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ABSTRACT

Numerical weather forecast errors are routinely corrected through statistical postprocessing by several national

weather services. These statistical postprocessingmethods build a regression function calledmodel output statistics

(MOS) betweenobservations and forecasts that is based onan archive of past forecasts andassociatedobservations.

Because of limited spatial coverage of most near-surface parameter measurements, MOS have been historically

produced only at meteorological station locations. Nevertheless, forecasters and forecast users increasingly ask for

improved gridded forecasts. The present work aims at building improved hourly wind speed forecasts over the grid

of a numerical weather prediction model. First, a new observational analysis, which performs better in terms of

statistical scores than those operationally used at Météo-France, is described as gridded pseudo-observations. This

analysis, which is obtained by using an interpolation strategy that was selected among other alternative strategies

after an intercomparison study conducted internally at Météo-France, is very parsimonious since it requires only

twoadditive components, and it requires little computational resources. Then, several scalar regressionmethods are

built and compared, using the new analysis as the observation. The most efficient MOS is based on random forests

trained on blocks of nearby grid points. This method greatly improves forecasts compared with raw output of

numerical weather prediction models. Furthermore, building each random forest on blocks and limiting those

forests to shallow trees does not impair performance compared with unpruned and pointwise random forests. This

alleviates the storage burden of the objects and speeds up operations.

1. Introduction

Numerical weather prediction (NWP)models, although

essential for forecasting the dynamics of the atmosphere,

are not perfect and may be consistently biased. This is

particularly true near the surface (Haiden et al. 2015)

because processes such as stress and surface heating are

not well modeled and because model topography may

not be accurate. Furthermore, sources of errors, such as

initial condition errors, model errors, and parameteriza-

tion errors, accumulate in a very intricate way (e.g., initial

condition errors are a mixture of model and assimilation

errors). These errors may not be easily or quickly cor-

rected through improvement in the knowledge of the

atmospheric behavior or in the performance of computers

or computing science. A cheap, quick, and efficientmeans

of correcting systematic errors is the so-called model

output statistics (MOS; Glahn and Lowry 1972) method,

which is used by many national weather services (Wilson
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and Vallée 2002; Baars and Mass 2005; Schmeits et al.

2005; ECMWF 2006; Kang et al. 2011; Zamo et al. 2014).

MOS is a statistical postprocessing technique consisting

of building a statistical regression function between a

predictand or response (what is to be predicted) and pre-

dictors or explanatory variables (what is used to make the

prediction). Predictors are usually outputs of some NWP

model, thus the term MOS. The chosen statistical regres-

sion function is then applied to future forecasts to improve

their performance in terms of objective scores, such as the

root-mean-square error (RMSE) or the mean error.

The predictand inMOS is usually a variable measured

at meteorological stations. As a consequence, MOS is

mainly applied to station locations, and its performance

is evaluated against measurements at those stations.

However, forecast users need improved forecasts at ar-

bitrary locations where measurements are not always

available. For a national weather service, a most inter-

esting goal is to haveMOS available over the grid of some

NWP model. To achieve this goal, two possible strategies

are 1) to build MOS at station locations and then to grid

them, as the National Oceanographic and Atmospheric

Administration (NOAA) does (Glahn et al. 2009; Gilbert

et al. 2009), or 2) to grid measurements and then to build

MOS using this gridded field as the predictand. In this

study the second strategy is preferred and described.

Specifically, the aim is to build griddedMOS fields over

France for hourly 10-m wind speed forecasts. Wind fore-

cast fields have been selected because of their importance

in warning systems and the potential damage that can

result (damage to building roofs, fallen tower cranes, and

injuries or deaths caused by fallen objects are just some

examples). Furthermore, as a result of local phenomena

(e.g., slope wind, tunneling), surface wind speed is not the

easiest field to interpolate or improve and, as such, it is

a good candidate for testing the efficiency of the MOS

methods. The same methodology will be applied to other

fields, such as wind gusts and temperature. The first step is

to build a new wind speed analysis and to demonstrate

that it performs better in terms of statistical scores than

those operational analyses at Météo-France. The neces-

sity for using a different wind analysis comes from the

insufficient availability of operational analyses (every 3h

until April 2015), the requirement to have at least 3 yr of

hourly griddedwind speed to trainMOSmethods, and the

opportunity to generate more accurate analyses. The in-

terpolation strategy described in this study has been se-

lected among 48 strategies after an intercomparison led at

Météo-France (not shown here). The 48 interpolation

strategies varied in their interpolation functions, the in-

formation used, and their modeling of the spatial de-

pendence. The second step is to build the best MOS using

the new analysis. For that aim, two regressionmethods are

compared. Both are trained by pooling together the

data at nearby grid points (or ‘‘blocks’’) and deriving

themost parsimonious regression functions while keeping

the same forecast performance. By reducing the number

of regression functions, this so-called block MOS method

is useful in speeding up operations when using MOS

over a whole country such as France.

The manuscript is organized as follows. In section 2 the

more efficient gridded analysis is introduced and com-

pared against the analysis operational at Météo-France.
Section 3 is devoted to building gridded MOS of wind

forecasts using the more efficient analysis strategy as the

observations. Section 4 sums up our results.

2. Gridding 10-m wind speed measurements

To get gridded fields of 10-m wind speed measurements

even where actual measurements are not available, several

interpolation strategies exist. The most straightforward

approach is to use as the predictand an existing analysis of

some NWP model. However, classical variational data as-

similation schemes such as 3DVAR (Courtier et al. 1991)

or 4DVAR (Courtier et al. 1994) assimilate station mea-

surements. Therefore, an objective verification of such an

analysis versus those measurements is not straightforward

and may lead to overconfidence in the forecasts’ perfor-

mance, as will be shown later. Furthermore, since assimi-

lation schemesmix in someway forecasts and observations,

the obtained analysis could be affected by the forecast bias.

