
HAL Id: hal-01433706
https://hal.science/hal-01433706v1

Submitted on 12 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian anti-sparse coding
Clément Elvira, Pierre Chainais, Nicolas Dobigeon

To cite this version:
Clément Elvira, Pierre Chainais, Nicolas Dobigeon. Bayesian anti-sparse coding. IEEE Transactions
on Signal Processing, 2016, �10.1109/TSP.2016.2645543�. �hal-01433706�

https://hal.science/hal-01433706v1
https://hal.archives-ouvertes.fr


1

Bayesian anti-sparse coding
Clément Elvira, Student Member, IEEE, Pierre Chainais, Senior Member, IEEE

and Nicolas Dobigeon, Senior Member, IEEE

Abstract—Sparse representations have proven their efficiency
in solving a wide class of inverse problems encountered in signal
and image processing. Conversely, enforcing the information to
be spread uniformly over representation coefficients exhibits rel-
evant properties in various applications such as robust encoding
in digital communications. Anti-sparse regularization can be
naturally expressed through an `∞-norm penalty. This paper
derives a probabilistic formulation of such representations. A
new probability distribution, referred to as the democratic prior,
is first introduced. Its main properties as well as three random
variate generators for this distribution are derived. Then this
probability distribution is used as a prior to promote anti-sparsity
in a Gaussian linear model, yielding a fully Bayesian formulation
of anti-sparse coding. Two Markov chain Monte Carlo (MCMC)
algorithms are proposed to generate samples according to the
posterior distribution. The first one is a standard Gibbs sampler.
The second one uses Metropolis-Hastings moves that exploit
the proximity mapping of the log-posterior distribution. These
samples are used to approximate maximum a posteriori and
minimum mean square error estimators of both parameters and
hyperparameters. Simulations on synthetic data illustrate the
performances of the two proposed samplers, for both complete
and over-complete dictionaries. All results are compared to the
recent deterministic variational FITRA algorithm.

Index Terms—democratic distribution, anti-sparse representa-
tion, proximal operator.

I. INTRODUCTION

SPARSE representations have been widely advocated for as
an efficient tool to address various problems encountered

in signal and image processing. As an archetypal example,
they were the core concept underlying most of the lossy data
compression schemes, exploiting compressibility properties of
natural signals and images over appropriate bases. Sparse
approximations, generally resulting from a transform coding
process, lead for instance to the famous image, audio and
video compression standards JPEG, MP3 and MPEG [2],
[3]. More recently and partly motivated by the advent of
both the compressive sensing [4], respectively, and dictionary
learning paradigms [5], sparsity has been intensively exploited
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to regularize (e.g., linear) ill-posed inverse problems. The `0-
norm and the `1-norm as its convex relaxation are among
the most popular sparsity promoting penalties. Following the
ambivalent interpretation of penalized regression optimiza-
tion [6], Bayesian inference naturally offers an alternative
and flexible framework to derive estimators associated with
sparse coding problems. For instance, it is well known that a
straightforward Bayesian counterpart of the LASSO shrinkage
operator [7] can be obtained by adopting a Laplace prior
[8]. Designing other sparsity inducing priors has motivated
numerous research works. They generally rely on hierarchical
mixture models [9]–[12], heavy tail distributions [13]–[15] or
Bernoulli-compound processes [16]–[18].

In contrast, the use of the `∞-norm within an objective
criterion has remained somehow confidential in the signal
processing literature. One may cite the minimax or Chebyshev
approximation principle, whose practical implementation has
been made possible thanks to the Remez exchange algorithm
[19] and leads to a popular design method of finite impulse
response digital filters [20], [21]. Besides, when combined
with a set of linear equality constraints, minimizing a `∞-
norm is referred to as the minimum-effort control problem in
the optimal control framework [22], [23]. Much more recently,
a similar problem has been addressed by Lyubarskii et al. in
[24] where the Kashin’s representation of a given vector over a
tight frame is introduced as the expansion coefficients with the
smallest possible dynamic range. Spreading the information
over representation coefficients in the most uniform way
is a desirable feature in various applicative contexts, e.g.,
to design robust analog-to-digital conversion schemes [25],
[26] or to reduce the peak-to-average power ratio (PAPR) in
multi-carrier transmissions [27], [28]. Resorting to an uncer-
tainty principle (UP), Lyubarskii et al. have also introduced
several examples of frames yielding computable Kashin’s
representations, such as random orthogonal matrices, random
subsampled discrete Fourier transform (DFT) matrices, and
random sub-Gaussian matrices [24]. The properties of the
alternate optimization problem, which consists of minimizing
the maximum magnitude of the representation coefficients for
an upper-bounded `2-reconstruction error, have been deeply
investigated in [29], [30]. In these latest contributions, the
optimal expansion is called the democratic representation and
some bounds associated with archetypal matrices ensuring the
UP are derived. In [31], the constrained signal representation
problems considered in [24] and [30] are converted into their
penalized counterpart. More precisely, inferring a so-called
spread or anti-sparse representation x of an observation vector
y under the linear model

y = Hx + e (1)
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where H is the coding matrix and e is a residual can be
formulated as a variational optimization problem where the
admissible range of the coefficients has been penalized through
an `∞-norm

min
x∈RN

1

2σ2
‖y −Hx‖22 + λ ‖x‖∞ . (2)

In (2), H defines the M × N representation matrix, and
σ2 stands for the variance of the error resulting from the
approximation. In particular, the error term y−Hx is referred
to as the residual term throughout the paper. Again, the anti-
sparse property brought by the `∞-norm penalization enforces
the information brought by the measurement vector y to be
evenly spread over the representation coefficients in x with
respect to the dictionary H. Note that the minimizer of (2) is
generally not unique. Such representation can be desired when
the coding matrix H is overcomplete, i.e. N > M . It is worth
noting that recent applications have capitalized on these latest
theoretical and algorithmic advances, including approximate
nearest neighbor search [32] and PAPR reduction [33].

Surprisingly, up to our knowledge, no probabilistic formu-
lation of these democratic representations has been proposed
in the literature. The present paper precisely attempts to fill
this gap by deriving a Bayesian formulation of the anti-sparse
coding problem (2) considered in [31]. Note that this objective
differs from the contribution in [34] where a Bayesian estima-
tor associated with an `∞-norm loss function has been intro-
duced. Instead, we merely introduce a Bayesian counterpart of
the variational problem (2). The main motivations for deriving
the proposed Bayesian strategy for anti-sparse coding are
threefold. Firstly, Bayesian inference is a flexible methodology
that may allow other parameters and hyperparameters (e.g.,
residual variance σ2, regularization parameter λ) to be jointly
estimated with the parameter of interest x. Secondly, through
the choice of the considered Bayes risk, it permits to make
use of Bayesian estimators, beyond the standard penalized
maximum likelihood estimator resulting from the solution of
(2). Finally, within this framework, Markov chain Monte Carlo
algorithms can be designed to generate samples according to
the posterior distribution and, subsequently, approach these
estimators. Contrary to deterministic optimization algorithms
which provide only one point estimate, these samples can
be subsequently used to build a comprehensive statistical
description of the solution.

