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Abstract In this paper, we propose a novel approach for generating avalanche
hazard maps based on the spatial dependence of avalanche runout altitudes.
The right-truncated data are described with a Bayesian hierarchical model
in which the spatio-temporal process is assumed to be the sum of indepen-
dent spatial and temporal terms. Topography is roughly taken into account
according to valley altitude and path exposition, and the spatial dependence
is modelled with a Matérn covariance function. An application is performed
to the Haute-Savoie region, French Alps. A spatial dependence in runout al-
titudes is identi�ed, and an e�ective range of about 10 km is inferred. The
temporal trend extracted highlights the increase of avalanche runout altitudes
from 1955, attributed to both anthropogenic factors and climate warming. In
a cross validation scheme, spatial predictions are provided on undocumented
paths using kriging equations. All in all, although our model is unable to
take into account small topographic features, it is a �rst-ever approach that
produces very encouraging results. It could be enhanced in future work by
incorporating a numerical physically-based code into the modelling.
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1 Introduction

Hazard maps are useful tools to localize the danger engendered by extreme
avalanches in mountains (Jamieson et al, 2008; Barbolini and Keylock, 2002).
According to a reference hazard related to a set of suitable variables, �at risk�
zones are de�ned by combining information about avalanche frequency and
intensity. Whereas frequency is often considered stationary and rather easily
estimated, mapping intensity is the crux of the issue (Ancey et al, 2004; Eckert
et al, 2008). Two main approaches are encountered in the literature to eval-
uate avalanche intensity, namely, statistical methods and dynamic methods.
The former are based on direct observations of avalanche intensity, commonly
measured by runout distance, i.e. the distance covered by the avalanche. In
dynamical approaches, runout distributions are derived from factors at the
origin of avalanches, such as the accumulated snow depth in the release area,
which are propagated according to dynamical models (Barbolini et al, 2000).
However, these methods su�er from the small amount of data avalaible, and
from many uncertainties in physical laws driving the motion of snow (Jamieson
et al, 2008).

Focusing on a region rather than on a path has a major advantage: ob-
servations coming from multiple paths can be gathered. However, runout dis-
tances cannot be directly compared between paths, since they depend on local
climatic and topographical factors. As a consequence, data standardisation is
needed. Within the common alpha-beta (Lied and Bakkehøi, 1980) and runout
ratio (McClung and Lied, 1987) methods, each runout distance is transformed
into a transferred variable, as a function of typical slope values from the paths
where it occurred. All transferred variables are then assumed to be indepen-
dent, identically distributed with their sample size large enough for robust
inference. While these methods bene�t from all regional information, they
may be ine�ective when the local path topography is irregular (Smith and
McClung, 1997). In addition, they do not make use of any notion of proximity.

Even if, to our knowledge, the spatial dependance of avalanche intensity has
never been demonstrated from a statistical point of view, some hints may sug-
gest its reality. Indeed, avalanches arise from topographic and weather factors
that are both spatially distributed. For instance, studying the spatial reparti-
tion of extreme snowfalls (Gaume et al, 2013) and snow depths (Blanchet and
Davison, 2011), two factors impacting directly avalanche activity, have shown
that they are spatially dependent. Moreover, the existence of signi�cant spa-
tial dependence in avalanche frequencies in the northern French Alps has been
shown in Eckert et al (2007, 2010).

Bayesian hierarchical spatio-temporal models (BHM) (Cressie and Wikle,
2011) are popular tools to analysis complex spatio-temporal structure on many
kinds of data; they are encountered in various domains such as epidemiology
(Best et al, 2005), ecology (Munoz et al, 2013) and environment (Vanem et al,
2012). In the BHM framework, observations are modelled conditionally to the
spatio-temporal process and the conditional de�nition allows for the splitting
of the model into three layers: observation - process - prior. The observa-
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tion model takes into account data speci�cities, whereas the spatio-temporal
process is generally modelled with the convenient Gaussian process. Under
the Bayesian framework, inference is generally straightforward thanks to the
Gibbs algorithm (Gilks et al, 1995b).

The main issue in applying the framework to our case arises from data trun-
cation. Indeed, in the French avalanche database we work with, avalanches are
recorded only if their runout altitude is lower than a given threshold. This
special case di�ers from the more common spatial censored data (Stein, 1992),
because several repetitions of truncated data are supplied for each site (for us,
the avalanche path), and the proportion of non-observed data is unknown and
depends on the site. In such a case, it is known that ignoring the truncation
will produced biased estimators (A'Hearn, 2004), and so a conditional dis-
tribution should be assigned to observations. However, parameter estimation
under this distribution is uneasy, because truncation distorts the likelihood
surface to create large �at zones of instabilities. As a consequence, the variance
of maximum likelihood estimators is high, and modi�ed estimators obtained
with penalised likelihood (Cope, 2011), or restricted likelihood (A'Hearn, 2004)
have been developed. These two methods aim at introducing a small bias in
order to decrease the estimator's variance. Under the Bayesian framework,
Zhou et al (2014) report a good behaviour of the Bayesian estimates, even if
non-informative Je�rey's priors are used.

In this paper, we develop a spatio-temporal BHM to integrate within a uni-
�ed framework, all the information about avalanche intensity in Haute-Savoie,
the northern most French Alps department. On the observation layer the trun-
cated observations are modelled with a conditional distribution. We reduce the
instabilities linked to this distribution by restricting the parameter space to
a reasonable domain, with constraints on the mean inter-annual runout alti-
tudes, given by physical laws or expert knowledge. On the process layer, the
spatio-temporal covariance is assumed to be separable, and we model the spa-
tial dependence between mean inter-annual runout altitudes with a Matérn
covariance function. As a result, we show that spatial dependence exists in
runout altitudes. We then take advantage of the identi�ed spatial pattern to
predict avalanches on non-documented paths.

The data, their origins and their speci�cities are described in Section 2. Our
speci�cally designed BHM with a Gaussian truncated distribution as model for
observations is described in Section 3, as well as the constraints on parameters.
This model is inferred under the Bayesian paradigm. In Section 4, we discuss
two points concerning Bayesian inference: the prior choice and the speci�cities
of the Gibbs sampler we propose. In Section 5, we display results regarding
the application on avalanche runout altitude. Finally, in Section 6 we explore
the predictive abilities of our approach.
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2 Avalanche data in Haute-Savoie

A systematic survey of avalanche events began in France, in the early 20th cen-
tury under the scope of the EPA (Enquête Permanente des Avalanches). The
aim of the EPA survey was to better understand avalanche activity in order to
limit damage caused to forests, roads and inhabited areas. Consequently, a set
of paths was chosen and the runout altitude of avalanches occurring on these
paths has constantly been recorded since then. EPA data are accessible from
the website http://www.avalanches.fr/epa_presentation-donnees/.