As presented in Schaefer and Doswell (1979), it is also

possible to use the two-dimensional wind field, interpolat-

ing divergence and vorticity instead of the wind vector it-

self. This may allow imposing physical constraints, such as

mass conservation, and using thewind vector instead of the

wind speed only. But while it works across a limited do-

main, this solution requires boundary conditions that may

not be trivial. A third efficient method for interpolating

measurements is to run a very high-resolution model and

find a statistical relationship between measurements and

short lead-time forecasts at the same (or nearby) locations.

This interpolation function is built for locations where the

predictand and the predictors are available and applied to

pointswhere only the predictors are known, as presented in

Burlando et al. (2013). This approach typically uses an

NWPmodel with a resolution on the order of a few tens of

meters. This is not feasible for a whole country as wide as

France, but a good compromise could involve using a

model over the entirety of France with a grid size of a few

kilometers. This statistical interpolation is the approach

chosen here, and the results are compared to an analysis

existing at Météo-France, which is a kilometer-scale anal-

ysis based on 4DVAR assimilation. The methodology is

presented in more detail hereafter.

1930 WEATHER AND FORECAST ING VOLUME 31

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/31/6/1929/4659021/w

af-d-16-0052_1.pdf by guest on 20 N
ovem

ber 2020



a. Methodology

Let us suppose we have at our disposal past predictand

and predictor values, at time t5 1, . . . , T forNs stations

located at sites si, where i5 1, . . . , Ns. Let us note that

S is a fine (model) grid covering the region of interest,

and T is a fine temporal grid covering (1;T). Then, for a

generic spatiotemporal point (s, t), with s 2 S and

t 2 T , let us note that y(s, t) and x(s, t) are the values of

the predictand and the vector of predictors, respectively.

Interpolating the predictand consists of building some

function f such that y(s, t)5 f [x(s, t)]1 «(s, t), with « an

interpolation error. The function f is built to have the

best generalization capability, that is the lowest possible

errors « over the sites in S . It is fitted locally; that is,

for a given spatiotemporal point (si, t), the training

set D (si, t) is made of a subset of fs1, . . . , sNSg3 T
depending on (si, t).

Many interpolation strategies can be tried by varying

the training set, the family of functions to which f be-

longs, the choice of the predictors x, and the optional

modeling of the error «. The error can be supposed to be

deterministic (Hengl 2007) with no modeling at all. Al-

ternatively, the error can be simulated with statistical

models eitherwithout spatiotemporal dependence (Hastie

et al. 2009; Kuhn and Johnson 2013) or with spatial

dependence treated explicitly (Hengl 2007; Cressie and

Wikle 2011).

b. Data description

The predictand is the hourly 10-m wind speed defined

as the average of the instantaneous wind speed mea-

surements taken during the 10min before each hour.

These measurements are available at 436 meteorologi-

cal stations over mainland France (named above si, with

i5 1, . . . , Ns), which are managed byMétéo-France. To
balance the quantity and quality of the measurements,

the retained data are actually measured at heights be-

tween 8 and 13m for stations of environmental class

lower than or equal to 3 according to the World Mete-

orological Organization’s Guide to Meteorological In-

struments and Methods of Observation (WMO 2008,

chapter 1, annex 1.B). For wind speed measurements,

environmental class 3 requires that ‘‘the mast should be

located at a distance of at least 5 times the height of

surrounding obstacles’’ and that ‘‘sensors should be

situated at a minimum distance of 10 times the width of

narrow obstacles (mast, thin tree) higher than 8m.’’

The mean distance between pairs of nearest stations

is 21 km. The study period goes from January 2011 to

March 2015.

For the best interpolation strategy described hereaf-

ter, the vector of predictors x at a site s is composed of

the position of the site and the most recent wind speed

forecast from an NWP model.

d The position of each site s 2 S is specified by its

horizontal coordinates (sx and sy) in the extended

Lambert-93 georeferencing system and its altitude sz.

The value of sz is obtained by considering the altitude of

the nearest point in the BD Alti (http://professionnels.

ign.fr/bdalti) digital elevation model (DEM), which is

made available through the French geographical in-

stitute [Institut national de l’information géographique
et forestière (IGN)]. The freely available version of this

DEM, which is used in this study, has a resolution of

75m and covers France only.
d The most recent wind speed forecast from an NWP

model is made with Applications de la Recherche à
l’Opérationnel à Méso-Echelle (AROME), Météo-
France’s high resolution NWP model. It is a limited-

area, nonhydrostatic model. During the study period,

it had a 2.5-km grid size over France (Seity et al. 2011).

For one specific site, date, and time, the wind speed

forecast comes from the most recent run, excluding the

analysis, and it is denotedWAROME(s, t). SinceAROME

runs four times per day, the lead times used ranged

from 1 to 6 h. As an example, for an interpolation at

1600 UTC, the predictors come from the 1200UTC run

with a lead time of 4h. The wind speed forecast used at

station locations is AROME’s forecast bilinearly inter-

polated from AROME’s grid toward these locations.

c. Verification strategy

Since no wind speed measurements are available at

grid points, assessment of the interpolation strategy is

achieved through cross-validated interpolation toward

some test stations. Cross validation consists of splitting

the available archive into two subsets: one training set is

used to fit the interpolation functions and the test set is

used to assess the interpolation performance.

Since cross validation is time consuming, a subset of

150 test stations were chosen, which represented the

French topography and hourly wind speed climatology.

Ten lists of 15 stations were built as test sets, so that each

list gathers stations far enough from one another to en-

sure that the results are close to those of leave-one-out

cross validation. The closest test stations in each list are

separated by at least 80km. Interpolation is done toward

each of these 10 test lists separately, and their perfor-

mance is assessed. Consequently, the training is always

done with 421 stations (up to missing data).

