_REF]. We nonetheless find it surprising that nobody has ever combined TP minimization to holistic matching in a single framework to benefit from optimization of both data tree access and TP size.

Eventually, Table 2 clearly outlines the history and outcome of the families of algorithms we survey. With respect to PT minimization algorithms, unless elaborated ICs (i.e., FSBT ICs) are needed, the choice should clearly fall on an approach whose time complexity is O(n 2 ), such as the coverage-based approaches [START_REF] Ramanan | Efficient algorithms for minimizing tree pattern queries[END_REF], [START_REF] Che | Efficient Minimization of XML Tree Pattern Queries[END_REF]. With respect to holistic matching, the raw efficiency of algorithms is not always easy to compare, especially between the latest descendants of Twigstack and structural summary-based approaches such as TwigVersion [START_REF] Wu | XML twig pattern matching using version tree[END_REF] or S 3 [START_REF] Izadi | S 3 : Evaluation of Tree-Pattern Queries Supported by Structural Summaries[END_REF], for both complexity and experimental studies remain partial as of today. The types of TPs (Section 4.4.1) for which an approach is optimal thus remains a primary criterion. However, we agree with Grimsmo and Bjørklund in stating that a global holistic approach, i.e., an approach that encompasses all kinds of TPs, is most desirable [START_REF] Grimsmo | Towards unifying advances in twig join algorithms[END_REF]. In this respect, TreeMatch [START_REF] Lu | Extended XML Tree Pattern Matching: Theories and Algorithms[END_REF] appears as the most comprehensive solution as of today.

TREE PATTERN USAGES

B ESIDE expressing and optimizing queries over tree-structured documents, TPs have also been Fig. 15. Sample tree pattern collection and rooted subtree exploited for various purposes ranging from system optimization (e.g., query caching [START_REF] Yang | Efficient Mining of XML Query Patterns for Caching[END_REF], [START_REF] Wang | Finding Irredundant Contained Rewritings of Tree Pattern Queries Using Views[END_REF], addressing and routing over a peer-to-peer network [START_REF] Tatarinov | Efficient Query Reformulation in Peer-Data Management Systems[END_REF]) to highlevel database operations (e.g., schema construction [START_REF] Zhang | Building XML Data Warehouse Based on Frequent Patterns in User Queries[END_REF], active XML query satisfiability and relevance [START_REF] Ma | Checking Satisfiability of Tree Pattern Queries for Active XML Documents[END_REF], [START_REF] Abiteboul | Satisfiability and relevance for queries over active documents[END_REF]) and knowledge discovery (e.g., discovering user communities [START_REF] Chand | Tree-pattern similarity estimation for scalable content-based routing[END_REF]).

In this section, we investigate the most prominent of TP usages we found in the literature, which we classify by the means used to achieve the goals we have listed above (e.g., routing and query satisfiability), i.e., TP mining (Section 5.1), TP rewriting (Section 5.2) and extensions to matching (Section 5.3).

Tree pattern mining

TP mining actually summarizes into discovering frequent subtrees in a collection of TPs. It is used, for instance, to cache the results of frequent patterns, which significantly improves query response time [START_REF] Yang | Efficient Mining of XML Query Patterns for Caching[END_REF], produce data warehouse schemas of integrated XML documents from historical user queries [START_REF] Zhang | Building XML Data Warehouse Based on Frequent Patterns in User Queries[END_REF], or help in website management by mining data streams [START_REF] Hsieh | Discovering Frequent Tree Patterns over Data Streams[END_REF].

Problem formulation

Let C = {p 1 , p 2 , ..., p n } be a collection of n TPs and minsup ∈ ]0, 1] a number called minimum support. The support of any rooted subtree (denoted RST) r is sup(r) = f req(r)/n, where f req(r) is the total occurrence of r in C. Then, the problem of mining frequent RSTs from C may be defined as finding the set F = {r 1 , r 2 , ..., r m } of m RSTs such that ∀i ∈ [1, m], sup(r i ) ≥ minsup [START_REF] Yang | Efficient Mining of XML Query Patterns for Caching[END_REF].