To this purpose, a new probability distribution as well as its
main properties are introduced in Section II. In particular, we
show that p (x) ∝ exp (−λ ‖x‖∞) properly defines a proba-
bility density function (pdf), which leads to tractable compu-
tations. In Section III, this so-called democratic distribution
is used as a prior distribution in a linear Gaussian model,
which provides a straightforward equivalent of the problem
(2) under the maximum a posteriori paradigm. Moreover, ex-
ploiting relevant properties of the democratic distribution, this
section describes two Markov chain Monte Carlo (MCMC)
algorithms as alternatives to the deterministic solvers proposed
in [30], [31]. The first one is a standard Gibbs sampler which
sequentially generates samples according to the conditional
distributions associated with the joint posterior distribution.

The second MCMC algorithm relies on a proximal Monte
Carlo step recently introduced in [35]. This step exploits
the proximal operator associated with the logarithm of the
target distribution to sample random vectors asymptotically
distributed according to this non-smooth density. Section IV
illustrates the performances of the proposed algorithms on
numerical experiments. Concluding remarks are reported in
Section V.

TABLE I
LIST OF SYMBOLS.

Symbol Description

N , n Dimension, index of representation vector
M , m Dimension, index of observed vector
x, xn Representation vector, its nth component
y, ym Observation vector, its mth component
H Coding matrix
e Additive residual vector
λ Parameter of the democratic distribution
µ Re-parametrization of λ such that λ = Nµ

DN (λ) Democratic distribution of parameter λ over RN
CN (λ) Normalizing constant of the distribution DN (λ)
KJ A J-element subset {i1 . . . iJ} of {1, . . . , N}

U , G, IG Uniform, gamma and inverse gamma distributions
dG Double-sided gamma distribution
NI Truncated Gaussian distribution over I
Cn Double convex cones partitioning RN

cn, In
Weights and intervals defining the

conditional distribution p
(
xn|x\n

)
g, g1, g2 Negative log-distribution (g = g1 + g2)

δ Parameter of the proximity operator

εj , dj , φδ(x)
Family of distinct values of |x|, their respective multiplicity

and family of local maxima of proxδ
λ‖·‖∞

q(·|·) Proposal distribution
ωin, µin, s

2
n, Iin

i=1,2,3

Weights, parameters and intervals defining the
conditional distribution p

(
xn|x\n, µ, σ2,y

)

II. DEMOCRATIC DISTRIBUTION

This section introduces the democratic distribution and the
main properties related to its marginal and conditional distri-
butions. Finally, two random variate generators are proposed.
Note that, for the sake of conciseness, the details of the
proofs associated with the following results are reported in
the technical report [36].

A. Probability density function

Lemma 1. Let x ∈ RN and λ ∈ R+\ {0}. The integral of the
function exp (−λ ‖x‖∞) over RN is properly defined and the
following equality holds (see proof in Appendix A)∫

RN
exp (−λ ‖x‖∞) dx = N !

(
2

λ

)N
.

As a corollary of Lemma 1, the democratic distribution can
be defined as follows.

Definition 1. A N -real-valued random vector x ∈ RN is
said to be distributed according to the democratic distribution
DN (λ), namely x ∼ DN (λ), when the corresponding pdf is

p (x) =
1

CN (λ)
exp (−λ ‖x‖∞) (3)
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Fig. 1. The democratic pdf DN (λ) for N = 2 and λ = 3.

with CN (λ) , N !
(
2
λ

)N
.

Fig. 1 illustrates the pdf of the bidimensional democratic
pdf for λ = 3.

Remark 1. Note that the democratic distribution belongs to
the exponential family. Indeed, its pdf can be factorized as

p (x) = a(x) b(λ) exp (η(λ)T (x)) (4)

where a(x) = 1, b(λ) = 1/CN (λ), η(λ) = −λ and T (x) =
‖x‖∞ defines sufficient statistics.

B. Moments

The first two moments of the democratic distribution are
available through the following property [36].

Property 1. Let x = [x1, . . . , xN ]
T be a random vector

obeying the democratic distribution DN (λ). The mean and
the covariance matrix are given by:

E [xn] = 0 ∀n ∈ {1, . . . , N} (5)

var [xn] =
(N + 1)(N + 2)

3λ2
∀n ∈ {1, . . . , N} (6)

cov [xi, xj ] = 0 ∀i 6= j. (7)

Note that components are pairwise decorrelated.

C. Marginal distributions

The marginal distributions of any democratically distributed
vector x are given by the following Lemma

Lemma 2. Let x = [x1, . . . , xN ]
T be a random vector obeying

the democratic distribution DN (λ). For any positive integer
J < N , let KJ denote a J-element subset of {1, . . . , N} and
x\KJ the sub-vector of x whose J elements indexed by KJ
have been removed. Then the marginal pdf of the sub-vector
x\KJ ∈ RN−J is given by (see proof in Appendix B)

p
(
x\KJ

)
=

2J

CN (λ)

J∑
j=0

(
J

j

)
(J − j)!
λJ−j

∥∥x\KJ∥∥j∞
× exp

(
−λ
∥∥x\KJ∥∥∞) . (8)

In particular, as a straightforward corollary of this lemma,
two specific marginal distributions of DN (λ) are given by the
following property [36].
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Fig. 2. Marginal distribution of x\3 when x ∼ DN (λ) and λ = 3, when
N = 3. The two red curves are the 2D marginal distributions of x1 and x2.

Property 2. Let x = [x1, . . . , xN ]
T be a random vector

obeying the democratic distribution DN (λ). The components
xn (n = 1, . . . , N ) of x are identically and marginally
distributed according to the following N -component mixture
of double-sided Gamma distributions1

xn ∼
1

N

N∑
j=1

dG (j, λ) . (9)

Moreover, the pdf of the sub-vector x\n of x whose nth
element has been removed is

p
(
x\n
)

=
1 + λ

∥∥x\n∥∥∞
N CN−1(λ)

exp
(
−λ
∥∥x\n∥∥∞) . (10)

Fig. 2 illustrates the marginal distributions p
(
x\n
)

and
p (xn).

Remark 2. It is worth noting that the distribution in (9) can
be rewritten as

p (xn) =
λ

2N

N−1∑
j=0

λj

j!
|xn|j

 exp (−λ |xn|)

=
λ

2N !
Γ(N,λ |xn|)

where Γ(a, b) is the upper incomplete Gamma function. It
is easy to prove that the random variable associated with
the marginal distribution rescaled by a factor λ

N converges
in distribution to the uniform distribution U([−1, 1]). The
interested reader may find details in [36].

D. Conditional distributions

Before introducing conditional distributions associated with
any democratically distributed random vector, let us partition
RN into a set of N double cones Cn ⊂ RN (n = 1, . . . , N )
defined by

Cn ,
{
x = [x1, . . . , xN ]T ∈ RN : ∀j 6= n, |xn| ≥ |xj |

}
.

(11)
Strictly speaking, the Cn are not a partition but only a covering
of RN . However, the intersections between cones are null sets.

1The double-sided Gamma distribution dG (a, b) is defined as a gener-
alization over R of the standard Gamma distribution G (a, b) with the pdf
p(x) = ba

2Γ(a)
|x|a−1 exp (−b |x|). See [37] for an overview.
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x2 = x1

x2 = −x1

π
4 x1

x2

Fig. 3. The double-cone C1 of R2 appears as the shaded area while the
complementary double-cone C2 is the uncolored area.

These sets are directly related to the index of the so-called
dominant component of a given democratically distributed
vector x. More precisely, if ‖x‖∞ = |xn|, then x ∈ Cn
and the nth component xn of x is said to be the dominant
component. Note that this dominant component can be referred
to as xn|x ∈ Cn.