In 2002, an observation threshold was further de�ned for each path. It cor-
responds to a level above the bottom of the path, such that only the avalanches
running down below it are recorded. The thresholds are chosen to be easily
detectable by observers such as roads and rivers, but also such that a substan-
tial part of the total avalanche activity, and at least the avalanches arriving
close to potential elements at risk, are recorded. Table 1 displays the distri-
bution of the altitudes between valley altitudes and thresholds. On average,
the thresholds are located 300 m above the valley altitude, but this distance
varies from one path to another within a range of ∼1000 m. Before 2002, the
threshold was implicitly used by most of the observers and we do not know
the proportion of recorded and non-recorded avalanches above the threshold.
Consequently, here, over the entire of this study period, we consider only the
avalanches with a runout altitude below the threshold and treat the data as
right-truncated.

We have at our disposal a database of n = 5331 avalanches that have been
recorded in Haute-Savoie during the 1925-2012 period, indexed by year and
path. They occurred on 389 paths, among the 553 paths currently surveyed
by the EPA in Haute-Savoie. These 389 paths are located in the eastern part
of the department where altitudes are on average high, and most of them are
aligned on both sides of valleys, as shown in Fig. 1. In particular, more than 90
paths are concentrated along the Arve valley, where the well-known township
of Chamonix-Mont-Blanc is situated, and where avalanche danger is known to
be very high (Naaim et al, 2010, 2013).

Table 1 provides some indicators of the path features, emphasizing the
heterogeneity of the paths. Concerning the avalanche record frequency, fewer
than 5 avalanches are recorded for 41 % of the paths, but for 6 % of them,
the number of records exceeds 50. The within path avalanche activity is also
heterogeneous: the standard deviation (sd) of recorded runout altitude is high
for some paths, but it generally does not exceed 50 m (for 61 % of the paths).
Speci�cally, for 42 paths, the standard deviation is null, meaning that all the
avalanches have exactly the same runout altitude. This result is not surpris-
ing, given that the precision of measurement is at least 10 m and surely larger
in the past. More generally, this heterogeneity in local runout variability ex-
presses the large range of topographies in the sample of studied paths. Indeed,
regular or moderately varying path pro�les lead to low variability of runout
altitudes, whereas for paths with more complex topography the variability can
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Fig. 1 Localization of the EPA avalanche paths in Haute-Savoie, French Alps. The paths
are �gured out by a contour line, the gray scale in the background represents the altitude.

Table 1 Repartition of three path features, given in number of paths (Nb.) a) Altitude
di�erence ∆ between the observation threshold and the valley. b) Number of avalanches by
paths recorded during the period 1925-2012. c) Empirical standard deviation of the runout
altitude computed by path.

a
∆ ]0, 100[ [100, 200[ [200, 400[ [400, 600[ [600, 1020[
Nb. 44 127 163 42 13

b
Nb. of events 1 2�5 6�10 11�20 21�30 31�50 51�100 177

Nb. 65 97 71 70 35 28 22 1

c
sd NA 0 ]0, 15[ [15, 30[ [30, 50[ [50, 75[ [75, 100[ [100, 250[
Nb. 65 42 34 59 65 74 26 24

be much higher, as demonstrated by long range runout simulations (Meunier
and Ancey, 2004; Eckert et al, 2009).

All in all, the avalanche altitude data at our disposal is rather impressive,
but with many particular features, which have to be taken into account in an
e�cient modelling.
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3 Hierarchical framework for kriging truncated data

3.1 A spatio-temporal model for right-truncated data

We make use of a hierarchical speci�cation to take into account all the data
features at the observation level, and to easily model space and time �uc-
tuations of runout altitudes on a Gaussian latent layer (Cressie and Wikle,
2011).

We opt for Gaussian truncated distributions as an observation model to take
into account that the data are observed below a threshold; this choice is dis-
cussed in Section 5.5. In addition to the truncation, we chose an heteroscedastic
model, i.e. path-speci�c variances in order to tackle the large between path
variability of empirical standard deviations.

We denote Ycti the observed runout altitude for avalanche i ∈ {1 · · ·nct},
for the path c ∈ {1, · · ·nc}, during the year t ∈ {1 · · ·nt}, sc the observation
threshold for path c, µct the mean of the complete (that is not truncated)
Gaussian distribution and σ2

c its variance. We assume that conditionally to
µct and σ2

c , the variables Ycti are independent and their probability density
function (pdf) is expressed as

f(ycti|µct, σ2
c ) =

1

Φ
(
sc−µct
σc

)√
2πσ2

c

exp

(
−1
2σ2

c

(ycti − µct)2
)
1ycti<sc , (1)

where Φ() is the cumulative density function (cdf) of the standard normal
distribution.

On the latent layer, we aim at modelling the spatio-temporal �uctuations
of the runout altitude. Our choice, discussed in Section 5.5 and based on an
empirical analysis of covariance matrices (Appendix A), is made on a simple
spatio-temporal factorial decomposition. The annual mean by path µct is sup-
posed to be the sum of an annual term Bt and a spatial term Cc. For symmetry
purposes between space and time terms, we assume that

∑
c Cc =

∑
tBt = 0

and introduce a constant term α, and so µct can be then written as

µct = α+Bt + Cc. (2)

The temporal term Bt is supposed to be the sum of a second order random
walk gt of variance δ1 and an independent Gaussian noise εt of variance δ0,
re-written as

Bt|gt, δ0 ∼ N (gt, δ0). (3)

Under the Bayesian paradigm, the posterior mean of gt approximates a smooth-
ing spline (Wahba, 1978). This non-parametric smooth term has been proved
to be convenient to model large-scale inter-annual variability, for instance in
avalanche data (Lavigne et al, 2012), or related proxies (Rabatel et al, 2013).
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The spatial term aims at reproducing the local variations and the spatial
dependence between paths of the mean runout altitude. For the sake of sim-
plicity, we denote as well c the centroid of the contour line of the path c. We
assume that C is a Gaussian random �eld that can be written

Cc = µc +Ac, (4)

where Ac is a zero mean Gaussian random �eld with a Matérn isotropic co-
variance function (Matérn, 1960). Thus, the covariance between Ac and Ac′ is
given by

cov(Ac, Ac′) =

{
τ2 1

2ν−1Γ (ν)

(
hcc′
φ

)ν
Kν

(
hcc′
φ

)
if c 6= c′

ρ2 + τ2 otherwise,
(5)

where hcc′ is the Euclidean distance between the centroids c and c′, Kν is
the modi�ed Bessel function of the second kind of order ν > 0 and Γ is the
gamma function. The Matérn class of covariance functions is recommended
for its �exibility (Banerjee et al, 2003). Indeed, in addition to the sill τ2, the
nugget ρ2 and the range φ, the Matérn covariance function is also parametrised
by the smoothness parameter ν. This parameter is related to the smoothness
of the spatial process at small distances: the larger it is, the smoother the
process. In particular, when the smoothness parameter is 0.5 the Matérn co-
variance function is the exponential covariance function, and in the extreme
case where ν → ∞, the Matérn covariance is the Gaussian covariance. As it
is well-established that this parameter is di�cult to infer, we consider that
it belongs to the set {0.5, 1, 1.5}. We do not consider higher values, because
in practice, data do not carry enough information to distinguish ν = 2 from
ν > 2 (Banerjee et al, 2003).