Comparing this new analysis against the existing

AROME analysis provides an assessment of its useful-

ness for operational purposes. However, the AROME
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assimilation scheme already assimilates station measure-

ments, which biases its scores toward better performance.

Thus, in order to get an accurate assessment of the analysis

performance as an interpolator, 10AROMEassimilations

were rerun without assimilating one test set of 15 stations

each. Since this reanalysis takes time, it was only run for

120 dates between July 2013 and July 2014, at 1500 UTC,

which corresponds to the maximum of the diurnal cycle

of wind speed. This reanalysis is referred hereinafter as

AROMEcv, since it is computed with cross validation.

Finally, until April 2015, the AROME analysis was

available only every 3 h, whereas MOS is required at an

hourly rate. Consequently, a simple reference hourly

interpolation method is built by bilinear interpolation of

AROME’s most recent wind speed forecast, with a lead

time of 1–6 h. At some site s with geographical coordi-

nates (sx, sy), bilinear interpolation takes as an inter-

polation function f [x(s, t)]5 a1 bsx 1 csy 1 dsxsy. The

parameters a, b, c, and d are fitted onto the four nearest

AROME grid points from the interpolation point s. If

this bilinear interpolation performs better, the retained

analysis is simply the most recent wind speed AROME

forecast.

For each of these analyses, the interpolation perfor-

mance is assessed by pooling together the interpolated

values in the 150 test stations at the 120 test dates.

Classical performance measures are used, such as

d bias,

BIAS52«(s, t);

d root-mean-square error,

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«2(s, t)

q
; and

d mean absolute error,

MAE5 j«(s, t)j,

where «(s, t) is the aforementioned interpolation

error, and the overbar signifies the mean over all

test stations and test dates.

Since RMSE and MAE values alone do not give in-

formation about the distribution of errors, specifically

about large errors, measures of error dispersion are also

computed:

d percentage of absolute errors lower than or equal tow,

with w 5 1 or 4ms21, denoted %#1 and %#4,

respectively, and
d quantile of order t of absolute errors with t5 0:5

(median) or 0.9, denoted Q(0:5) and Q(0:9),

respectively.

d. Results about the best interpolation strategy

The best interpolation strategy among the 48 interpo-

lation strategies previously tested is presented.

First, the training setD (s, t) is global and run for a fixed

time. Thismeans that whatever the interpolation point (s, t)

is, the training domain pools all the stations over France but

it takes into account only the measurements at time t.

Second, the interpolation function is a mixture of two

thin plate regression splines (TPRSs; Wood 2003). This

is a special class of generalized additive models (GAMs;

Wood 2006). In GAMs the actual predictand is some

link function g of the expectation of y, taken as the sum

of p functions: g[E(y j x)]5�p

j51fj(xj), with xj being one

or several components of the predictors vector. Here, the

link function is the identity, and the functions fi are two

TPRSs. Indeed, our best interpolation function is simply

ffx½s, t;D (s, t)�g5 tps[WAROME(s, t)]1 tps0(sx, sy, sz),
where tps and tps0 are two TPRSs, whose parameters

are fitted for each date and time in an automatic way

by means of the function gam in the R package mgcv

(R Core Team 2015).

Third, the spatial dependence between the errors is not

explicitly modeled in this strategy. It appears to be unnec-

essary since using the AROME wind speed forecast im-

plicitly imposes some structure onto the interpolated field.

Unless otherwise stated, the following results are

computed for the 150 test stations, the 120 test dates,

and at 1500 UTC.

1) COMPARISON TO REFERENCE AND

CROSS-VALIDATED AROME ANALYSES

The two first columns in Table 1 present the measures

of performance for the TPRS analysis and the reference.

For the whole sample, both analyses are unbiased.

However, TPRS performs better than bilinear interpo-

lation for the othermeasures of performance. TheRMSE

is improved by 16%, and most of the errors are less than

4ms21 in absolute value.

Table 1 also shows the same measures of performance

but for classes defined by the terciles of the wind speed

distribution over France during the study period: weak

(below 2.9m s21), average (between 2.9 and 4.8m s21),

and strong (above 4.8m s21). For the lowest measured

wind speeds, TPRS and the reference tend to yield

slightly too strong winds (positive bias) and the converse

for the strongest measured wind speeds (negative bias).

However, the bias remains low. Whatever the wind

speed regime, TPRS outperforms bilinear interpolation

whatever other performance measure is considered.

Figures 1 and 2 show the evolution of RMSE and

BIAS over the time of day for TPRS and reference an-

alyses, computed over the 150 test stations and all of the
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dates in the study period. The curves may show abrupt

changes every 6h, when the predictors are taken from a

different run. This is due to the better performance of the

underlying forecast thanks to the proximity of AROME

assimilation. Regardless, TPRS performs consistently

better than the reference, and its performance shows

less variability. This is also true for other performance

measures (not shown here).

Table 1 also shows the performance measures of the

operational AROME analysis with all stations assimi-

lated and of the AROMEcv reanalysis. As an example of

the usefulness of this cross-validated reanalysis for as-

sessing the performance of the TPRS analysis, let us note

that without blacklisting some stations the operational

AROME analysis gets an RMSE of about 0.8ms21 over

the test stations, a significantly better score compared

with the actual cross-validatedRMSEof 1.5ms21 (87.5%

higher). This shows the strong local impact of the obser-

vations in the assimilation fields.

As for the new analysis, it appears that TPRS actually

performs better than the AROMEcv reanalysis, whatever

the interval of measured wind speeds and the performance

measure. Moreover, TPRS is computed very quickly: the

complete hourly interpolated wind speed grid from Janu-

ary 2011 to March 2015 required only 4 days of computa-

tion at the resolution of AROME (2.5km) on a standard

workstation. This may allow a real-time computation of

wind speed analysis to be used routinely and builds a long

enough archive to train the MOS methods.