An example is given in Fig. 3 where C1 ⊂ R2 is depicted.
These double-cones partition RN into N equiprobable sets
with respect to (w.r.t.) the democratic distribution, as stated in
the following property [36].

Property 3. Let x = [x1, . . . , xN ]
T be a random vector obey-

ing the democratic distribution DN (λ). Then the probability
that this vector belongs to a given double-cone is

P [x ∈ Cn] =
1

N
. (12)

Remark 3. This property can be simply proven using the
intuitive intrinsic symmetries of the democratic distribution:
the dominant component of a democratically distributed vector
is located with equal probabilities in any of the N cones Cn.

Moreover, the following lemma yields some results on
conditional distributions related to these sets.

Lemma 3. Let x = [x1, . . . , xN ]
T be a random vector obeying

the democratic distribution DN (λ). Then the following results
hold (see proof in Appendix C-A)

xn|x ∈ Cn ∼ dG (N,λ) (13)
x\n|x ∈ Cn ∼ DN−1(λ) (14)

x\n|xn,x ∈ Cn ∼
∏
j 6=n

U (− |xn| , |xn|) (15)

P
[
x ∈ Cn|x\n

]
=

1

1 + λ
∥∥x\n∥∥∞ (16)

p
(
x\n|x 6∈ Cn

)
=

λ

N − 1

∥∥x\n∥∥∞
CN−1(λ)

e−λ‖x\n‖∞ . (17)

Remark 4. According to (13), the marginal distribution
of the dominant component is a double-sided Gamma dis-
tribution. Conversely, according to (14), the vector of the
non-dominant components is marginally distributed according
to a democratic distribution. Conditioned to the dominant
component, the non-dominant components are independently
and uniformly distributed on the admissible set, as shown in
(15). Equation (16) shows that the probability that the nth

-15 -10 -5 0 5 10 15
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n
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|| x
\ n

 ||
∞
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0

0.5

1 10

Fig. 4. Conditional distribution of xn|x\n when x ∼ DN (λ) for N = 3,
λ = 3 and

∥∥x\n∥∥∞ = 1 . . . 10.

component dominates increases when the other components
are of low amplitude.

Finally, based on Lemma 3, the following property related
to the conditional distributions of DN (λ) can be stated.

Property 4. Let x = [x1, . . . , xN ]
T be a random vector

obeying the democratic distribution DN (λ). The pdf of the
conditional distribution of a given component xn given x\n
is (See proof in Appendix C-B)

p
(
xn|x\n

)
= (1− cn)

1

2
∥∥x\n∥∥∞1In(xn)

+ cn
λ

2
e−λ(|xn|−‖x\n‖∞)1R\In(xn) (18)

where cn = P
[
x ∈ Cn|x\n

]
is given by (16), 1A(x) is the

indicator function whose value is 1 if x ∈ A and 0 otherwise,
and In is defined as follows

In ,
(
−
∥∥x\n∥∥∞ ,

∥∥x\n∥∥∞) . (19)

Remark 5. The pdf in (18) defines a mixture of one uniform
distribution and two shifted exponential distributions with
probabilities 1 − cn and cn/2, respectively. An example of
this pdf is depicted in Fig. 4.

E. Proximity operator of the negative log-pdf
The pdf of the democratic distribution DN (λ) can be written

as p(x) ∝ exp (−g1 (x)) with

g1 (x) = λ ‖x‖∞ . (20)

This subsection introduces the proximity mapping operator
associated with the negative log-distribution g1(x) (defined
up to a multiplicative constant). This proximal operator will
be subsequently used to implement Monte Carlo algorithms
to draw samples from the democratic distribution DN (λ) (see
Section II-F) as well as posterior distributions derived from
a democratic prior (see Section III-B3b). In this context, it is
convenient to define the proximity operator of g1 (·) as [38]

proxg1(x) = argmin
u∈RN

λ ‖u‖∞ +
1

2
‖x− u‖22. (21)

Since g1 is a norm, its proximity mapping can be simply
linked to the projection over the ball generated by the dual
norm [39], i.e., the `1-norm here. Thus, one has

proxδg1(x) = x− λδΠ‖x/λδ‖1≤1(x) (22)
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where Π‖x‖1≤1 is the projector into the unit `1-ball. Although
this projection cannot be performed directly, fast numerical
techniques have been recently investigated. For an overview
and an implementation, see for instance [40].

F. Random variate generation

This section introduces a random variate generator that per-
mits to draw samples according to the democratic distribution.
Two others methods are also suggested.

1) Exact random variate generator: Property 3 combined
with Lemma 3 permits to rewrite the joint distribution of a
democratically distributed vector using the chain rule

p(x) =

N∑
n=1

p
(
x\n|xn,x ∈ Cn

)
p (xn|x ∈ Cn) P [x ∈ Cn]

=
N∑
n=1

∏
j 6=n

p (xj |xn,x ∈ Cn)

p (xn|x ∈ Cn) P [x ∈ Cn]

(23)

where P [x ∈ Cn], p (xn|x ∈ Cn) and p (xj |xn,x ∈ Cn) are
given in (12), (13) and (15), respectively. Note that the
conditional joint distribution of the non-dominant components
is decomposed as a product, see (15) and Remark 4 right after.
This finding can be fully exploited to design an efficient and
exact random variate generator for the democratic distribution,
see Algo. 1.

Algorithm 1: Democratic random variate generator using
an exact sampling scheme.

Input: Parameter λ > 0, dimension N

1 % Drawing the cone of the dominant component
2 Sample ndom uniformly on the set {1 . . . N};
3 % Drawing the dominant component
4 Sample xndom

according to (13);
5 % Drawing the non-dominant components
6 for j ← 1 to N (j 6= ndom) do
7 Sample xj according to (15);
8 end

Output: x = [x1, . . . , xN ]
T ∼ DN (λ)

2) Other strategies: Although exact sampling is by far the
most elegant and efficient method to sample according to the
democratic distribution, two others strategies can be evoked.
Firstly, one may want to exploit Property 4 to design a Gibbs
sampling scheme by successively drawing the components xn
according to the conditional distributions. Secondly, the prox-
imal operator of the negative log-pdf can be used within the
proximal Metropolis-adjusted Langevin algorithm (P-MALA)
introduced in [35]. See [36] for a comparison between the
three samplers. These findings pave the way to extended
schemes for sampling according to a posterior distribution
resulting from a democratic prior when possibly no exact
sampler is available, see Section III.

III. DEMOCRATIC PRIOR IN A LINEAR GAUSSIAN MODEL

This section aims to provide a Bayesian formulation of
the model underlying the problem described by (2). From a
Bayesian perspective, the solution of (2) can be straightfor-
wardly interpreted as the MAP estimator associated with a
linear observation model characterized by an additive Gaussian
residual and complemented by a democratic prior assump-
tion. Assuming a Gaussian residual results in a quadratic
discrepancy measure as in (2). Setting the anti-sparse coding
problem into a fully Bayesian framework paves the way to
a comprehensive statistical description of the solution. The
resulting posterior distribution can be subsequently sampled to
approximate the Bayesian estimators, e.g., not only the MAP
but also the MMSE estimators.