Two covariates are used to model the mean spatial term µc, namely, the
altitude valley hc and the release area exposure oc, so that the mean µc is
expressed as

µc = a+ bhc + oc. (6)

oc ∈ {oN , oS} is a categorical variable with two levels, S for the south, south-
east and southwestern directions and N for the other directions. It is intended
to capture the fact that south facing slopes behave di�erently because of the
in�uence of sun exposure on snow (melting, metamorphism, etc.). For identi-
�ability purposes, we set oN = 0.

3.2 Constraints on the mean runout altitude

In contrast to the ususal case, maximum likelihood estimators for the mean
and variance of a Gaussian truncated sample are not independent. Thus, the
likelihood surface for both parameters is distorted and presents a large �at
zone shown in Fig. 2. A couple of estimates close to the maximum likelihood
estimate is as likely as a couple of estimates far from the likelihood maximum.
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Fig. 2 log-likelihood for a sample of 100 independent observations of a standard Gaussian
distribution right-truncated at the value 0.1.

As a consequence, estimation algorithms may fail to converge. We thus add
constraints on the mean runout altitude to restrict the parameter space to
reasonable values. More speci�cally, we have at our disposal the following
information:

� at least 50% of the data are observed for each path, in accordance with the
threshold selection;

� the valley bottom is a lower bound for all avalanches, hence the mean
runout altitude is higher than (or ultimately equal to) the valley altitude.

These assertions can be expressed as constraints on the sum α + Cc. The
�rst can be written qYc0.5 < sc, with qYc0.5 the 50% quantile of the Gaussian
distribution N (α + Cc, σ

2
c ). It means that the runout altitude mean by path

α + Cc must not be higher than the observation threshold sc. The second is
simply written hc ≤ α + Cc. These constraints are not very restrictive, but
they are essential to make inference tractable.

3.3 Predictions

The spatial dependence in the mean runout altitude helps in making predic-
tions for a set of undocumented paths c0. Since a di�erent variance is set
by path, we assume that the variance distribution for the predicted paths
σ2
c0 is the mixture of the posterior distributions of the variances of the mod-

elled path set. We also chose to make predictions for the entire study period,
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and thus we integrate over time. Basically, we krige the spatially dependent
term A = (A1, · · · , Anc)′ and add the variability corresponding to the several
sources of uncertainties in order to obtain the predictive distribution [Yc0 |Y],
where Y = (Y111, · · · , Yncntnncnt )

′. Considering the hierarchical structure of
our model, it is straightforward to simulate predictive runout altitudes for new
paths from the MCMC outputs. Details of the method are given in Appendix
B.

4 Bayesian inference

4.1 Prior choices

Prior distribution assignment to the parameters is a sensitive task since they
must re�ect the a priori knowledge about the parameters (Carlin and Louis,
1997; Gelman et al, 2004). Here, we use both non-informative and informative
prior distributions elicited from expert knowledge. We assume that parame-
ters are independent a priori, and most of the time we make recourse to the
convenient conjugate priors.

Non-informative vague priors are assigned to the regression parameters, α
prior is taken improper, and a zero mean Gaussian distribution with variance
107 is chosen for a, b and oS . For the variance components of the temporal
part, the improper density 1/

√
δ0δ1 is selected, as advised by Speckman and

Sun (2001). Independent inverse gamma distributions with 0.0001 for rate and
shape parameters are assigned to τ2 and ρ2. A uniform distribution [0, φmax] is
assigned to the range parameter φ. Since, φ is highly dependent on the smooth-
ness parameter ν, φmax is selected according to the value of ν considered, such
that the e�ective range, i.e. the distance beyond which the covariance func-
tion does not exceed 5% of the sill , follows a uniform [0, 100 km] distribution.
Since 100 km is about the distance between the two furthest sites of the study
region, this prior can be considered as non-informative.

The nc variances σ
2
c , c ∈ {1, · · ·nc} are assumed to be independent and in-

verse gamma distributed. To introduce extra data information and help ensure
the stability of the algorithm, informative priors are elicited. The hyperparam-
eters of each gamma distribution are set such that the standard deviation mean
and variance equal 25 meters, a value considered reasonable by experts. This
distribution is then right and left truncated to ensure that no unrealistic vari-
ance can be sampled; the standard deviation σc must not be smaller than 30
m, representing the observation error, and not larger than 316 m.

4.2 A Gibbs sampler to draw from the posterior

Relying on the conditional independence relations in the BHM, for each value
of the smoothness parameter ν, the joint posterior distribution can be written
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as

[ α,C,B, σ2
c ,g, a, b,

oS ,A, δ0, δ1, φ, τ
2, ρ2|Y, ν] ∝

(∏nc
c=1

∏nt
t=1

∏nct
i=1[Ycti|α,Bt, Cc, σ2

c ]
)

×
(∏nc

c=1[Cc|a, b, oS , Ac, ρ2]
)
× (
∏nt
t=1[Bt|gt, δ0])

×[A|τ2, φ, ν]× [g|δ1]
×[α, σ2

c , δ0, δ1, τ
2, ρ2, φ, a, b, oS ],

(7)
which is a decomposition of the conditional equations de�ning the observation
model (Eq. 1), the process model (Eqs. 2, 3, 4) and the prior model. A Gibbs
sampler is implemented in C++ to draw parameters and latent variables from
their joint posterior distribution. In case of a standard linear regression, the
algorithm would be straightforward. Here, the truncation, the constraints on
the parameters and the spatial covariance function complicate the inference.
For the variance components of the spatial term, we rewrite the algorithm
supplied by Diggle and Ribeiro (2007) and use a Metropolis-Hastings step to
sample the range parameter.