2) SPATIAL STRUCTURES OF GRIDDED

MEASUREMENTS

The performance measures used quantify the quality

of interpolation strategies but say nothing about the

likeliness of the structures represented in the gridded

wind field. Figure 3 allows a subjective evaluation of

these structures. Figure 3 presents the storm Joachim

that hit western Europe in December 2011.

First, TPRS may increase or decrease the wind speed

compared with the AROME forecast. As an example, in

Fig. 3 the gridded wind speeds with TPRS are lower than

those in the forecasts across southwestern France butmore

variable and stronger in the Pyrenees. The wind speed in

the new analysis is also increased at the tip of Brittany and

decreased over a large area to the east and southeast of

Brittany. This high-impact event has been subjectively

evaluated by meteorologists thanks to Météo-France’s
internal reports of this event. The structures in TPRS have

been judged to be more in agreement with reality.

Moreover, the gridded wind speeds, although usually

smoother than AROME because of the use of smoothing

functions such as TPRS, still exhibit realistic physical

structures. This may not be systematic for every interpo-

lation strategy. Indeed, as an example, ordinary kriging led

to unrealistic smooth wind speed fields (not shown). In

Fig. 3, thewind speed field ismore variable throughout the

Pyrenees for TPRS than for the AROME forecast. Be-

cause AROME only includes 2.5-km-resolution topogra-

phywhereas the new analysis includes the 75-m-resolution

BDAlti topography, this increased spatial variability of

the gridded wind speed over the mountains seems to

be a positive feature.

Similar results hold for other dates and hours that have

been subjectively appraised by Météo-France (not shown).

3) WHY A GLOBAL TRAINING DOMAIN?

A local training domain, containing only of stations

within a certain radius around each site s, was used as a

sensitivity experiment. This training radius was varied

between 20 and 2000km. Indeed, a variographic study

TABLE 1. Measures of performance for TPRS, bilinear reference

interpolation (ref.), operational AROMEanalysis (AROME), and

AROME reanalysis computed with cross validation (AROMEcv).

These results concern 150 test stations and 120 dates at 1500 UTC,

for all wind speed values and three different intervals of wind speed

measurements. Values in boldface indicate the best performance

among TPRS, reference, and AROMEcv.

TPRS Ref. AROME AROMEcv

All wind speed values

BIAS 0.0 0.3 20.1 0.0

MAE 1.0 1.2 0.6 1.1

RMSE 1.4 1.6 0.8 1.5

Q(0.5) 0.8 0.9 0.4 0.8

Q(0.9) 2.1 2.5 1.2 2.3

%#1 63.1 53.8 86.3 58.3

%#4 98.8 97.6 99.6 98.3

Weak wind (below 2.9m s21)

BIAS 0.7 0.8 0.1 0.5
MAE 0.9 1.1 0.5 0.9

RMSE 1.2 1.5 0.7 1.3

Q(0.5) 0.7 0.9 0.3 0.7

Q(0.9) 2.0 2.4 1.0 2.0
%#1 66.9 56.2 90.1 64.9

%#4 99.4 97.7 99.8 98.9

Medium wind (between 2.9 and 4.8m s21)

BIAS 0.1 0.4 20.1 0.0
MAE 0.8 1.1 0.5 0.9

RMSE 1.1 1.4 0.7 1.2

Q(0.5) 0.7 0.8 0.3 0.7
Q(0.9) 1.7 2.2 1.0 2.0

%#1 70.6 56.8 89.3 63.1

%#4 99.8 99.1 100.0 99.5

Strong wind (above 4.8m s21)

BIAS 20.7 -0.3 20.4 20.7

MAE 1.3 1.3 0.7 1.4

RMSE 1.7 1.8 1.1 1.8

Q(0.5) 1.0 1.0 0.5 1.1

Q(0.9) 2.7 2.8 1.6 2.9

%#1 51.9 48.8 79.5 46.8

%#4 97.4 96.1 99.0 96.5
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(not shown here) showed that the correlation length of

wind speed measurements is about 50 km, albeit with

large differences according to the kind ofmeteorological

and geographical zone (warm sector, tail end of a low,

neighborhood of a front, mountains, sloping areas, etc.).

It could be expected that, with smaller training domains,

the wind speed measurements would be more correlated

and the performances improved. But it turns out that these

local training domains delivered poorer performances

than did a global training domain. It happens that the

smaller the training domain, the less numerous the data

and the less precise the estimation of the interpolation

function, thus the worse interpolation performance (not

shown). Inversely, by taking a global training domain, the

interpolation method takes the best of all available data at

one specific time. To improve performance by reducing

the size of the training domain would require a much

denser measurement network. In hilly or mountainous

FIG. 2. As in Fig. 1, but for the bias.

FIG. 1. Evolution of RMSE over time for TPRS and reference interpolation strategies,

computed over the 150 test stations.
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areas, with very local topographic effects, this requirement

would become unrealistic.

4) FURTHER POSTPROCESSING OF TPRS
INTERPOLATION

By construction, TPRS linearly extrapolates as soon

as there is a predictor exceeding the values in the

training dataset. Because of this linear extrapolation,

interpolated wind speeds may reach unrealistic values.

Contrary to other interpolation strategies tried, TPRS

nearly never exhibits such excessive wind speeds. To

filter out and prevent these rare occurrences, a post-

processing of the gridded wind speed fields illustrated

before is applied (see example in Fig. 4). The meteoro-

logical spline in TPRS, tps[WAROME(s, t)], is constrained

at each grid point to be less than tps[maxtraining(WAROME)],

where maxtraining(WAROME) is the maximum AROME

forecast in the training dataset. Since this filtering rarely

changes the gridded measurements, performance mea-

sures of TPRS are not modified.