For example, let us consider TP collection C and RST r from Figure 15. Since r ⊆ p 1 and r ⊆ p 2 , f req(r) = 2 and sup(r) = 2 3 . If minsup = 1 2 , then r is considered frequent. Note that searching frequent RSTs relies on testing containment (Section 4.1.1) against TPs of C.

Frequent subtree mining algorithms

One of the first frequent RST mining algorithm, XQP-Miner [START_REF] Yang | Mining Frequent Query Patterns from XML Queries[END_REF], operates like the famous frequent itemset mining algorithm Apriori [START_REF] Agrawal | Fast Algorithms for Mining Association Rules in Large Databases[END_REF]. XQPMiner initializes by enumerating all frequent 1-edge RSTs. Then, each further step i is subdivided in two substeps:

1) candidate i-edge RSTs are built from (i -1)-edge RSTs and filtered with respect to the minimum support; 2) each remaining i-edge RST is tested for containment in each TP of C to compute its support. FastXMiner optimizes this process by constructing a global query pattern tree (G-QTP, Section 3.2.1) over C. Then, a tree-encoding scheme is applied on the G-QTP to partition candidate RSTs into equivalence classes. The authors show that only single-branch candidate RSTs need to be matched against the TPs from C, which leads to a large reduction in the number of tree inclusion tests [START_REF] Yang | Efficient Mining of XML Query Patterns for Caching[END_REF].

MineFreq further builds upon this principle by mining frequent RST sets [START_REF] Zhang | Building XML Data Warehouse Based on Frequent Patterns in User Queries[END_REF]. A frequent RST set must satisfy two requirements:

1) support requirement: sup(r 1 , r 2 , ..., r n ) ≥ minsup;

2) confidence requirement: ∀r i , f req(r1,r2,...,rn) f req(ri) ≥ minconf , where minconf is a minimum confidence user-specified threshold. The algorithm again proceeds by level, the n-itemset RST candidates being generated by joining (n -1)itemset frequent RSTs. Candidates in which one or more (n -1)-subsets are infrequent are pruned, for they cannot be frequent. Remaining candidates are then filtered with respect to support and confidence. Finally, frequent TPs are built by joining all RSTs in each frequent RST set.

Eventually, Stream Tree Miner (STMer) mines frequent labeled ordered subtrees over a tree-structured data stream [START_REF] Hsieh | Discovering Frequent Tree Patterns over Data Streams[END_REF]. Its main contribution lies in candidate subtree generation, which is suitably incremental.

Tree pattern rewriting

Query rewriting is casually used when views, whether they are materialized or not, are defined over data. Rewriting a query Q that runs against a database D is formulating a query Q ′ that runs against a view V built from D such that Q and Q ′ output the same result. When data are tree-structured, views are predefined TPs. Then, Q ′ is found among so-called useful embeddings (UEs) of Q in V ; the problem being to prune redundant, useless UEs [START_REF] Wang | Finding Irredundant Contained Rewritings of Tree Pattern Queries Using Views[END_REF]. The heuristics that address this issue [START_REF] Wang | Finding Irredundant Contained Rewritings of Tree Pattern Queries Using Views[END_REF], [START_REF] Balmin | A Framework for Using Materialized XPath Views in XML Query Processing[END_REF], [START_REF] Lakshmanan | Answering tree pattern queries using views[END_REF] rely on containment testing (Section 4.1.1) to output a minimal set of UEs.

Query rewriting is also notably used in Peer Data Management Systems (PDMSs). In a PDMS, each peer is associated with a schema that represents the peer's domain of interest, as well as semantic relationships to neighboring peers. Thus, a query over one peer can obtain relevant data from any reachable peer in the PDMS. Semantic paths are traversed by reformulating queries at a peer into queries on its neighbors, and then to the neighbors' neighbors, recursively. In the Piazza PDMS [START_REF] Tatarinov | Efficient Query Reformulation in Peer-Data Management Systems[END_REF], data is modeled in XML, peer schemas in XML Schema, and queries in a subset of XQuery. Thus, query reformulation optimization strongly relates to TP matching optimization. For instance, one query may follow multiple paths in a PDMS, and thus may induce redundant reformulations, i.e., redundant queries on the peers. Pruning queries help reduce such redundancy. Pruning requires checking query containment (Section 4.1.1) between a previously obtained reformulation and a new one. The reformulating process may also introduce redundant subexpressions in a query, leading to query minimization (Section 4.1).