For dealing with the truncation, we follow Gri�ths (2004)' algorithm which
proposes to add latent variables Zcti sampled in the non-truncated distribution
N (µct, σ

2
c ). These latent variables can be interpreted as pseudo-data in the case

of non-truncation, and conditionally to µct and σ
2
c they are linked to Ycti, by

the relationship P (Zcti < zcti) = P (Ycti < ycti) leading to

zcti = µct + σcΦ
−1

(
Φ(ycti−µctσc

)

Φ( sc−µctσc
)

)
. (8)

It is then straightforward to sample µct and σ
2
c conditionally to Zcti. However,

µct and σ
2
c are correlated to Zcti, and to decrease the dependence between µct

and σ2
c into the MCMC sample, we sample directly σ2

c from Ycti and not from
Zcti. The posterior conditional distribution is then given by

[σ2
c |Y, α, Cc,B] ∝

∏nt
t=1

∏nct
i=1

1

Φ(
Ycti−µct

σc
)

(
1
σ2
c

)a0+ 1
2mc+1

× exp
[
− 1
σ2
c

(
b0 +

∑nt
t=1

∑nct
i=1(ycti − µct)2

)]
,

(9)
where mc is the number of avalanches which occurred on path c, and where
a0 and b0 are the hyperparameters of the inverse gamma prior distribution.
We draw σ2

c according to the pdf of Eq. 9 thanks to the adaptive rejection
Metropolis sampling (ARMS) algorithm (Gilks et al, 1995a), an adaptation of
the adaptive rejection sampling (Gilks and Wild, 1992) suitable when the pdf
is nearly log-concave.

Another di�culty comes from the constraints assigned to the parameters,
which are of two types. Firstly, the identi�ability constraints stipulate that∑nt
t=1Bt = 0 and

∑nc
c=1 Cc = 0. A deterministic relation links the components

of vectors B, respectively C, and we have to draw them in subspaces of di-
mension nt−1, respectively nc−1. For this, we follow the recommendations of
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Gelman (2005) and sample B1, · · · , Bnt−1 conditionally to
∑nt
t=1Bt = 0, then

we set Bnt = −
∑nt−1
t=1 Bt. Secondly, the mean runout altitude by path, i.e.

α+Cc, is bounded. Speci�cally, we have hc ≤ α+Cc < sc for all c ∈ {1, · · ·nc}.
These constraints are linear and we follow the algorithm of Rodriguez-Yam
et al (2004) to sample the variables α and C in their conditional complete
posterior distribution. This algorithm consists in i) removing the dependence
within elements of C or α thanks to a simple linear transformation, ii) sam-
pling the independent elements of the transformed variable in the convenient
truncated univariate normal distribution. For this step, we use the method and
the code proposed by Chopin (2011). Details of the implemented algorithm are
given in Appendix C.

After testing the ability of the algorithm to estimate the parameters from
simulated data correctly, three chains of 40,000 iterations including a burn-in
period of 10,000 iterations were launched for each of the tested models (each
of the ν values). In each case, the good mixing of the chains was checked with
the Gelman-Rubin convergence diagnostic (Brooks and Gelman, 1998) and
con�rmed by visual inspection.

5 Results and Discussion

5.1 Choice of the smoothness parameter

The choice of the smoothness parameter of the Matérn covariance function
is based on the overall model �t, measured by the expected deviance, where
deviance is de�ned as -2 times the log-likelihood (Gelman et al, 2004). The
results for each of the three considered smoothness parameters are given in
Table 2. Surprisingly, we obtain the same expected deviance, meaning that for
each of the three models, the �t to the data is roughly the same. However,
we notice an interesting di�erence between models. Indeed, the e�ective range
and the sill decrease with the increase of the smoothness parameter, whereas
the nugget increases. This suggests that when the smoothness parameter is
high, the spatial dependence is weaker and model predictions based on spatial
dependence are less accurate. Consequently, in what follows, we decide to
assign the value 0.5 to the parameter ν. This choice will be corroborated in
section 6 when we compare prediction performances with the three values
of this parameter. Table 3 gives the posterior mean, standard deviation and
median of all estimated parameters when the exponential covariance (ν = 0.5)
is considered.

5.2 Spatial repartition

The µct posterior variance is given byVar(Cc)+Var(Bt). The ratio
Var(Cc)

Var(Cc)+Var(Bt)

equals 98.7% indicating that spatio-temporal variations of runout-altitudes are
mainly due to spatial variations. The large variations of the spatial component
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ν 0.5 1 1.5

φ 3209 m 1652 m 1262 m
E�ective range 9460 m 6591 m 5982 m

sill τ2 4669 m2 3968 m2 3738 m2

nugget ρ2 2478 m2 2842 m2 3019 m2

Expected Deviance 4.718.104 4.718.104 4.718.104

Table 2 Comparison of the parameters posterior mean for the three Matérn variogram
models.

are explained for 81% by the covariates, the valley altitude, hc and the path
exposition oc. The value of the valley altitude coe�cient (b=0.83 with standard
deviation 0.03) indicates that its in�uence is dominating. Its introduction into
the modelling enables the comparison of the runout altitude irrespective of the
valley altitude. The in�uence of the path exposition is not so clear. Avalanches
on south exposed paths generally stop higher (7.20 m), but the variability on
the parameter is large (the standard deviation is 9.35 m), and we cannot fully
conclude to a real e�ect of the exposition in the runout altitude, even if the
obtained result is physically consistent. In fact, it is expected that for south
exposed slopes, there is generally less snow and it is less cold than in north ex-
posed slopes; the runout distance is therefore shorter and the runout altitude
higher.

Figure 3 displays the purely spatially structured random term Ac. We dis-
tinguish clearly a spatial pattern. For instance in the Arve valley (highlighted
with a black solid line) avalanches seem to stop lower on the west side than on
the east side. The estimates of the variance parameters con�rm the presence
of spatial dependence. The sill is estimated to 4669 m2, whereas the nugget is
only 2479 m2 and the e�ective range is about 9.6 km. The uncertainty regard-
ing the three parameters (sill, range and nugget) are shown in Fig. 4, which
represents the posterior mean semivariogram and two hundred realizations.
Whereas the variability on the sum of sill and nugget is high, for the range
parameter, nearly all of the realizations agree, suggesting that the spatial de-
pendence does not originate from embedded-scale phenomena.

This e�ective range obtained here for runout altitudes is shorter than the
e�ective range of 42 km found in the study of avalanche frequencies on the
French Alps (Lavigne et al, 2015). Two factors account for this di�erence. First,
the avalanche frequency is primarily sensitive to climate variations whereas
the runout altitude is, in addition, strongly constrained by local topography
(paths more or less channelized, land cover, etc.), leading to range reduction.
Second, the frequency data considered in Lavigne et al (2015) were aggregated
by township, attenuating the e�ect of local topography even more, and leading
to a range probably longer than if counts by paths had been considered.