Finally, a visual comparison of measured values and

TPRS interpolation at the station locations showed that

for 12 stations, although the new analysis performs better

than the AROME analysis, very high errors (up to 80%

below the measured value) remain. These stations are

situated in hilly areas and exhibit very high values. These

features make it very unlikely to develop a good inter-

polation at these locations. To keep high wind speeds in

the new analysis, measurements at all stations are simply

copied out to the nearest grid point.

To conclude this section, TPRS is a quick and more

efficient alternative to the usual data assimilation scheme

FIG. 3. Results of interpolation at 1800 UTC 15 Dec 2011. (top left) Map of gridded wind speeds with TPRS.

(top right) Map of AROME wind speed forecast (run at 1200 UTC, lead time 16 h). (bottom left) Residuals of

interpolation at station locations. (bottom right) Differences between TPRS and the AROME forecast. Under

each map title is the interval of the corresponding quantity.
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when creating a long archive of hourly griddedwind speed

measurements. TPRS also requires less computational

resources and can be run on a standard workstation.

The following section describes how to improve wind

speed NWP forecasts using MOS with the new analysis

based on TPRS as the predictand (or the response).

3. Improving wind speed forecasts on a grid by
block regression

MOS aims at correcting forecasts by means of a re-

gression function r between the variableY to be predicted

and some explanatory variable(s) (or predictors) X that

may be NWP model output(s) or any other source of

information. This regression function is estimated on

an archive of past forecasts and associated observations,

and it is then applied to future forecasts to increase their

accuracy. It is quite similar to what has been done in

the previous section when building an interpolation

function, provided that the regression function is applied

at future times (t. T ) instead at nonmonitored locations

(s;fsi, i5 1, . . . , Nsg).
In this study, two classical regressionmethods, namely

linear modeling and random forests, are compared. The

functional kernel regression (Ferraty and Vieu 2006;

Ferraty et al. 2012) was also tested but results are not

presented since this method is largely outperformed by

the two classical regression methods (not shown).

a. Data

The explanatory variablesX come from the Action de

Recherche Petite Échelle Grande Échelle (ARPEGE;

Courtier et al. 1991),Météo-France’s global NWPmodel.

ARPEGE is a stretched-grid, hydrostatic NWP model,

with a horizontal grid size of 0.18 (about 10km) over

France. It runs every 6h with hourly lead times of up to

60 or 102h depending on the run. Table 2 lists the 24

explanatory variables selected for building regression

functions of the analyzed wind speed on forecasts. The

variables SLP_Adv, SLP_Trend, tpwHPA850, and

tpwHPA850_Adv have been chosen as proxies for the

synoptic dynamics of the atmosphere. The variables ca-

peins, tH_PCs, ffH_PCs, and tpwHPA850_HVar aim at

quantifying the instability of the boundary layer.

The response Y is ARPEGE’s wind speed forecast er-

rors relative to the new postprocessed TPRS wind speed

analyses, which are presented in section 2d(4). Several

attempts showed that the performances were slightly im-

proved when predicting the wind speed error instead of

the wind speed itself. Performances are computed for the

FIG. 4. Postprocessing of gridded wind speed to prevent excessive

extrapolation inTPRS.TheAROMEwind speed forecast isWAROME.

The blue dashed line is the original meteorological spline component

at the chosen grid point. The red continuous line is the postprocessed

meteorological spline. The green square is the actual gridded wind

speed at the chosen grid point (unchanged in this case).

TABLE 2. List of ARPEGE’s explanatory variables, available for wind speed regression.

Abbrev Description

ffH10, ddH10f 10-m wind speed and discretized direction (north, south, east, and west)

lat, lon, elevation Latitude, longitude, and elevation

month Month as a qualitative variable with 12 categories

capeins Convective available potential energy

nc, nt, nb, nm, nh Nebulosities (c, convective; t, total; b, low-altitude clouds; m,

medium-altitude clouds; h, high-altitude clouds)

SLP_Adv, SLP_Trend Advection and 3-h trend of sea level pressure

tpwHPA850, tpwHPA850_Adv, tpwHPA850_Hvar Potential wet-bulb air temperature at 850 hPa, and its advection (Adv)

and horizontal variance (HVar)

tH_PCi, i 5 1, . . . , 3 First three components of a principal component analysis of temperature

vertical profile (up to 1500m)

ffH_PC, i 5 1, . . . , 3 First three components of a principal component analysis of wind speed

vertical profile (up to 1500m)
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corrected wind speed forecasts. The regression func-

tion is built only onARPEGE grid points and not on all

AROME grid points because of computation time

constraints for operational purposes and because of

ARPEGE’s larger lead time range. Since the new

analysis is available on the AROME 2.5-km grid, block

MOS for AROME at its full resolution is planned for

future applications and are likely to accelerate opera-

tions considerably. The study period covers 3 yr, from

1 September 2011 to 31 August 2014.

As a result of long computation times, regression

methods have been trained only over 10 spatial domains

noted D01–D10 (see Fig. 5). Each domain contains a

grid of 93 9 ARPEGE grid points (about 903 90 km2).

These domains have been chosen so that they represent

a large range of conditions of winds and topography

over France. Domains D06, D09, D07, and D08 cover

increasingly rugged topography. Domains D01, D02,

and D03 can be subject to strong local winds, namely

marin and cers for the first two domains, and mistral for

the third one.

Each regression method is trained separately for lead

times of 3, 15, and 48h for ARPEGE run at 0000 UTC.

