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Abstract

Ill-posed inverse problems call for some prior model to define a suitable set of

solutions. A wide family of approaches relies on the use of sparse representa-

tions. Dictionary learning precisely permits to learn a redundant set of atoms to

represent the data in a sparse manner. Various approaches have been proposed,

mostly based on optimization methods. We propose a Bayesian non parametric

approach called IBP-DL that uses an Indian Buffet Process prior. This method

yields an efficient dictionary with an adaptive number of atoms. Moreover the

noise and sparsity levels are also inferred so that no parameter tuning is needed.

We elaborate on the IBP-DL model to propose a model for linear inverse prob-

lems such as inpainting and compressive sensing beyond basic denoising. We

derive a collapsed and an accelerated Gibbs samplers and propose a marginal

maximum a posteriori estimator of the dictionary. Several image processing

experiments are presented and compared to other approaches for illustration.
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1. Introduction

Ill-posed inverse problems such as denoising, inpainting, deconvolution or

super resolution in image processing do not have a unique solution due to miss-

ing information. External information is necessary to select a plausible solution.

Prior information or regularization techniques often rely on the choice of a well

suited representation space to identify a unique solution. In recent years, sparse

representations [1, 2] have opened new avenues in signal and image processing.

Sparsity refers to parsimonious representations where only a small number of

components (or atoms) is used to describe the data in a possibly redundant

dictionary. For instance, one can think of a continuous wavelet transform. Par-

simony and sparsity have originated many successes in the solution of inverse

problems.

Dictionary learning (DL) permits to learn such a sparse representation [1]

from data themselves. Many works [3, 4, 5, 6] have shown the efficiency of DL to

solve ill-posed inverse problems. Redundant dictionaries gather a number K of

atoms potentially greater than the dimension P of the data space. In contrast

with the mathematical construction of functional frames (e.g. wavelets), DL

aims at learning an adaptive set of relevant atoms for sparse representation

from data themselves.

Many DL methods rooted in the seminal work by Olshausen & Field [2]

are based on solving an optimization problem. Typically, the approaches in

[3, 4, 5] proposed an optimal dictionary with a large size of 256 or 512 that is

fixed in advance. Fast online dictionary learning has also been proposed in [6, 7].

Sparsity is typically promoted by an L0 or L1 penalty term on the set of encoding

coefficients. Despite their good numerical efficiency, one main limitation of these

approaches is that they most often set the size of the dictionary in advance, and

need to know the noise level and tune the sparsity level. A few works have

elaborated on the K-SVD approach [3] to propose adaptive dictionary learning

(DL) methods that infer the size of the dictionary [8, 9, 10, 11] but they still

often call for important parameter tuning.
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Bayesian approaches have been much less studied. In [12], a Bayesian DL

method named BPFA was proposed thanks to a Beta-Bernoulli model where

sparsity is promoted through an adapted Beta-Bernoulli prior to enforce many

encoding coefficients to zero. BPFA corresponds to a parametric approximation

of the Indian Buffet Process (IBP) [13] since this approach works with a (large)

fixed number of atoms. In [14], we introduced a truly Bayesian non parametric

(BNP) approach namely the Indian Buffet Process dictionary learning (IBP-

DL) thanks to the use of a true IBP prior. Such a prior both promotes sparsity

and deals with an adaptive number of atoms. IBP-DL starts from an empty

dictionary to learn a dictionary of growing adaptive size. It does not need to

tune any parameter since the noise level and the sparsity level are sampled as

well. The IBP-DL model in [14] aimed at solving the basic denoising problem

only and detailed computations and algorithms were not described.

The present contribution presents the IBP-DL approach to solve linear in-

verse problems such as inpainting (missing pixels) or compressive sensing (ran-

dom projections) in the presence of additive Gaussian noise. We derive several

Gibbs sampling algorithms. Beyond the simple Gibbs sampler, we derive a col-

lapsed Gibbs sampler and an accelerated Gibbs sampler in the spirit of [15] to

solve the inpainting problem. Moreover, we propose a marginal maximum a

posteriori estimate for inference of the dictionary and corresponding encoding

coefficients. For reproducible research, Matlab codes will be made available

from our websites1.