Nevertheless the signi�cant value for the range we obtain here demonstrates
the presence of spatial dependence in the runout altitude after crude correction
of the topographic e�ects. This result is of crucial importance, since it has
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never been obtained before to our knowledge and proposes an alternative to the
standard approaches based on topographic variables (Lied and Bakkehøi, 1980;
McClung and Lied, 1987; Sigurôsson et al, 1998). More precisely, it suggests
that it is conceivable to transfer information within a 10 km neighbourhood, as
an alternative to the introduction of additional variables required by standard
methods for avalanche hazard mapping, which are not always easily available.

5.3 Temporal evolution

The temporal term represents only 1.3% of the variability of the spatio-temporal
term µct, the largest part being explained by spatial variability. However, sig-
ni�cant year-to-year �uctuations and a smooth trend can be extracted, as
shown in Fig. 5. The year-to-year �uctuations are essentially captured by
the unstructured temporal term whose variance (δ0) is estimated to 138 m2.
These random �uctuations mainly result from the annual variations of extreme
weather conditions which in�uence avalanching.

At a broader time scale, the inter annual variations are modelled by the
structured temporal term g. From 1925 to 1955, the mean runout altitude de-
creases slowly at a rate of about 0.6 m/year, a trend di�cult to interpret since,
even if climate reconstructions at this time are not very precise, they do not
seem to show colder temperature or higher snow records (Beniston et al, 1997;
Corona et al, 2010). Furthermore, we do not have any other reconstruction of
runout altitude �uctuations at this early period, in France or other countries.

On the other hand, the 1955-1975 period is marked by a sudden increase
of the mean runout altitude, increasing from 1200 to 1245 m in only 20 years.
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Fig. 5 Posterior mean of the temporal term (solid line), posterior mean of the smooth term
(dotted line), and 95% credible interval of the smooth term (grey area).

This change is not reported by Eckert et al (2013) when both the Savoie
and the Haute-Savoie departments are under study simultaneously with a
simpler modelling approach. The divergence may be explained by the strong
relative importance in the latter study of Savoie in terms of total avalanche
activity, and by the numerous constructions of avalanche defense structures
made at this period in Haute-Savoie to reduce avalanche danger in ski resorts.
Therefore, the sudden increase we highlight here should have mostly direct
anthropic origins and does probably not re�ect a climatic trend.

From around 1975 to 2005, a slower increase (0.95 m/year) is observed,
up to around 1280 m, coherent with what is observed for the Savoie and
Haute-Savoie departments together, and also with climate warming and the
subsequent decrease of snow depths at low and moderate altitudes.

Finally, over the most recent years, this trend stops in accordance with
winters which are somewhat harsher (Eckert et al, 2013).

5.4 High variability in the between path variance

For most of the paths (91%), the runout altitude variance is small and does not
exceed 5000 m2, but few paths can have a much higher variance reaching 25000
m2. Understanding the origin of this between path variability is a key step for
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Table 3 Parameter estimates: posterior mean, posterior standard deviation and posterior
median

parameters mean standard deviation median
φ 3209.40 m 2102.98 m 2719.85 m
τ2 4669.10 m2 1230.73 m2 4540.29 m2

ρ2 2478.59 m2 651.17 m2 2485.95 m2

δ0 137.69 m2 33.47 m2 133.76 m2

δ1 0.85 m2 1.06 m2 0.49 m2

α 1237.86 m 1.22 m 1237.84 m
a -935.56 m 31.03 m -936.02 m
b 0.83 0.03 0.83
oS 7.20 m 9.35 m 7.13 m

making predictions on new paths. Here, the largest variance reaches 26425 m2

(standard deviation 162.6 m) and corresponds to quite a well documented
path with 10 observations, but for which two avalanches stop on a gentler
slope before the valley. Thus, the speci�c topography of the site (two distinct
runout zones) is responsible for the high variance observed. In other cases of
large variance, the paths are still well documented, and the presence of forest
in the slope at the bottom of the path seems to be the cause for the runout
altitude dispersion, because trees are able to stop the less dynamic events
(Bartelt and Stockli, 2001). Taking into account covariates in the variance
model linked to topography or land cover would therefore be the next step
to improve prediction. However, at this stage, it is impossible to obtain this
information automatically, and spatial prediction will therefore be performed
by employing regional distribution, i.e. without considering local speci�cities
in runout distance dispersion around their mean.

5.5 Model choice

The BHM chosen may seem rather simple since it combines a truncated Gaus-
sian distribution on the observation layer and an additive spatio-temporal pro-
cess. However, we think that introducing more complexity in the modelling is
not appropriate given the data quality and our objectives.

In the context of extreme event prediction, generalised extreme values
(GEV) distributions are traditionally used to describe avalanche runout dis-
tances (McClung, 2001; Keylock, 2005). More generally, skewed distributions
are popular for �tting environmental data. For instance the gamma distrib-
uton is broadly used in hydrology (Zalina et al, 2002), and the lognormal
or Birnbaum-Saunders distributions (Leiva et al, 2015; Garcia-Papani et al,
2016) often model air quality measurements. Our runout altitude records do
not allow us to study the distribution tail, because for many avalanche paths,
the runout zone is �at, leading to a left censorship. The GEV distributions
have thus been ruled out. This choice is con�rmed by a preliminary analysis,
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in which the adjustment of the normal, lognormal, Weibull, and gamma trun-
cated distributions are compared for paths on which more than 5 avalanches
are recorded. The four distributions are adjusted for each path, and the AICs
are averaged over the paths. The best distributions seem to be the normal (av-
erage AIC equals 236.0) and the lognormal (average AIC = 236.2). However
the Weibull distribution (AIC = 237.1) performs quite well also. In contrast,
the adjustement of the gamma distribution is worse (AIC = 282.8). Consid-
ering the ease of use of the normal distribution, we chose it rather than the
lognormal, keeping in mind that the model is less accurate for tail distribution.
The additive spatio-temporal structure chosen (Eq. 2) enables us to directly
apply the Matérn covariance and the second order random walk, two e�cient
techniques developped for spatial and temporal data, respectively. Moreover,
thanks to the spatio-temporal separability, the computational cost is consid-
erably reduced. However, this simple model does not allow interactions be-
tween time and space, a constraint which is not always full�lled in practice
(Fuentes, 2006). In order to investigate the presence of interactions between
space and time, a preliminary study of the empirical spatio-temporal covari-
ance matrices (Cressie and Wikle, 2011) has been carried out (see Appendix
A). It shows that assuming space-time interactions is not relevant, essentially
because spatial dependance is much higher than temporal dependance. This
point is conceptually corroborated from a physical point of view, as soon as
we recognise that in this relatively small region the climate is constant. We
expect that the same variations of the climate will have the same e�ects on
runout altitudes for all the paths of the study region.