The lead times have been chosen to cover short and long

lead times and, for 15 h, which is representative of the

hours of the day that usually have the strongest winds.

b. Block MOS

The following regression methods (Hastie et al. 2009;

Kuhn and Johnson 2013) are tested.

d Linear model (Azaïs and Bardet 2006; Weisberg and

Fox 2010): the regression function is a second-order

polynomial relationship of the explanatory variables

r̂(X)5b0 1b �X1,2, where b0 is a real, b is a vector of

reals, and X1,2 is the vector containing every possible

combination of product of explanatory variables of

order 1 and 2 (called interactions). The parameters

b0 and b are fitted onto the training dataset with an

ascending selection of predictors based on the Bayesian

information criterion (BIC; Schwarz 1978; Lebarbier

and Mary-Huard 2006).
d Random forest (Breiman 2001): this is an average of

several regression trees (Breiman et al. 1984). For a

single regression tree, the regression function is built

through an iterative splitting of available training data

into two subsets. Splitting is done according to some

threshold of a quantitative explanatory variable or

some subset of modalities of a qualitative explanatory

variable. The best split is chosen so that the two subsets

of response values are the most homogeneous inside

each subset and the most dissimilar between one

another. The (dis)similarity criterion is the intra- or

between-group variance. Splitting is stopped for some

criterion, such as a maximum number of groups, called

leaves. The predicted value is then the average of the

response values in the leaf.A regression treeusually has a

low bias but strongly depends on the training data.

In a random forest, each tree is similar to a regression

tree but with two further randomizations. The first

randomization is to start each tree from a bootstrapped

sample of the training data (Diaconis and Efron 1983).

Then each split, or node, of each tree is built from a

random subset of the available explanatory variables.

The final predicted value is the average of all leaves

reached by the value of the vector of explanatory

variables. This double randomization makes the trees

of the forest more independent and thus decreases the

variance of the errors without increasing the bias of

each tree. The regression function r̂ is an average of

blockwise constant functions over the space of the

explanatory variables. In this study, the fitted param-

eters are the number of trees in the forest and the

number of predictors tried at each node.

In statistics, more data sometimes imply better infer-

ence. Therefore, with the aim of further improvingMOS

performance, block regression is used. This means that

inside each domain, the regression methods described

above are trained by pooling data across several grid

points. These pooled grid points are collectively called

a block. Consequently, one regression function r̂ is built

for a block and applied to all the grid points inside

the block. However, the position of each grid point is

available as a predictor through its latitude, longitude,

and elevation. If these predictors are selected during the

FIG. 5. The 10 training domains used in this study.
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training step, the regression function may actually de-

pend on the gridpoint location. Another advantage ex-

pected from block regression is in having fewer models,

which may speed up operations.

The size of the block is varied to assess its impact on

theMOS performance. The sizes are 13 1 (or pointwise

training), 33 3, 53 5, 73 7, and 93 9 grid points. The

blocks of sizes 33 3, 53 5, and 73 7 contain the central

square with, respectively, 9, 25, and 49 grid points of the

domain. If MOS performs better for a nonpointwise

block, it is planned to map France with contiguous

blocks for using MOS in operations.

To assess forecast performances, the same measures

of performance as in section 2c are computed. To

compare across the same dataset the training with dif-

ferent block sizes, performance measures are com-

puted for the central 3 3 3 grid points in each domain.

The so-called skill scores are also used: if SA, SB, and S‘

are the measures of performance for forecasts A, B,

and a perfect forecast, the associated skill score (SS) is

SSA/B 5 [(SA 2 SB)/(S‘ 2 SB)] 2 (2‘; 1]. For RMSE,

MAE,Q(0:5), andQ(0:9), S‘ 5 0, whereas for %#1 and

%#4, S‘ 5 100. A positive skill score implies the forecast

A yields better performance than forecast B.

Furthermore, the levels of variability among the per-

formances are assessed thanks to threefold cross valida-

tion: two years’ worth of data serve as the training dataset,

with the remaining year being used as a test sample. All

three possible combinations of two training years/one test

year are tried.

c. Results

1) BEST BLOCK MOS

Figure 6 presents the RMSE of raw ARPEGE fore-

casts and MOS forecasts built with the two regression

methods and different combinations of parameters. The

scores are computed for the three test years and with

training domains of 13 1, 33 3, 53 5, 73 7, and 93 9

grid points. Figure 6 shows domain D03 with a lead time

of 15h.Whatever the chosen training settings, bothMOS

methods improve performance over raw ARPEGE

forecasts.

Performance levels of random forests are sensitive to

the number of trees and number of tried predictors at

each node. For a given number of trees and tried pre-

dictors, performance is slightly decreased by increasing

the block size, but this effect is marginal. The best tuning

is therefore to take about six to eight tried predictors

and at least 50 trees trained in 33 3 blocks. This optimal

setting remains true for other domains and lead times

(not shown here). To speed up operations, shallower

trees may be used if this does not reduce the forecast

performance.With default settings, the complete random

forests have 2300 leaves for each tree, for a 3 3 3 grid-

point training domain. Constraining trees to a maximum

number of leaves has been tested. The best performance

is achieved by random forests even with no more than

200 leaves, as shown in Fig. 7 for domainD03 and a lead

time of 15 h. However, for some other less common

domains and lead times, the minimum optimal number

of leaves may be around 500 (not shown). To sum-

marize, the best random forest MOS is obtained by

building 200 trees with eight tried predictors at each

node and 500 leaves.

As for the linear regression MOS specifically, Fig. 6

shows that its performance varies quite a bit with the

training block size. However, the best performance is

achieved with pointwise training no matter the domain,

lead time, or performance measure (not shown).

In Fig. 6, the best linear model (trained pointwise) and

the best random forests apparently deliver similar levels

of performance. By showing skill scores for random

forests (model A) versus the pointwise trained linear

MOS (model B), Fig. 8 shows that forecast performance

is improved by several percent with random forests. The

only exception is for the percentage of absolute errors

lower than 4ms21 (%#4), where the performance may

be diminishedwhen using a random forest comparedwith

using linear regression. Figure 8 also confirms that ran-

dom forests trained on a 3 3 3 block yield similar per-

formance comparedwith pointwise random forests. Thus,

even though training random forests on blocks does not

improve the forecast performance as could be hoped, it

also does not decrease the performance. Skill scores

computed for other domains and/or lead times confirm

that a random forest is usually a better choice than linear

regression by a few percent, except for %#4, where the

best MOS is not always the same (see, e.g., Fig. 8). In

conclusion, the best MOS method is to use a random

forest with from six to eight tried predictors, 200 trees,

500 leaves, and a 3 3 3 block training.