Extended matching

We review in this section two ways of "pushing" matching further on. The first one relates to checking the satisfiability of TPs against Active XML (AXML) documents [START_REF] Ma | Checking Satisfiability of Tree Pattern Queries for Active XML Documents[END_REF], [START_REF] Abiteboul | Satisfiability and relevance for queries over active documents[END_REF]. AXML documents contain both data defined in extension (as in XML documents) and in intention, by means of Web service calls [START_REF] Abiteboul | Active xml: Peer-to-peer data and web services integration[END_REF]. When a Web service is invoked, its result is inserted into the document. In this context, a priori checking whether a query (TP) is satisfiable, i.e., whether there exists any document the TP matches against, helps avoid unnecessary query computations.

Although TP satisfiability is well studied [START_REF] Lakshmanan | On Testing Satisfiability of Tree Pattern Queries[END_REF], with AXML documents, Web service calls may also return data that contribute to query results, which makes the problem even more complex. Here, some fact is satisfiable for an AXML document and a query if it can be in the query result in some future state [START_REF] Abiteboul | Satisfiability and relevance for queries over active documents[END_REF]. As Miklau and Suciu did for containment testing (Section 4.1.1), Ma et al. use tree automata to represent both TPs and sets of AXML documents conforming to a given schema. Then, the product tree automaton helps decide whether a TP matches any document. Abiteboul et al. further test the relevance of Web service calls, i.e., whether the result can impact query answer [START_REF] Abiteboul | Satisfiability and relevance for queries over active documents[END_REF].

The other example of matching enhancement lies in the context of building semantic communities, i.e., clusters of users with similar interests modeled as TPs. Chand et al. propose to replace equivalence by similarity in matching, which could more generally be used to approximate XML queries [START_REF] Chand | Tree-pattern similarity estimation for scalable content-based routing[END_REF], as TP relaxation (Section 4.3.2). Chand et al. formulate the TP similarity problem as follows. Let S be a set of TPs, D a set of data trees, and p, q ∈ S. The similarity of p and q is a function sim : S 2 → [0, 1] such that sim(p, q) is the probability that p matches the same subset of data from D as q. Note that, depending on the proximity metric, sim(p, q) may be different from sim(q, p).

CONCLUSION

W E provide in this paper a comprehensive survey about XML tree patterns, which are nowadays considered crucial in XML querying and its optimization. We first compare TPs from a structural point of view, concluding that the richer a TP is with matching possibilities, the larger the subset of XQuery/XPath it encompasses, and thus the closer to user expectations it is.

Secondly, acknowledging that TP querying, i.e., matching a TP against a data tree, is central in TP usage, we review methods for TP matching optimization. They belong to two main families: TP minimization and holistic matching. We trust we provide a good overview of these approaches' evolution, and highlight the best algorithms in each family as of today. Moreover, we want to emphasize that TP minimization and holistic matching are complementary and should both be used to wholly optimize TP matching.

We eventually illustrate how TPs are actually exploited in several application domains such as system optimization, network routing or knowledge discovery from XML sources. We especially demonstrate the use of frequent TP mining and TP rewriting for various purposes.

Although TP-related research, which has been ongoing for more than a decade, could look mature in the light of this survey, it is perpetually challenged by the ever-growing acceptance and usage of XML. For instance, recent applications require either querying data with a complex or only partially known structure, or integrating heterogeneous XML data sources (e.g., when dealing with streams). The keyword search-based languages that address these problems cannot be expressed with TPs [START_REF] Theodoratos | Eager Evaluation of Partial Tree-Pattern Queries on XML Streams[END_REF]. Thus, TPs must be extended, e.g., by so-called partial treepattern queries (PTPQs) that allow the partial specification of a TP and are not restricted by a total order on nodes [START_REF] Theodoratos | Eager Evaluation of Partial Tree-Pattern Queries on XML Streams[END_REF], [START_REF] Placek | A heuristic approach for checking containment of generalized tree-pattern queries[END_REF]. In turn, adapted matching procedures must be devised [START_REF] Wu | Efficient Evaluation of Generalized Tree-Pattern Queries with Same-Path Constraints[END_REF], a trend that is likely to perpetuate in the near future.