6 Prediction performances

We use the prediction method detailed in Section 3 to assess the ability of the
model to predict runout altitude distributions on new undocumented sites.
We consider a cross-validation framework, in which the 51 paths with more
than 30 observations are used as a test sample. They are split in 10 groups
and, alternatively, each group is removed from the study. For each path of the
group, draws are generated from the predictive distribution. We then compare
this predictive distribution to the empirical distribution originating directly
from the data, with numerical and graphical tools.

First, the Kullback-Leibler (KL) divergence of the predictive from the em-
pirical distribution is examined. This non-symmetric measure of di�erence
between two probabilities can be interpreted as the loss in information by us-
ing the predictive distribution rather than the empirical one. Thus, the KL
divergence is always positive, and null when the empirical and predictive dis-
tributions are identical. Here, we compute an empirical KL divergence thanks
to the formula provided by Pérez-Cruz (2008), which has good asymptotic
properties. Figure 6 maps the predicted paths, in colors, and their associated
KL divergence. The best predicted paths, with the smallest KL divergences,
are located along the Arve valley, a well documented region with paths of
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rather regular topography. For one path highlighted in Fig. 6, predictions are
particularly bad: its KL divergence reaches 3.17, whereas the divergence of the
other paths does not exceed 2.1. By studying this site in detail, we note that
it is located at a higher altitude, with a very high observation threshold and
avalanches runout at about 2200 m a.s.l (above sea level). Hence, this elevated
path does not look like the standard paths of our database, which partially
explains its bad prediction.

As predictions are carried out on the basis of spatial dependence, predictive
paths with numerous well documented paths nearby should be better predicted
than isolated paths. To check this assertion, we investigate the correlation
coe�cient between the KL divergence and the number of observations within
a given radius around the predicted path (Tab. 4). The path mentioned above
is excluded from this study. When the radius is small (2 km) no correlation
is observed, but when it is greater (5-15 km), there is a signi�cant negative
correlation meaning that the loss in information by using the model rather than
the empirical distribution decreases when the amount of information around a
predicted path increases. This consistent result is encouraging, since it means
that our approach relying on the spatial dependence between avalanche runout
altitudes is an e�cient means to predict the distribution on a new path.

Figure 7 shows the probability-probability plot of the predictive and em-
pirical distributions. It illustrates the variability of the prediction ability of
our method. Indeed, for some paths, the curve is close to the �rst bissector,
but in some other cases, it can be very far from it. Two hypotheses could be
at the origin of these relatively bad predictions (i) the choice of the covariance
model, or (ii) the lack of topographic variables in the model.

In order to check the �rst hypothesis, we compare prediction abilities of
three Matérn covariance models with smoothness parameters equal to 0.5, 1
and 1.5. The prediction ability is measured by summing the KL divergence
of all of the 51 paths. It equals 59.13 when the exponential covariance model
is considered, whereas it reaches 59.78 (resp. 60.33) when ν equals 1 (resp.
1.5). This small di�erence in favour of the exponential model, suggests that,
considering the data at our disposal, the covariance model does not seem to be
the cause of the rather bad predictions, and that sticking on the exponential
choice is sensible.

In order to identify the relation between local topography and predictions,
four paths are investigated more deeply. Their predictive and empirical cumu-
lative probability distributions are given in Fig. 8, while topographic details
are supplied in Tab. 5. In the three cases of bad prediction (2, 3 and 4), a
topographic particularity exists in the predicted path or in its surroundings
(the slope is irregular with �at or steep parts). On the contrary, for the case of
rather good prediction (1), the path is regular and ends up far from the valley
bottom. This suggests that taking into account complementary topographic
features would improve the prediction for bad predicted paths. So far, only
dynamical models based on a detailed topography of the path are able to deal
with these irregularities, at the price of a computational burden and only if
a reliable, detailed record of local activity is available. However, this leaves
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distance Correlation pvalue Con�dence
(km) coe�cient interval
2 -0.24 0.10 [−0.49; 0.04]
5 -0.39 5.7.10−3 [−0.60;−0.12]
10 -0.45 1.1.10−3 [−0.65;−0.19]
15 -0.47 6.2.10−4 [−0.66;−0.22]

Table 4 Correlation coe�cient between the Kullback-Leibler divergence and the number
of observation at 2, 5, 10, and 15 km around the predicted path, pvalue of the test of the
null assumption of no correlation and con�dence interval.

●●

●

●●

●

●

●

●

●
●

●
● ●

●

●● ●● ●●
●
●

●

●
●●●●●●●●
●

●
●●●

●●●

●

●●
●

●●

●

●

●●

●●

●

●

●

●

●●●
●●

●
●●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●●●●●●●

●

●

●

●

●

●
●●

●
●

●

●●

●

●

●●●●

●

●

●
●

●

●

●

●
●●●
●

●●

●

●●

●

●
●

●●

●

●

●●

●●
●

●

●●

●

●
●

●

●●
●●

●

●

●●●●●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●
●

●●

●
●

●

●

●

●
●

●

●●

●● ●●●●

●●
●
●

●

●

●●●●
●●●●●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●

●
●

●
●●

●

●

●
●

●●

●

●
●

●● ●
●

●

●●

●●
●

●●

●●
●

●
●

●

●●

●
●

●

●
●●

●
●

●

●● ●●

●

●
●●

●

●

●

●

●●

●●

●●●
●●

●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●●

● ●●

●

●

●

●

●●
●●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●●

●

●

●●

●●

●
●

●
●

●●

●

●

●

●
●●

●●

●
●

●

●

●

●●

●

●●

●

●

●

●

●●

● ●● ●

●

●
●●

●
●

●

●

●

●

●

●

●
●●●●

●

● ●

●

● ●

● ●●

●

●

●

●

●

●

●●●●●●●

●●●●●●●

●
●
●

●
●

●●

●

●

●
●●

●

●

● ●●
●

●

●●●●

●●

●
●

●

●
●

●

●

●●
●

●
●●

●

●

●
●●●

●●
●●●●

●
●

●

●

●●

●●●

10 km

●

●

●

●

●

●●

●●
●●

●●
●●

●

●

●

●

●

●

●

●

●●

●● ●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●●●●●

●

●●

●

0 0.3 0.6 0.9 1.2 1.5 1.8 3
m

KL=3.17

Fig. 6 Kullback-Leibler divergence for
the 51 predictions paths (colored). The
paths in black are in the learning sample.
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Fig. 7 Probability-probability plot of
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tions. Each curve represents one of the 51
paths where the runout altitude is pre-
dicted (validation sample). Number la-
bels identify the four paths described in
Tab. 5.

the door open for further developments of our regional approach integrating
dynamical simulations to cope for the speci�c topography of each path.