On amore qualitative note,MOS successfully corrects

the tendency of the raw model to overestimate wind

speed, as illustrated in Fig. 9 with a smoothed scatter-

plot. As can be seen, the MOS scatterplot is much more

concentrated along the first bisecting line than the raw

forecast. This line corresponds to the point set of perfect

forecasts. This improvement is obvious whatever the

strength of the gridded wind speed. These results hold

for every other domain or lead time (not shown).

2) PERFORMANCE AT STATION LOCATIONS

Table 3 shows performance measures of forecasts bili-

nearily interpolated at the locations of the meteorological

stations inside the 10 training domains. Scores are
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computed relative to measurements at those stations by

pooling forecasts for all three test years and for all three

lead times. Only five stations were included in any of the

10 training domains. For the raw AROME forecasts, a

48-h lead time is actually a 6-h lead time for the 1800UTC

run, since AROME does not yield forecasts beyond 36-h

lead time. However, the valid dates are the same forMOS

at 48-h lead times and this lagged raw AROME.

The scores show that a random forest delivers better

overall performance than do interpolated raw ARPEGE

forecasts, for a training domain of pointwise or 3 3 3

blocks. Furthermore, random forests yield similar or

better levels of performance than do interpolated forecasts

from Météo-France’s high-resolution model AROME.

Concerning the bias, whereas random forests have a

negative bias and AROME is unbiased, the bias of the

FIG. 6. RMSEs for several MOSmethods and settings, along with raw ARPEGE forecasts.

In each panel, lines show the evolution of the performance of the random forest with the

number of trees, for a specific training block size and number of tried predictors at each node

and for the three test years. In each panel, vertical bars indicate the interval of variation over

the three test years of ARPEGE performance (left bars) and block MOS with a linear re-

gression (right bar). For a linear model and a random forest, the training domain can be of

sizes 1 3 1, 3 3 3, 5 3 5, 7 3 7, and 9 3 9 grid points from left to right. Scores are computed

over one year of testing (starting on 1 Sep), over the 33 3 central points of domain D03 and

for 15-h lead time.
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random forests remains low (only20.3m s21). For 48-h

lead times, MOS is as good as raw AROME at 6-h lead

time, an improvement of 42 h.

However, the results vary at the scale of single sta-

tions. Table 4 shows the scores obtained for a station

picked at random for different lead times. For this sta-

tion situated in domain D03, random forests achieve

much better performance than ARPEGE or AROME

for a lead time of 3 h. At a lead time of 15 h, spatially

interpolated random forests still get the upper hand over

raw AROME but the differences are slightly reduced.

At a lead time of 48 h (6 h for raw AROME), random

forests and AROME yield similar results. Over the

five stations in the training domains, the results are

variable, even though the random forests usually de-

liver results that are at least as good as those of the

interpolated AROME forecasts. Regardless, ARPEGE

never prevails. Since the sample is small (only five

stations), further investigation would be necessary

to assess the best choice among the interpolated

FIG. 7. Variation of measures of performance for random forests, with varying numbers of maximum allowed nodes. Random

forests are built with 200 trees and eight tried predictors at each node. Shown is domain D03, at 3-h lead time, and with a 3 3 3

training block.

1940 WEATHER AND FORECAST ING VOLUME 31

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/31/6/1929/4659021/w

af-d-16-0052_1.pdf by guest on 20 N
ovem

ber 2020



forecasts. This will first require us to build MOS

forecasts for all of the chosen grids over the whole of

France. This will be done for future applications at

Météo-France, but such a training scheme will require

weeks. Nevertheless, those first results point to in-

terpolating MOS forecasts trained on a 3 3 3 blocks

as a good solution for getting improved forecasts at

station locations.

FIG. 8. Evolution of skill scores with the size of the training block for random forest MOS, with pointwise trained

linear MOS as a reference. Two hundred trees and eight tried predictors are used to train the random forest with

several sizes of training block.
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3) SPEEDING UP OPERATIONS

Running MOS on a grid with thousands of grid points

may be time consuming, at the training stage and during

operations. One purpose of block regression is to build

fewer regression models to accelerate memory loading

during operations. Indeed, since the prediction with

random forests is very quick, a limiting factor for oper-

ational purposes is the loading time of the models in

memory. For the linear models, only the regression co-

efficientsb have to be saved on disk, with a disk occupation

of a few kilobytes. A random forest object can be much

bigger if it is not optimized. In our case a random forest

trained on one grid point amounts to 2MB (for a total of

18MB for a nine-gridpoint domain), whereas a random

forest trained on a 33 3 domain requires 12MB, one-third

less. Additionally, a shallow forest with 200 trees, eight

triedpredictors, and only 500 leaves, trained over 33 3 grid

points, requires only about 5MB for each domain, a further

reduction of 60%. Removing the components of random

forest objects, as stored by the R statistical software, that

are deemed to be unnecessary for prediction leads to a final

storage size of 1.7MB on disk.