A. Hierarchical Bayesian model
Let y = [y1 . . . yM ]

T denote an observed measurement vec-
tor. The problem addressed in this work consists of recovering
an anti-sparse code x = [x1, . . . , xN ]T of these observations
given the coding matrix H according to the linear model

y = Hx + e. (24)

The residual vector e = [e1 . . . eM ]
T is assumed to be dis-

tributed according to a centered multivariate Gaussian distribu-
tion N (0M , σ

2IM ), where 0M is a M -dimensional vector of
0 and IM is the identity matrix of size M×M . The choice and
the design of the coding matrix H should ensure the existence
of a democratic representation with a small dynamic range
[24]. The proposed Bayesian model relies on the definition of
the likelihood function associated with the observation vector
y and on the choice of prior distributions for the unknown
parameters, i.e., the representation vector x and the residual
variance σ2, assumed to be a priori independent.

1) Likelihood function: the Gaussian property of the addi-
tive residual term yields the following likelihood function

f(y|x, σ2) =

(
1

2πσ2

)M
2

exp

[
− 1

2σ2
‖y −Hx‖22

]
. (25)

2) Residual variance prior: a noninformative Jeffreys prior
distribution is chosen for the residual variance σ2

f
(
σ2
)
∝ 1

σ2
. (26)

3) Description vector prior: as motivated earlier, the demo-
cratic distribution is elected as the prior distribution of the
N -dimensional vector x

x | λ ∼ DN (λ). (27)

In the following, the hyperparameter λ is set as λ = Nµ,
where µ is assumed to be unknown. Enforcing the parameter
of the democratic distribution to depend on the dimension of
the problem permits the prior to be scaled with this dimension.
Indeed, as stated in (13), the absolute value of the dominant
component is distributed according to the Gamma distribution
G (N,λ), whose mean and variance are N/λ and N/λ2,
respectively. With the proposed scalability, the prior mean is
constant w.r.t. the dimension

E [|xn| | x ∈ Cn, µ] = 1/µ (28)
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and the variance tends to zero

var [|xn| | x ∈ Cn, µ] = 1/(Nµ2). (29)

4) Hyperparameter prior: the prior modeling introduced
in the previous section is complemented by assigning prior
distribution to the unknown hyperparameter µ, introducing
a second level in the Bayesian hierarchy. More precisely, a
conjugate Gamma distribution is chosen as a prior for µ

µ ∼ G(a, b) (30)

since conjugacy allows the posterior distribution to be easily
derived. The parameters a and b will be chosen to obtain a
flat prior2.

5) Posterior distribution: the posterior distribution of the
unknown parameter vector θ = {x, σ2, µ} can be computed
from the following hierarchical structure:

f(θ|y) ∝ f(y|x, σ2)f(x|µ)f(µ)f(σ2) (31)

where f(y|x, σ2), f(σ2), f(x|µ) and f(µ) have been
defined in (25) to (30), respectively. Thus, this posterior
distribution can be written as

f(x, σ2, µ|y) ∝ exp

(
− 1

2σ2
‖y −Hx‖22

)
× 1

CN (µN)
exp (−µN ‖x‖∞)

×
(

1

σ2

)M
2 +1

1R+
(σ2)

× ba

Γ(b)
µa−1 exp (−bµ)1R+(µ).

(32)

As expected, for given values of the residual variance σ2

and the democratic parameter λ = µN , maximizing the
posterior (32) can be formulated as the optimization problem
in (2), for which some algorithmic strategies have been for
instance introduced in [30] and [31]. In this paper, a different
route has been taken by deriving inference schemes relying
on MCMC algorithms. This choice permits to include the
nuisance parameters σ2 and µ into the model and to estimate
them jointly with the representation vector x. Moreover,
since the proposed MCMC algorithms generate a collection{(

x(t), µ(t), σ2(t)
)}NMC

t=1
asymptotically distributed according

to the posterior of interest (31), they provide a good knowledge
of the statistical distribution of the solutions.

B. MCMC algorithm

This section introduces two MCMC algorithms to generate
samples according to the posterior (32). There are two specific
instances of Gibbs samplers which generate samples according
to the conditional distributions associated with the posterior
(32), see Algo. 2. As shown below, the steps for sampling
according to the conditional distributions of the residual
variance f(σ2|y,x) and the democratic parameter f (µ|x)
are straightforward. In addition, generating samples from
f(x|µ,y) can be achieved component-by-component using N

2Typically a = b = 10−6 in the experiments reported in Section IV.

Gibbs moves. However, for high dimensional problems, such a
crude strategy may suffer from poor mixing properties, leading
to slow convergence of the algorithm. To alleviate this issue,
it is also possible to use an alternative approach consisting of
sampling the full vector x|µ,y using a P-MALA step [35].
These two strategies are detailed in the following paragraphs.
Note that the implementation has been validated using the
sampling procedure proposed by Geweke in [41]. For more
details about this experiment, see [36, Section IV-A].

Algorithm 2: Gibbs sampler
Input: Observation vector y, coding matrix H,

hyperparameters a and b, number of burn-in
iterations Tbi, total number of iterations TMC,
algorithmic parameter δ, initialization x(0)

1 for t← 1 to TMC do
2 % Drawing the residual variance
3 Sample σ2(t) according to (33). ;
4 % Drawing the democratic parameter
5 Sample µ(t) according to (35). ;
6 % Drawing the representation vector
7 Sample x(t) using, either (see Section III-B3)

• for n← 1 to N do
Gibbs sample xn, see (36) ;

end
or
• for t∗ ← 1 to TP−MALA do

P-MALA step, sample x∗ according to (40)
and accept it with probability given by (41);

end
8 end

Output: A collection of samples{
µ(t), σ2(t),x(t)

}TMC

t=Tbi+1
asymptotically

distributed according to (32).

1) Sampling the residual variance: Sampling according to
the conditional distribution of the residual variance can be con-
ducted according to the following inverse-gamma distribution

σ2|y,x ∼ IG
(
M

2
,

1

2
‖y −Hx‖22

)
. (33)

2) Sampling the democratic hyperparameter: Looking
carefully at (32), the conditional posterior distribution of the
democratic parameter µ is

f(µ|x) ∝ µN exp (−µN ‖x‖∞)µa−1 exp (−bµ) . (34)

Therefore, sampling according to f(µ|x) is achieved as fol-
lows

µ|x ∼ G(a+N, b+N ‖x‖∞). (35)

3) Sampling the description vector: Following the technical
developments of Section II-F, two strategies can be considered
to generate samples according to the conditional posterior
distribution of the representation vector f(x|µ, σ2,y). They
are detailed below.
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a) Component-wise Gibbs sampling: A first possibility
to draw a vector x according to f(x|µ, σ2,y) is to successively
sample according to the conditional distribution of each com-
ponent given the others, namely, f(xn|x\n, µ, σ2,y). More
precisely, straightforward computations yield the following 3-
mixture of truncated Gaussian distributions for this conditional

xn|x\n, µ, σ2,y ∼
3∑
i=1

ωinNIin
(
µin, s

2
n

)
(36)

where NI(·, ·) denotes the Gaussian distribution restricted to
I and the intervals are defined as

I1n =
(
−∞,−

∥∥x\n∥∥∞]
I2n =

(
−
∥∥x\n∥∥∞ ,

∥∥x\n∥∥∞)
I3n =

[∥∥x\n∥∥∞ ,+∞
)
.