Section 2 recalls about dictionary learning and the class of problems of inter-

est. Section 3 presents the Indian Buffet Process (IBP) prior. Section 4 describes

the IBP-DL observation model for linear Gaussian inverse problems. Section 5

describes various Gibbs sampling algorithms and the marginal maximum a pos-

teriori (mMAP) estimator for inference. Section 6 illustrates the relevance of

our approach on several image processing examples including denoising, inpaint-

ing and compressive sensing with comparison to other DL methods. Section 7

1http://www.hongphuong-dang.com/publications.html
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(a)Dictionary : 150 atoms (b) A segment of Barbara image

Figure 1: IBP-DL dictionary of 150 atoms on a segment of size 256×256 of Barbara image

concludes and discusses some directions for future work.

2. Dictionary Learning (DL)

In image processing, it is usual to deal with local information by decomposing

an image into a set of small patches, as in JPEG compression. Then each

vector yi ∈ RP represents a patch of size
√
P ×

√
P (usually 8×8) casted in

vectorial form according to lexicographic order. Let matrix Y ∈ RP×N a set of

N observations yi. For instance, fig. 1 displays a 256×256 segment of Barbara

image from which a full data set of N = (256 − 7)2 = 62001 overlapping 8×8

patches is extracted. The matrix H is the observation operator of patches

X = [x1, ...,xN ] ∈ RP×N in the initial image. It can be a binary mask in the

inpainting problem or a random projection matrix in the case of compressive

sensing. The additive noise ε ∈ RP×N is assumed to be Gaussian i.i.d.. As a

consequence, observations are modeled by

Y = HX + ε

X = DW
(1)

where D=[d1, ...,dK ] ∈ RP×K is the dictionary of K atoms and the encoding

coefficients matrix W= [w1, ...,wN ] ∈ RK×N . Dictionary learning can be seen

as a matrix factorization problem: recovering X becomes equivalent to finding

an (in some sense) optimal couple (D, W). The sparse representation of xi

is encoded by coefficients wi. Various approaches have been proposed, see [1]
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for a review, to solve this problem by alternate optimization on D and W.

When working on image patches of size 8 × 8 (in dimension P = 64), these

methods usually learn a dictionary of size 256 or 512 [3]. Sparsity is typically

imposed through a L0 or L1-penalty terms on W. Note that the weight of the

regularization term is crucial and should decrease as the noise level σε increases

so that some parameter tuning is often necessary.

In the Bayesian framework, the problem is written in the form of a Gaussian

likelihood according to the model (1). The prior p(D,W, σε) plays the role of

a regularization and the joint posterior reads:

p(D,W, σε | Y,H) ∝ p(Y | H,D,W, σε)p(D,W, σε) (2)

Using Gibbs sampling, the problem can be solved by alternately sampling D,

W, and σε. In the Bayesian non parametric (BNP) framework, the dictionary

can be learnt without setting the size in advance nor tuning the noise level or

the sparsity parameter. We present the general IBP-DL approach that gener-

alizes our previous work [14], which dealt with denoising only, to linear inverse

problems. The proposed approach uses an Indian Buffet Process (IBP) prior to

both promote sparsity and deal with an adaptive number of atoms. Fig. 1 shows

an example of the dictionary learnt from a segment of Barbara image without

noise and the resulting reconstruction using the 150 atoms inferred by IBP-DL.

Prior to a detailed description of the IBP-DL model for linear inverse problems,

we briefly recall about the Indian Buffet Process.

3. Indian Buffet Process (IBP) and latent feature models

Bayesian non parametric methods permit to define prior distributions on ran-

dom measures. Such random measures live in an infinitely dimensional space so

and permit to deal with models of potentially infinite dimension. They offer an

interesting alternative to reversible jump MCMC methods and model selection

approaches.