To compare loading times for several MOS models as

stored inR, the above objects have been loaded fromdisk

300 times for the 10 studied domains. Figure 10 shows

that the linear model objects load much more quickly

(about 15ms for the 10 domains) than pointwise trained

random forest objects (a few seconds cumulated over

the 10 domains). However, combining block regression,

shallow trees, and the removal of unnecessary compo-

nents allows dividing the loading times of random forests

by a factor 10. Since the complete mapping of France

requires about 830 domains, the loading time would be

about half aminute for the whole country. This still causes

the random forest longer to load than linear models, but it

FIG. 9. Smoothed scatterplots of gridded observations against (left) raw forecasts and (right) random-forest-based

MOS forecasts. The darker the blue, the denser the points. The red oblique line is the first bisecting line. These scat-

terplots are for test grid points in domain D03, for the test year starting on 1 Sep 2013, at 15-h lead time, and training on

3 3 3 grid points. The random forest is built with 200 trees and eight input variables randomly drawn at each node.

TABLE 3. Measures of overall performance of bilinearly inter-

polated forecasts at station locations. The forecasts areMOS based

on the random forest method, with a training domain of size 13 1

or 3 3 3, raw ARPEGE forecasts, and raw AROME forecasts.

Scores are computed by pooling together forecasts over the three test

years, every station inside any study domain, and the three lead times

(3, 15, and 48 h). For AROME, 48-h lead time is actually 6-h lead

time, since AROME forecasts do not extend up to 48 h. Boldface

values indicate the best performance.

Random forest

1 3 1 3 3 3 ARPEGE AROME

BIAS 20.3 20.3 0.2 0.0

MAE 1.2 1.3 1.7 1.4

RMSE 1.7 1.8 2.3 1.9

Q(0.5) 0.9 1.0 1.2 1.0

Q(0.9) 2.7 2.8 3.9 3.1

%#1 54.0 52.8 45.1 50.8

%#4 96.5 96.1 90.7 94.9
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is compatible with operational constraints. As seen above,

this acceleration is achieved without reducing the overall

performance of the forecast.

4. Conclusions

Accurate wind speed forecasts are crucial for

decision-making in weather-related activities or for

weather warnings by national and regional weather ser-

vices. NWP models provide forecasts that are not exempt

from errors. Since these errors are not completely random,

statistical postprocessing methods, known as MOS, can

be used to improve future forecasts by using regression

functions fitted onto past forecasts and associated ob-

servations. To apply those methods to wind speed fore-

casts at gridpoint locations, a new gridded analysis of

wind speed measured at meteorological stations is

built. An internal comparison of 48 interpolation strate-

gies led at Météo-France showed the best hourly analysis

is based on thin plate regression splines. This regression is

very parsimonious with only two additive components:

a first one with the most recent wind speed forecast of the

high-resolution model AROME as the only input and

the second one with a correction based on the three-

dimensional coordinates of the points. By cross vali-

dation, it is shown that this new analysis performs

consistently better than the available AROME analysis

while retaining the realistic structures of the wind speed

fields thanks to the use of the AROME forecast in the

interpolation function. This allows us to build an archive

of griddedwind speeds over Francewith a 2.5-km grid size

starting in January 2011 and ending in March 2015.

FIG. 10. Boxplots of 300 loading times for thewhole set ofRobjects

over the 10 training domains for several MOS models: complete

random forest trained pointwise (RF13 1), complete random forest

trained over a 33 3 block (RF33 3), shallow random forest trained

over a 33 3 block (shallowRF33 3), shallow random forest trained

over a 33 3 block and with the removal of unnecessary elements for

prediction in objects (shallowRF3 3 3clean), and a pointwise linear

model (LM1 3 1).

TABLE 4. As in Table 3, but for one station in domain D03 and for

each lead time.

Random forest

1 3 1 3 3 3 ARPEGE AROME

3-h lead time

BIAS 0.2 0.2 1.5 0.9

MAE 1.0 1.0 1.7 1.3

RMSE 1.3 1.3 2.1 1.6

Q(0.5) 0.9 0.9 1.5 1.0

Q(0.9) 2.0 2.0 3.4 2.6

%#1 60.1 60.4 33.8 48.2

%#4 99.5 99.5 95.3 99.0

15-h lead time

BIAS -0.1 0.2 0.3 -0.1
MAE 1.2 1.2 1.4 1.2

RMSE 1.5 1.5 1.8 1.6

Q(0.5) 1.0 1.0 1.1 1.0
Q(0.9) 2.3 2.3 2.9 2.5

%#1 51.5 52.2 45.1 49.3

%#4 98.8 99.1 96.3 97.4

48-h lead time (6 h)

BIAS 0.2 0.2 1.4 0.8

MAE 1.2 1.2 1.8 1.2

RMSE 1.5 1.5 2.2 1.5

Q(0.5) 1.0 1.0 1.5 1.1

Q(0.9) 2.4 2.4 3.6 2.5

%#1 49.8 50.1 35.5 47.6

%#4 98.5 98.5 92.7 99.0
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This new analysis is used to build improved wind

speed forecasts of Météo-France’s 10-km NWP model,

ARPEGE, over France. The use of classical regression

methods shows that ARPEGE forecasts are easily and

greatly improved by all regression methods. The best

MOS is based on random forests. The best combination

of parameters for this model is shown to be not very

sensitive: taking more than 200 trees and trying from six

to eight predictors at each node is sufficient. Further-

more, random forests can be trained by pooling together

data from nearby grid points without degrading perfor-

mances. Also, the trees in the optimal random forests

need not be very deep in order to achieve the best per-

formance. These last remarks lead to building less nu-

merous and shallower random forests. After removing

unnecessary components in R random forest objects, the

storage resources and loading times of the random for-

ests are reduced by a factor of 10. The time to produce

MOS forecasts is mainly determined by the loading time

of all the random forests into memory. Thanks to their

reduced size and number, this operation can be done in a

reasonable time period (about half a minute) that en-

ables its application in everyday operations. This MOS

method with random forests trained over blocks is cur-

rently being made operational at Météo-France by

covering France with contiguous blocks. A new analysis

of gusts has also been developed, and block MOS for

gusts is being made operational as well.
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