7 Conclusion and outlooks

This study is the �rst model-based spatio-temporal analysis of avalanche runout
altitudes. The model we propose takes into account a major speci�city of the
data, namely, their truncation. Space and time are considered as additive ef-
fects and the model is developed within a hierarchical framework under the
Bayesian paradigm, so that additional extra-data information can be injected
through constraints on the parameters and elicited prior distributions. Finally,
with due recourse to MCMC methods, we have designed an e�cient inference
scheme.

Important quantities for the avalanche hazard assessment �eld have been
inferred. The most relevant are the spatial covariance parameters, which demon-
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Nb. EPA
name
EPA map

KL div. Prediction
quality

Descriptive features of the
path and of its surround-
ings

1 74276008
AF65

0.67 Good Small regular path with a
runout area in the forest
far from the valley bot-
tom. It is surrounded by
paths with a similar to-
pography.

2 74280041
AK63

1.26 Observations
all at the
same alti-
tude

Small path on a forest area
which ends up in a �at-
bottomed valley.

3 74270013
AN63

2.09 Over-
estimated
mean

Observed avalanche
runouts at ≈ 900 m, at
the bottom of a steep
slope. Runout altitudes
are predicted around 1000
m, in the middle of the
steep slope. Nearby, an-
other path presents a �at
part at 1000 m a.s.l., with
a 1080 m mean runout
altitude.

4 74063018
AD67

1.86 Under-
estimated
mean

Path with a speci�c topog-
raphy: a �at part between
1350 and 1300 m a.s.l.,
then the slope is steeper
and the path is channeled
down to 1200 m a.s.l..

Table 5 Details of four predicted paths: Kullback-Leibler divergence between the predicted
and empirical distribution (KL div.), prediction quality and descriptive features of the path,
i.e. topographic elements which can explain the good or bad prediction. For more details,
the topographic maps where paths are located can be download from ftp://avalanchesftp.

grenoble.cemagref.fr/epaclpa/EPA_feuilles_carte/alpes/, the EPAmap gives the name
of the map to select, and the paths can be localized with their names (the �rst �ve numbers
correspond to the postal code of the township and the three last to the path number).

strate the presence of a spatial dependence, with an e�ective range of about 10
km. In comparison to other quantities such as avalanche frequencies, this e�ec-
tive range is clearly shorter. The di�erence may be explained by the factor at
the origin of the spatial structure. In our case, the topography has been iden-
ti�ed as the major control variable, whereas in the frequency studies, climate
may play a larger role.
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Fig. 8 Predictive (red line) and empirical (green line) cumulative probability distributions
for the four paths detailed in Tab. 5.

The temporal term extracted from the model presents high year-to-year
�uctuations and a global increase of the runout altitude over recent decades.
The results roughly re�ect with those obtained in the northern Alps by Eckert
et al (2013), but a 1955-1975 period of high increase has appeared here, pre-
sumably caused by an intense construction of avalanche defense structures in
Haute Savoie at this time. The moderate increase over more recent decades is
coherent with the temperature increase reported in the Northern Alps (Durand
et al, 2009), and may be related to global warming.

Relying on spatial dependence, a consistent framework for prediction based
on kriging equations has been proposed. It is a major advance with regards to
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existing approaches in the avalanche literature, in which the site e�ect is only
addressed with topographic variables.

However, since this work is a �rst-ever approach, certain limitations remain.
The variability between paths is high, and ground factors such as the presence
of forest or the path shape have been identi�ed as good candidates to explain it.
Unfortunately, it is not possible to automatically extract these variables easily
and quickly at a regional scale. Consequently, at this stage, the path-speci�c
variances in the model are an obstacle to a conclusive predictive framework,
and is partially responsible for some poor predictions. Introducing dynamical
calculation in the hierarchical framework would be an attractive possibility
for further improvements. Indeed, it could solve the two major di�culties
identi�ed: distribution tail and local topography.

Finally, to achieve the ultimate goal, i.e. hazard mapping, spatialized re-
turn levels are necessary. The results obtained for the runout altitude in a
spatial context should now be coupled with frequency estimates to supply
them as function of space and, possibly, time.
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Fig. 9 Empirical non-separable (left), separable (center) and additive (right) spatio-
temporal covariance matrices. The mean is only spatially indexed, and is computed from
the valley altitude.

Appendices
A Empirical study of the spatio-temporal covariance structure

In order to investigate the presence of spatio-temporal dependence in runout altitudes,
empirical covariance matrices are estimated in the non-separable, separable and additive
cases (Fig. 9). Let Yict be the runout altitude of avalanche i on path c the year t. The
empirical spatio-temporal covariance at spatial lag [hk−1, hk] and time lag [τl−1, τl] is given
by:

ĈY (hk, τl) =
1

|N(hk, τl)|
∑

(ict,i′c′t′)∈N(hk,τl)

(Yict − µ̂Y (c))(Yi′c′t′ − µ̂Y (c′))

with N(hk, τl) the set of avalanche pairs (ict, i′c′t′) such that the distance between sites c
and c′ is in the interval ]hk−1, hk] and the lag time t − t′ belongs to the interval ]τl−1, τl].
|N(hk, τl)| is the number of pairs. The reference mean µ̂Y (c) is calculated by linear regression
on the valley altitude, the best covariate: µ̂Y (c) = 6.3 + 7.410−4hc. From the empirical
non-separable covariance matrix, the additive and separable covariance matrices have been
estimated by least squares. In details, for each spatial and time lag, estimates of γTl and γSk
are found such that:

ĈY (hk, τl) = γTl + γSk + εkl

for the additive covariance matrix, and:

ĈY (hk, τl) = γTl γ
S
k + εkl

for the separable covariance matrix, where εkl is the error.
Figure 9 shows that the non-separable covariance matrix is similar to the separable and

additive ones, essentially because the spatial dependence is much higher than the temporal
dependence. This pleads further in favor of our choice of a simple model with additive e�ects.
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B Decomposition of the predictive distribution

First we integrate the annual predictive distribution [Yc0t|Y] for time t and paths c0 over
the time to make prediction for the entire study period:

[Yc0 |Y] =

nt∑
t=1

1

nt
[Yc0t|Y].