(37)

The probabilities ωin (i = 1, 2, 3) as well as the (hidden)
means µin (i = 1, 2, 3) and variance s2n of these truncated
Gaussian distributions are given in Appendix D. This specific
nature of the conditional distribution is intrinsically related
to the nature of the conditional prior distribution stated in
Property 4, which has already exhibited a 3-component mix-
ture: one uniform distribution and two (shifted) exponential
distributions defined over I2n, I1n and I3n, respectively
(see Remark 5). Note that sampling according to truncated
distributions can be achieved using the strategy proposed in
[42].

b) P-MALA: Sampling according to the conditional dis-
tribution f(x|µ, σ2,y) can be achieved using a P-MALA step
[35]. P-MALA uses the proximity mapping of the negative
log-posterior distribution. In this case, the distribution of
interest can be written as

f(x|µ, σ2,y) ∝ exp (−g (x))

where g (x) derives from the Gaussian (negative log-) like-
lihood function and the (negative log-) distribution of the
democratic prior so that

g(x) =
1

2σ2
‖y −Hx‖22 + λ ‖x‖∞ (38)

with λ = µN . However, up to the authors’ knowledge,
the proximal operator associated with g(·) in (38) has no
closed-form solution. To alleviate this problem, a first order
approximation is considered3, as recommended in [35]

prox δ
2 g

(x) ≈ prox δ
2 g1

(
x + δ ∇

[
1

2σ2
‖y −Hx‖22

])
(39)

where g1(·) = λ ‖·‖∞ has been defined in Section II-E, δ is
a control parameter and the corresponding proximity mapping
is described in Section II-E.

Finally, at iteration t of the main algorithm, sampling
according to the conditional distribution f(x|µ, σ2,y) is per-
formed by drawing a candidate

x∗|x(t−1) ∼ N
(

prox δ
2 g

(
x(t−1)

)
, δIN

)
(40)

3Note that a similar step is involved in the fast iterative truncation algorithm
(FITRA) [33], a deterministic counterpart of the proposed algorithm and
considered in the next section for comparison.

and either keep x(t) = x(t−1) or accept this candidate x∗ as
the new state x(t) with probability

α = min

(
1,

f
(
x∗|µ, σ2,y

)
f
(
x(t−1)|µ, σ2,y

) q
(
x(t−1)|x∗

)
q
(
x∗|x(t−1)

)) . (41)

Note that the first order approximation made in (39) has no
impact on the posterior distribution, since the proposition is
then adjusted by a Metropolis-Hastings scheme.

The hyperparameter δ required in (40) is dynamically tuned
to reach an average acceptance rate for the Metropolis Hastings
step between 0.4 and 0.6, as suggested in [35].

C. Inference

The sequences
{
x(t), σ2(t), µ(t)

}TMC

t=1
generated by the

MCMC algorithms proposed in Section III-B are used to
approximate Bayesian estimators. After a burn-in period of
Nbi iterations, the set of generated samples

X ,
{
x(t)

}TMC

t=Tbi+1
(42)

is asymptotically distributed according to the marginal poste-
rior distribution f (x|y), resulting from the marginalization of
the joint posterior distribution f

(
x, σ2, µ|y

)
in (32) over the

nuisance parameters σ2 and µ

f (x|y) =

∫
f
(
x, σ2, µ|y

)
dσ2dµ (43)

∝ ‖y −Hx‖−
M
2

2 (b+N ‖x‖∞)
−(a+N)

. (44)

As a consequence, the minimum mean square error (MMSE)
estimator of the representation vector x can be approximated
as an empirical average over the set X

x̂MMSE = E [x|y] (45)

' 1

TMC − Tbi

TMC∑
t=Tbi+1

x(t). (46)

The marginal maximum a posteriori (mMAP) estimator can
be approximated as

x̂mMAP = argmax
x∈RN

f (x|y) (47)

' argmax
x(t)∈X

f
(
x(t)|y

)
. (48)

IV. EXPERIMENTS

This section reports several simulation results to illustrate
the performance of the Bayesian anti-sparse coding algorithms
introduced in Section III. Section IV-A evaluates the perfor-
mances of the two versions of the samplers (i.e., using Gibbs
or P-MALA steps) on a toy example, by considering measure-
ments resulting from a representation vector whose coefficients
are democratically distributed. Finally, Section IV-B compares
the performances of the proposed algorithm and its determin-
istic counterpart introduced in [33], as well as the method
proposed in [32]. For all experiments, the coding matrices
H have been chosen as randomly subsampled columnwise
DCT matrices since they have shown to yield democratic
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Fig. 5. As functions of the iteration number, approximation errors associated
with mMAP and MMSE estimates computed using the two proposed algo-
rithms. The end of the burn-in period is localized with a vertical black line.
Results are averaged over 100 Monte Carlo simulations.

representations with small `∞-norm and good democracy
bounds [30]. However, note that a deep investigation of these
bounds is out of the scope of the paper. In all experiments,
we will denote ”Gibbs” or ”full Gibbs” the algorithm where
the vector x is updated component-wisely (see (36)), and ”P-
MALA” our second algorithm where x is updated with a P-
MALA step (see (40) and (41)).

A. A toy example

This section focuses on a toy example to study the conver-
gence of the two versions of the proposed algorithm. Experi-
ments are carried out in dimensions M = 12 and N = 15. For
each set of parameters, 100 Monte Carlo simulations are run.
For each Monte-Carlo run, data are generated as follows. A
coding matrix H is generated and a coding vector x is sampled
according to a democratic distribution of parameter µ = 2. The
observation y is then simulated according to y = Hx + n,
where n is an additive Gaussian noise. The variance of n
has been adjusted to reach an average noise level of 20dB,
i.e., 10 log10

‖Hx‖22
Mσ2 = 20. Recall that the purpose will be to

estimate a democratic code x̂ that ensures a good description
of y. Two criteria have been used to evaluate the performance
of the estimators

SNRy = 10 log10

‖y‖22
‖y −Hx̂‖22

(49)

PAPR =
N ‖x̂‖2∞
‖x̂‖22

(50)

where x̂ refers to the MMSE or mMAP estimator of x.
The signal-to-noise ratio SNRy measures the quality of the
approximation. Conversely, the peak-to-average power ratio
PAPR quantifies anti-sparsity by measuring the ratio between
the crest of a signal and its average energy. Note that the
proposed algorithms do not aim at directly minimizing the
PAPR: the use of a democratic distribution prior should
promote anti-sparsity and therefore anti-sparse representations
with low PAPR.

Fig. 5 shows the evolution of the reconstruction error for
all estimators, seen as a function of the number of iterations.
The plots show that all algorithms converge to solutions that

TABLE II
RESULTS IN TERMS OF APPROXIMATION ERROR, PAPR AND ESTIMATED µ

AND σ2 .

‖y −Hx‖22 PAPR µ σ2

Original code 4.2× 10−1 2.8 2.0 3.9× 10−1

Gibbs MMSE 1.1× 10−2 2.9 1.6 2.8× 10−2

Gibbs mMAP 1.9× 10−6 2.9 idem idem
P-MALA MMSE 2.1× 10−1 2.7 1.2 2.4× 10−1

P-MALA mMAP 1.6× 10−1 2.6 idem idem

ensure reconstruction error of the observation vector lower
than 1 while the lowest is reached by the full Gibbs sampler.
Note that the average value of ‖y‖2 is 4.2.