Moreover, we purposely focus on the core of TPrelated topics in this survey (namely, TPs themselves, matching issues and a couple of applications). There is nonetheless a large number of important topics that we could not address due to space constraints, such as TP indexing, TP-based view selection, TP for probabilistic XML and continuous TP matching over XML streams.

Figure 4

 4 Figure 4 shows an example of APT where theoption is employed to extract books written by one author only. This APT matches only the first book from Figure 2(a) (title = "Maktub"), since the second has two authors.

Fig. 4 .

 4 Fig. 4. Sample annotated pattern tree

Fig. 5 .

 5 Fig. 5. Sample construction of global query pattern tree

Fig. 7 .

 7 Fig. 7. Sample tree pattern with logical operator nodes

Fig. 8 .

 8 Fig. 8. Sample tree pattern with a value-based constraint

Fig. 9 .

 9 Fig. 9. Sample extended tree pattern

3 )Fig. 12 .

 312 Fig. 12. Sample holistic matching After merging these intermediate paths, we obtain the label paths below, which correspond to the witness trees represented on the right hand side of Figure 12.

  

  

  Lakshmanan et al. test the satisfiability of TPs translated from XPath expressions and XQueries, and then express them back in XQuery and evaluate them within the XQEngine XQuery engine

	clause;
	3) eliminate duplicates with the help of the
	DISTINCT keyword;
	4) evaluate aggregate expressions in LET clauses;
	5) indicate tree variables to be joined (join condi-
	tions) via the WHERE clause;
	6) enforce any remaining constraint in the WHERE
	clause;
	7) evaluate RETURN aggregates;
	8) order output nodes with the help of the ORDER
	BY clause;
	9) project on the elements indicated in the RETURN
	clause.
	Similarly,

2) push formula F 's predicates into the WHERE

TABLE 1

 1 Synthesis of tree pattern characteristics

	TP	Matching features	Reordering	Expressiveness	Supported optimizations
	TAX TP [8]	Basic	No	TIMBER	Matching
	GTP [21]	Mandatory/optional edges	No	TIMBER	Matching
	APT [31]	Edge cardinality	No	TIMBER	Matching
	Ordered APT [13]	Order specification	Yes	TIMBER	Matching
	G-QPT [32]	Set of TPs	Yes	N/A	Unspecified
	Twig pattern [33]	Graph structure	No	N/A	XML graph querying
	DBTwig [33]	Filtering + Ranking	No	N/A	XML graph querying
		+ Matching cardinality			
	Izadi	Logical operator nodes	No	N/A	Matching
	et al.'s TP [34]	+ Potential target node			
	Miklau and	Node degree	No	N/A	Containment and
	Suciu's TP [35]	+ Output node			equivalence testing
	Lakshmanan	Tag constraints			
	et al.'s TP [22]	+ Value-based constraints	No	XQuery	Satisfiability testing
		+ Node identity constraints			
	Extended TP	Negation function	Yes	N/A	Matching
	[36]	+ Wildcards			

TABLE 2

 2 Synthesis of tree pattern matching approaches

	Algorithm	TP used	Time complexity	Space complexity	Features
	CIM [16]	With output node	O(n 4 )	N/A	Prunes nodes
	Coverage [49]	With output node	O(n 2 )	N/A	Prune subtrees
	Simulation				

ACKNOWLEDGMENTS

We would like to thank all the anonymous reviewers of this paper for their thoughtful comments, and especially the reviewers of the very first version, who expressed interest in this work and encouraged us to write this widely complemented version.

We would also like to thank Mr. Huayu Wu, from the Institute of InfoComm Research, Singapore, for his valuable correspondence.

His current research interests mainly relate to handling so-called complex data in data warehouses (XML warehousing, performance optimization, autoadministration, benchmarking...), but also include data quality and security, cloud business intelligence, as well as medical or healthrelated applications.