By using the hierarchical structure of the model we can express this distribution conditionally
to the process level:

[Yc0t|Y] =

∫
[Yc0t|Cc0 , Bt, α, σ

2
c0
][Cc0 , Bt, α, σ

2
c0
|Y]d(Cc0 , Bt, α, σ

2
c0
). (B.1)

Let θ1 = (Bt, α, σ2
c0
)′, we decompose the distribution [Cc0 , θ1|Y] in the same way to make

the spatial term Ac0 appear,

[Cc0 , θ1|Y] =

∫
[Cc0 , θ1|Ac0 , a, b, oS , ρ

2][Ac0 , a, b, oS , ρ
2|Y ]d(Ac0 , a, b, oS , ρ

2). (B.2)

Finally, we express [Ac0 , θ2|Y], with θ2 = (a, b, oS , ρ
2)′, conditionally to A rather than Y:

[Ac0 , θ2|Y] =

∫
[Ac0 , θ2|A, φ, τ

2][A, φ, τ2|Y]d(A, φ, τ2). (B.3)

The joint Gaussian distribution for the vector [A,Ac0 |φ, τ2] is:[
A
Ac0

]
∼ N

([
0
0

]
, τ2

[
Σ..
φ Σ.0

φ

Σ0.
φ Σ00

φ

])
,

where Σ..
φ and Σ00

φ are the variance-covariance matrices of A and Ac0 , respectively, and

where Σ.0
φ and Σ0.

φ are covariance matrices between elements of A and Ac0 . Then the
formulas for conditional Gaussian distributions give:

E(Ac0 |A, φ, τ2) = Σ0.
φΣ..−1

φ A

V (Ac0 |A, φ, τ2) = Σ00
φ −Σ0.

φΣ..−1
φ Σ.0

φ

.

By combining Eq. (B.2) and (B.3) within Eq. (B.1), and using the Bayes' rule we obtain

[Yc0,t|Y] =

∫
[Yc0t|Cc0 , θ1]

[Cc0 |Ac0 , θ2][Ac0 |θ3]
[θ1, θ2, θ3|Y]d(θ1, θ2, θ3), (B.4)

with θ3 the vector (A, φ, τ2)′.

C Algorithm details

We detail the algorithm to draw C under the constraint
∑nc
c=1 Cc = 0, the same method is

used to draw B under the constraint
∑nt
t=1Bt = 0.

Let XC the n × nc matrix such that XCij = 1 if the avalanche i occurs on path j,
0 either, D the diagonal variance-covariance matrix of Z, D = diag(σ2

ci
)i=1,n, with ci the

path label for avalanche i, and 1c the nc length column vector of ones.
The complete posterior distribution of C is given by,

C|Z,B, α,D, E[C], ρ2 ∼ N (m,Σ)

with

{
m = (X′CD

−1XC + 1
ρ2

Ic)−1(X′CD
−1(Z− α−XBB) + 1

ρ2
E(C))

Σ = (X′CD
−1XC + 1

ρ2
Ic)−1
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At a second step we write the joint distribution of C|Z,B, α,D, E[C], ρ2, noted C|γ and its
constraint 1cC = 0, [

C|γ
1′cC

]
∼ N

([
m

1′cm

]
,

[
Σ Σ1′c

1′cΣ 1′cΣ1′c

])
.

The conditional distribution is then:

C|Z,B, α,D, E[C], ρ2,1′cC = 0 ∼ N (m0,Σ0)

with

m0 = m− Σ1c1
′
cm

1′cΣ1c

Σ0 = Σ − Σ1c1
′
cΣ

1′cΣ1c

. (C.1)

Only the nc − 1 �rst components of C are sampled, Cnc is given by Cnc = −
∑nc−1
c=1 Cc.

Then we constrain the mean runout altitude by path, α+ Cc. We have hc < α+ Cc < sc
for all c ∈ {1, · · ·nc}. In a Gibbs sampler, C and α are drawn successively in their complete
conditional distributions. We describe the method to take into account the constraint for C,
α is sampled in a similar way. The nc−1 �rst components of C must full�ll the constraints:

h1 − α < C1 < s1 − α
...

hnc−1 − α < Cnc−1 < snc−1 − α
hnc − α < −

∑nc−1
c=1 Cc < snc − α,

(C.2)

that we can write matrix-wise VC < v with V the k × nc − 1 matrix of constraints. Here
k = 2nc, since there are two constraints for each line of the system Eq. (C.2), one bears
on sc, the other one on hc. The posterior distribution of C is thus a multivariate truncated
distribution whose mean and variance for the complete version are given by Eq. (C.1) and
whose support S = {x ∈ Rnc−1 : Vx < v}. We follow the two-step algorithm of Rodriguez-
Yam et al (2004). In the �rst step, we remove the dependence between the components of
C by considering the vector w = LC, with L such that LΣ0L′ = Inc−1 and Inc−1 the
identity matrix. It has the following truncated distribution:

w|Z,B, α,D, E[C], ρ2,1′cC = 0 ∼ NS(Lm0, Inc−1)
with support: S = {w ∈ Rnc−1 : VL−1w < v}.

In the second step, each component of w is drawn successively conditionally to the others
in a Gibbs sampling. In order to avoid the computation of the entire vector of constraints
VL−1w at each draw, we may notice that for each constraint i ∈ {1, · · · k}, and each
component of w j0 ∈ {1, · · ·nc − 1}

(VL−1w)i =

nc−1∑
j=1

(
nc−1∑
l=1

VilL
−1
lj

)
wj

=

nc−1∑
j 6=j0

(
nc−1∑
l=1

VilL
−1
lj

)
wj

︸ ︷︷ ︸
u
−j0
i

+

(
nc−1∑
l=1

VilL
−1
lj0

)
︸ ︷︷ ︸

u
j0
i

wj0 .

The constraint i for the j0 component of w is written uj0i wj0 < vi − u−j0i . To update wj0 ,

one only has to compute uj0i for each constraint. This step demands k(nc − 1) elementary
operations, instead of k(nc − 1)2 operations when VL−1 is computed naively.

Finally we implement the following algorithm for sampling the nc − 1 components of C
from their truncated Gaussian distributions:

� Compute the vector u = VC;
� Initiate the matrix L, its inverse L−1, and the vector w = LC;
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� For each j in {1, · · ·nc − 1}
� Compute the k-dimension vectors uj = (uj1, · · ·u

j
k), and u−j = u− ujwj ;

� Find the interval [aj , bj ] in which wj is drawn to satisfy the k constraints;
� Sample wj in the normal truncated distribution N ((Lm0)j , 1) with support [aj , bj ].

Here, we use the method and the code proposed by Chopin (2011);
� Update u as u = u−j + ujwj ;

� Set C as C = L−1w.