Finally, with a personal computer equipped with a 2.8GHz
Intel i5 processor, the simulation of 5000 samples requires
2 minutes using Gibbs sampling and only 15 seconds using
P-MALA steps. These observations highlight the fact that
the algorithm based on P-MALA steps is much faster, even
though the reconstruction error decreases slower compared to
the Gibbs version.

To alleviate this limitation, the strategy adopted in the next
experiments performs TP−MALA = 20 Metropolis-Hastings
moves (40) and (41) within a single iteration of the MCMC
algorithm (as recommended in [35]).

Table II shows the average performance of all estimators
compared to the original values of parameters. The PAPR of
all estimates are either close to or even lower than the original
one for a better approximation of y. We emphasize that the
main objective here is to estimate an anti-sparse coding vector
x̂ of observations y. In the present experiment, even though y
are built from noise-free vectors Hx corrupted by a Gaussian
noise, a coding vector x̂ of y with similar or even lower
PAPR than the original code x can be inferred with a lower
approximation error as well. This apparent paradox can be
easily explained by a behavior akin to over-fitting: the noise
component itself is also democratically encoded by H. This is
not a problem here since the purpose is not to recover some
hidden true x as would be the case for a denoising task.

B. Application to spread representation

1) Experimental setup: In this experiment, the observa-
tion vector y is composed of coefficients independently and
identically distributed according to a Gaussian distribution,
as in [30]. The proposed MCMC algorithm is applied to
infer the anti-sparse representation x of this measurement
vector y w.r.t. the M × N coding matrix H for two distinct
scenarios. Again, H corresponds to randomly subsampled
columnwise DCT matrices. Scenario 1 considers a small
dimension problem with M = 40 and N = 60. In scenario
2, a higher dimension problem has been addressed, i.e., with
M = 128 and N ranging from 128 to 256, which permits to
evaluate the performance of the algorithm as a function of the
ratio N/M . In Scenario 1 (resp., Scenario 2), the proposed
mMAP and MMSE estimators are computed from a total of
TMC = 12×103 (resp., TMC = 55×103) iterations, including
Tbi = 10 × 103 (resp., Tbi = 50 × 103) burn-in iterations.
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For this latest scenario, the algorithm based on Gibbs steps
(see Section III-B3a) has not been considered because of
its computational burden, which experimentally justifies the
interest of the proximal MCMC-based approach for large scale
problems.

The proposed algorithm is compared with a recent PAPR
reduction technique, detailed in [33] and an anti-sparse coding
scheme proposed in [32]. The fast iterative truncation algo-
rithm (FITRA) proposed in [33] is a deterministic counterpart
of the proposed MCMC algorithm and solves the `∞-penalized
least-squares problem (2) using a forward backward-method.
Note that FITRA could be algorithmically improved since the
recent work of Condat [40]. In [32] the authors propose a
path following inspired-algorithm (PFA) that also solves the
variational counterpart of the considered Bayesian anti-sparse
coding problem. Note that the PFA-oriented scheme is derived
in [32] to solve the constrained version of (2) while the codes
provided by the authors4 solve the corresponding variational
problem. Similarly to various variational techniques, FITRA
needs the prior knowledge of the hyperparameters λ (anti-
sparsity level) and σ2 (residual variance) or, equivalently, of
the regularization parameter β defined (up to a constant) as
the product of the two hyperparameters, i.e., β , 2λσ2. As
a consequence, in the following experiments, this parameter
β has been chosen according to 3 distinct rules. The first
one, denoted FITRA-mmse, consists of applying FITRA with
β = 2λ̂MMSEσ̂

2
MMSE, where λ̂MMSE and σ̂2

MMSE are the
MMSE estimates obtained with the proposed P-MALA based
algorithm. In the second and third configurations, the regular-
ization parameter β has been tuned to reach two solutions
with the same figure-of-merits as P-MALA mMAP, either
in terms of reconstruction error SNRy (and free PAPR) or
anti-sparsity level PAPR (and free SNRy). These two solu-
tions are denoted FITRA-snr and FITRA-papr, respectively.
For all these configurations, FITRA has been run with a
maximum of 500 iterations. Following the implementation
provided with [32], PFA also needs the prior knowledge of a
hyperparameter h. As for FITRA, two versions are proposed,
with h = 2λ̂MMSEσ̂

2
MMSE (PFA-mmse) and h tuned to reach

the same SNRy as P-MALA mMAP (PFA-snr). Note that no
version of PFA with a targeted PAPR is presented, since PFA
systematically produces solutions with smaller PAPR than P-
MALA. Note that we do note expect to perform better than
FITRA or PFA, since both algorithms are supervised while the
two proposed methods are fully unsupervised.

Moreover, to illustrate the regularizing effect of the demo-
cratic prior (or, similarly, the `∞-penalization), the proposed
algorithm and the 3 configurations of FITRA have been finally
compared with the least-squares5 (LS) solution as well as the
MMSE and mMAP estimates resulting from a Bayesian model
based on a Gaussian prior (or, similarly, an `2-penalization).
Algorithm performances have been evaluated over 50 Monte
Carlo simulations in terms of reconstruction error SNRy and
PAPR, respectively given by (49) and (50).

4Available at http://gforge.inria.fr/projects/antisparse/
5The LS solution has been computed from the pseudo-inverse of H.

TABLE III
SCENARIO 1: RESULTS IN TERMS OF SNRy AND PAPR FOR VARIOUS

ALGORITHMS.

SNRy (dB) PAPR time (s)

P-MALA mMAP 29.3 2.8 3.2× 101

P-MALA MMSE 19.3 3.9 idem
Gibbs mMAP 8.8 3.0 1.4× 102

Gibbs MMSE 4.3 2.9 idem
FITRA-mmse 34.4 1.7 2.6× 10−2

FITRA-snr 29.3 1.9 idem
FITRA-papr 83.5 2.9 idem
PFA-mmse 29.6 1.6 5.3× 10−2

PFA-snr 29.3 1.8 idem
LS ∞ 6.6 6.1× 10−2

Gibbs mMAP (Gaussian) ∞ 5.9 1.9× 101

Gibbs MMSE (Gaussian) 73.1 6.8 idem

Fig. 6. Scenario 1: SNRy as a function of PAPR. The black line associated
with the left axis represent all the solutions of FITRA for various value of
the parameter β. The path for the FITRA parameter β is also depicted as
black line with scale in the right y-axis. The green, blue and red points are
the estimators proposed respectively by the Gaussian model, the full Gibbs
sampler and P-MALA, associated with the left axis. For all three algorithms,
MMSE and mMAP estimators are depicted respectively by crosses and circles.

2) Results: Table III shows the results in Scenario 1 (M =
40 and N = 60) for all considered algorithms in terms of
SNRy and PAPR. For this scenario, the full Gibbs method
needs approximately 2.5 minutes while P-MALA needs 32
seconds only. The mMAP and the MMSE estimates provided
by P-MALA reach reconstruction errors of SNRy = 29.3dB
and SNRy = 19.3dB, respectively. The mMAP estimate
obtained using the full Gibbs sampler provides unsatisfying
results compared to P-MALA, with low SNRy and PAPR
similar to P-MALA. This behaviour will be investigated in
the next paragraph. Compared to our Bayesian algorithms,
FITRA-mmse, recovers solutions with lower PAPR for a
given SNRy. Both PFA-mmse and PFA-snr recover solutions
comparable to FITRA-snr. All three algorithms MCMC, PFA
and FITRA have provided anti-sparse representations with
lower PAPR than LS or `2-penalized solutions, which confirms
the interest of the democratic prior or, equivalently, the `∞-
penalization.

Fig. 6 displays the results for all realizations of the mea-
surement vector y where the SNRy is plotted as a function
of PAPR. To provide a whole characterization of FITRA and
illustrate the trade-off between the expected reconstruction
error and anti-sparsity level, the solutions provided by FITRA

http://gforge.inria.fr/projects/antisparse/
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Fig. 7. Scenario 2: SNRy (left) and PAPR (right) as a function of N/M .

corresponding to a wide range of regularization parameter β
are shown6. The mMAP and MMSE solutions recovered by
the two versions of the proposed algorithm are also reported
in this SNRy vs. PAPR plot. Note that the the critical region
refers to the area around the phase transition of the blue line,
i.e., where FITRA abruptly moves from solutions with low
PAPR and SNRy to solutions with high PAPR and SNRy.
The P-MALA estimates are located close to the critical region
between solutions with low PAPR and SNRy and solutions
with high PAPR and SNRy: the proposed method recovers
relevant solutions in a quasi non parametric way. However,
Gibbs estimates reach either solutions with very high SNRy

or solution with very low SNRy. This means that for several
runs, the Gibbs sampler has been stuck in a local maximum
of (32) and more iterations are required for the Gibbs sampler
to escape these local maximizers. This betrays a relatively
unstable behaviour therefore less robust. Moreover, the Gibbs
sampler does not scale to high dimensions due to its pro-
hibitive computational cost.

Scenario 2 permits to evaluate the performances of the
algorithms as a function of the ratio N/M . For measure-
ment vectors of fixed dimension M = 128, the anti-sparse
coding algorithms aim at recovering representation vectors of
increasing dimensions N = 128, . . . , 256. As it has been
empirically shown in [29] for randomly subsampled DCT
matrices, the SNRy is expected to be an increasing function
of N/M for a given PAPR level of anti-sparsity. The rational
is that the number of combinations of ±‖y‖2/N increases
when N grows, leading to more chance of finding a better
representation for a given PAPR, due to increased redundancy.
Fig. 7 shows the evolution of both SNRy and PAPR as a
function of the ratio N/M . For the two estimates from P-
MALA, the SNRy is increasing with the ratio, while the PAPR
is constant for the mMAP estimate and (slightly) decreasing
for the MMSE. As in the previous scenario, all versions of
FITRA exhibit better SNRy. However, it is noticeable on Fig. 7
(right) that both FITRA-mmse and FITRA-snr provide higher
PAPR when the ratio N/M increases beyond 1.3.

6Note that SNRy = 0 for PAPR = 1 with FITRA since for large value of
β, the proximity operator given by (39) tends to the null vector.

V. CONCLUSION

This paper introduced a fully Bayesian framework for anti-
sparse coding of a given measurement vector on a known
and potentially over-complete dictionary. To derive a Bayesian
formulation of the problem, a new probability distribution was
introduced. Various properties of this so-called democratic
distribution were exhibited, which permitted to design an exact
random variate generator as well as two MCMC-based meth-
ods. This distribution was used as a prior for the representation
vector in a linear Gaussian model, a probabilistic version of
the anti-sparse coding problem. The residual variance as well
as the anti-sparsity level were included into a fully Bayesian
model and estimated jointly with the anti-sparse code. A
Gibbs sampler was derived to generate samples distributed
according to the joint posterior distribution of the coefficients
of representation, the residual variance and the anti-sparse
level. A second sampler was also proposed to scale to higher
dimensions. To this purpose, the proximity mapping of the
`∞-norm was considered to design a P-MALA within Gibbs
algorithm. The generated samples were used to approximate
two Bayesian estimators of the representation vector, namely
the MMSE and mMAP estimators.

The validity of the proposed algorithms was assessed and
evaluated through various experiments, and compared with
FITRA a variational counterpart of the proposed algorithms.
They produced solutions comparable to FITRA in terms of
reconstruction error and PAPR, with the noticeable advantage
to be fully unsupervised. In all experiments, as expected,
the democratic prior distribution, was able to promote anti-
sparse solutions of the coding problem. For that specific
task, the mMAP estimator generally provided more relevant
solutions than the MMSE estimator. Moreover, the P-MALA-
based algorithm seemed to be more robust than the full Gibbs
sampler and had the ability to scale to higher dimensions, both
in term of computational times and performances.

Future works include the unsupervised estimation of the
coding matrix jointly with the sparse code. This would open
the door to the design of encoding matrices that would ensure
equal spreading of the information over their atoms. Further-
more, since the P-MALA based sampler showed promising
results, it would be relevant to investigate the geometric er-
godicity of the chain. Unlike most of the illustrative examples
considered in [35], this property can not be easily stated
for the democratic distribution since it is not continuously
differentiable, but only continuous. Finally, it could be in-
teresting to investigate practical applications such as exact
PAPR oriented scheme [43]. One may consider for instance
a prior on the coding vector that takes values in {−α,+α},
with an hyperprior on α. Such a model would be appropriate
for binarization, as considered in [32] for approximate nearest
neighbor search.
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APPENDIX A
PROPERNESS OF THE DEMOCRATIC DISTRIBUTION

The parity of f , as well as its symmetries w.r.t. the set of
cones Cn introduced in (11) lead to, by noting C+n the half
positive part of Cn

CN (λ) = 2N
∫
∪Nn=1C

+
n

exp (−λ ‖x‖∞) dx

= 2NN

∫
C+1

exp (−λx1) dx

= 2NN

∫
R+

xN−11 exp (−λx1) dx1 =
2NN !

λN
.

APPENDIX B
MARGINAL DISTRIBUTIONS

Lemma 2 is proved by induction. To that aim, let one
consider the assertion, indexed by J and denoted P(J):
“For any J-element subset KJ of {1, . . . , N}, the marginal
distribution given in Lemma 2 holds”.

a) initialization: for J = 0 the marginal distribution is
nothing more the pdf of the democratic distribution.

b) inductive step : let J be an integer of {0, . . . , N − 1},
and suppose P(J) is true. Let k be any integer of
{0, . . . , N} \KJ and consider the set KJ+1 = KJ ∪ {k}.
Since P(J) holds, the marginal distribution p

(
x\KJ+1

)
can

be computed as follows

p
(
x\KJ+1

)
=2

∫
R+

2J

CN (λ)

J∑
j=0

(
J

j

)
(J − j)!
λJ−j

∥∥x\KJ∥∥j∞
× exp

(
−λ
∥∥x\KJ∥∥∞) dxk.

Inverting integral and series leads to the integration of
J+1 similar functions. Partitioning R+ as

[
0,
∥∥x\KJ+1

∥∥
∞

)
∪[∥∥x\KJ+1

∥∥
∞ ,+∞

)
allows one to rewrite the `∞-norm in

terms of either
∥∥x\KJ+1

∥∥
∞ or xk. Thus

p
(
x\KJ+1

)
=

2J+1

CN (λ)
e
−λ

∥∥∥x\KJ+1

∥∥∥
∞

×
J∑
j=0

(
J

j

)
(J − j)!
λJ−j

(∥∥x\KJ+1

∥∥j+1

∞

+

j+1∑
l=1

j!

(j + 1− l)!
1

λl
∥∥x\KJ+1

∥∥j+1−l
∞

)
.

The last step consists in gathering all the terms of same
degree in the polynomial function of

∥∥x\KJ+1

∥∥
∞.

Degree J + 1: the only term of degree J + 1 is for j = J(
J

J

)
(J − J)!

λJ−J
= 1 =

(
J + 1

J + 1

)
(J + 1− J − 1)!

λJ+1−J−1 . (51)

Degree 0: the term of degree 0 appears for all values of j
where l = j + 1. Thus

J∑
j=0

(
J

j

)
(J − j)!
λJ−j

× j!

λj+1
=

1

λJ+1

J∑
j=0

(
J

j

)
(J − j)!j!

=

(
J + 1

0

)
(J + 1)!

λJ+1
. (52)

Degree 0 < p < J + 1: this term comes from all j ≥ p and
l = j + 1− p(

J

p− 1

)
(J − p+ 1)!

λJ−p+1
+

J∑
j=p

(
J

j

)
(J − j)!
λJ−j

j!

p!

1

λj+1−p

=
(J + 1− p)!
λJ+1−p

((
J

p− 1

)
+

(
J

p

))
=

(J + 1− p)!
λJ+1−p

(
J + 1

p

)
. (53)

Hence P(J + 1) is true and the assertion is proven by
induction.

APPENDIX C
CONDITIONAL DISTRIBUTIONS

A. Conditional distributions

a) Equation (13) is obtained by means of a Bayes rule,
p (xn|x ∈ Cn) = p(xn, x∈Cn)

P[x∈Cn] , where P [x ∈ Cn] is given in
Property 3. By marginalizing over all other variables, one has

p (xn|x ∈ Cn) =
N2N−1

CN (λ)

∫ |xn|
0

exp (−λ |xn|) d xi 6=n

=
λN

2(N − 1)!
|xn|N−1 exp (−λ |xn|) .

b) Equation (14) results from the Bayes rule followed by a
marginalization over xn

p
(
x\n|x ∈ Cn

)
=

2N

CN (λ)

∫ +∞

‖x\n‖∞
exp (−λ |xn|) dxn

=
1

CN−1(λ)
exp

(
−λ
∥∥x\n∥∥∞) .

c) Equation (15) states that conditionally to a cone and
the value of the dominant component, the non-dominant
components are (N − 1) i.i.d uniform random variables. First

p
(
x\n|xn,x ∈ Cn

)
=

P [x ∈ Cn|x] p (x)

p (xn|x ∈ Cn) P [x ∈ Cn]

where p (xn|x ∈ Cn) and P [x ∈ Cn] are respectively given by
equations (13) and (3). Note that p (x) is the democratic pdf.
Finally, P [x ∈ Cn|x] is the indicator function of the set Cn or,
in other words, 1∀j 6=n, |xj |≤|xn|(.). Thus

p
(
x\n|xn,x ∈ Cn

)
=

2 Γ(N)

λN |xn|N−1 e−λ|xn|
Ne−λ‖x‖∞

CN (λ)
1|xj |≤|xn|
∀j 6=n

(x)

=
1

2N−1 |xn|N−1
1|xj |≤|xn|
∀j 6=n

(x). (54)

d) Equation (16) results from the Bayes rule

P
[
x ∈ Cn|x\n

]
=

1

p
(
x\n
) × ∫ ∞

‖x\n‖∞
p (x|x ∼ DN (λ)) dxn

=
1

p
(
x\n
) × λN−1

2N−1N !
exp

(
−λ
∥∥x\n∥∥∞)

where the marginal distribution p
(
x\n
)

has been derived
in (10). Once plugged, the computation directly leads to (16).
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e) Equation (17) is computed as previously

p
(
x\n|x 6∈ Cn

)
=

2

P [x 6∈ Cn]

∫ ‖x\n‖∞
0

λN

2NN !
e−λ‖x‖∞ dxn

=
1

P [x 6∈ Cn]

λN

2N−1N !

∥∥x\n∥∥∞ e−λ‖x\n‖∞ .

Then, P [x 6∈ Cn] = 1− P [x ∈ Cn] = N−1
N using Property 3.

B. Full conditional distributions

This appendix describes how to compute the conditional
distribution p

(
xn|x\n

)
. The proposed strategy consists in

conditioning the probability by the event xn ∈ Cn. Hence

p
(
xn|x\n

)
= p

(
xn|x\n,x ∈ Cn

)
P
[
x ∈ Cn|x\n

]
+ p

(
xn|x\n,x 6∈ Cn

)
P
[
x 6∈ Cn|x\n

]
.

(55)

a) P
[
x ∈ Cn|x\n

]
is given by equation (16). Thus,

P
[
x 6∈ Cn|x\n

]
follows.

b) p
(
xn|x\n,x ∈ Cn

)
can be computed using two nested

Bayes rules

p
(
xn|x\n,x ∈ Cn

)
=

p (x)

p
(
x\n|x ∈ Cn

)
P [x ∈ Cn]

1Cn(x)

(56)
where p

(
x\n, xn

)
is the pdf of the democratic distribution.

Since x belongs to the cone Cn, ‖x‖∞ can be replaced by
|xn|. P [x ∈ Cn] is given in (12). Then

p
(
x\n|x ∈ Cn

)
= 2N

∫ +∞

‖x\n‖∞

λN

2NN !
exp (−λ |xn|) dxn

=
λ(N−1)

2(N−1)(N − 1)!
exp

(
−λ
∥∥x\n∥∥∞) . (57)

Combining (3), (3) and (57) in (56) leads to

p
(
xn|x\n,x ∈ Cn

)
=
λ

2
e−λ(|xn|−‖x\n‖∞) 1|xn|≥‖x\n‖∞

(xn).

(58)
c) Calculations are the same as in the previous paragraph

p
(
x\n|x 6∈ Cn

)
=
λ
∥∥x\n∥∥∞
N − 1

λ(N−1)

2(N−1)(N − 1)!
e−λ‖x\n‖∞ .

Thus

p
(
xn|x\n,x 6∈ Cn

)
=

1

2
∥∥x\n∥∥∞ 1|xn|≤‖x\n‖∞

(xn). (59)

Finally the conditional (18) is obtained by combining (12),
(58) and (59) as suggested in (55).

APPENDIX D
POSTERIOR DISTRIBUTION OF THE COEFFICIENTS

The parameters of the truncated Gaussian distributions
involved in the mixture distribution (36) are given by

µ1n =
1

‖hn‖2
(
hTnen + σ2λ

)
µ2n =

1

‖hn‖2
(
hTnen

)
µ3n =

1

‖hn‖2
(
hTnen − σ2λ

)
s2n =

σ2

‖hn‖22

where hi denotes the ith column of H and
en = y −

∑
i 6=n xihi. Moreover, the weights associated with

each mixture component are

ωin =
uin∑3
j=1 ujn

(60)

with

u1n = exp

(
µ2
1n

2s2n
+ λ

∥∥x\n∥∥∞)φµ1n,s2n

(
−
∥∥x\n∥∥∞)

u2n = exp

(
µ2
2n

2s2n

)[
φµ2n,s2n

(∥∥x\n∥∥∞)− φµ2n,s2n

(
−
∥∥x\n∥∥∞)]

u3n = exp

(
µ2
3n

2s2n
+ λ

∥∥x\n∥∥∞)× (1− φµ3n,s2n

(∥∥x\n∥∥∞))
where φµ,s2(·) is the cumulated distribution function of the
normal distribution N (µ, s2).
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