The popular Chinese restaurant process [16] permits to deal with clustering

problems without prior knowledge of the number of clusters. Recall that the
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Chinese restaurant process can be built by integrating out a Dirichlet process

and considering the resulting distribution over partitions of a set of points. The

Dirichlet process is the De Finetti mixing distribution underlying the Chinese

restaurant process.

Turning to latent feature problems, the IBP [17, 13] can be introduced as a

non parametric Bayesian prior on sparse binary matrices Z with a potentially

infinite number of rows. The matrix Z encodes the set of features that are

assigned to each observation: Z(k,i)=1 if observation yi owns feature dk. In

a formal presentation, Thibaux & Jordan [18] showed that the IBP can be

obtained by integrating a Beta process in a Beta-Bernoulli process. The beta

process was developed originally by Hjort [19] as a Lévy process prior for hazard

measures. In [18], the Beta process was extended for use in feature learning; it

appears to be the De Finetti mixing distribution underlying the Indian buffet

process.

Let BP(c,B0) a Beta process with a concentration parameter c and a base

measure B0. To draw B from a Beta process distribution, one draws a set of

pairs (ωk,πk) from a marked Poisson point process on Ω × [0, 1], that can be

represented as B =
∑
k

πkδωk
. Here δωk

is a Dirac distribution at ωk ∼ B0 with

πk its mass in B and
∑
k

πk does not need to equal 1. When B0 is discrete,

for each atom ωk, πk ∼ Beta(cqk, c(1 − qk)) where qk ∈ (0, 1) is the weight

of the kth point (later on feature or atom) in measure B. Then one defines

zn ∼ BeP(B) i.i.d for n = 1, ..., i− 1, a Bernoulli process with hazard measure

B. If B is discrete then zn =
∑
k

bkδωk
where bk ∼ Bernoulli(πk). An important

property is that the Beta process is conjugate to the Bernoulli process making

B | z1, ..., zi−1 a Beta Process itself. Given a set of draws z1, ..., zi−1, a new

draw zi can be sampled according to

zi | z1, ..., zi−1 ∼ BeP

 c

c+ (i− 1)
B0 +

1

c+ (i− 1)

i−1∑
j

zj

 (3)

where B has been marginalized out. A Bernoulli process is a Poisson process

when the measure is continuous. Since a Bernoulli process is a particular kind
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of Lévy process, it is the sum of two independent contributions with a mixed

dicrete-continuous measure. When c=1 and B0 is continuous with B0(Ω)=α,

one recovers the classical generative process of the IBP introduced in [13] thanks

to the following analogy. Let consider N customers (observations) entering an

Indian restaurant where they select dishes (atoms) from an infinite buffet. The

first customer tries a number Poisson(α) of dishes. Next i-th customer chooses

the previously-selected dish k with a probability mk/i, where mk is the number

of former customers who selected this dish k (before customer i). This step

corresponds to the second term in eq.(3). Then the i-th customer tries an

additional set of Poisson(α/i) new dishes; this corresponds to the first term

in eq.(3). The behaviour of the IBP is governed by the parameter α which

controls the expected number of dishes (features, atoms) used by N customers

(observations, patches) since the expected total number of dishes is IE[K] '

α logN .

Table 1: List of symbols.

Symbol Description

N, i Number of observations, index of observations

P, ` Dimension of an observation, index of dimension of an observation

K, k Number of atoms, index of atoms

Y, yi Observation matrix, its ith column observed vector

W, wi, Latent feature matrix, column of coefficients of observation i,

wki kth latent feature of observation i

D, dk Dictionary matrix, its kth column atom

H, Hi Set of observation operators and operator matrix for ith observation

Σ, µ Covariance matrix and mean vector

σ2, µ Variance and expected value

P, N , U , G, IG Poisson, Gaussian, Uniform, gamma and inverse gamma distributions
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4. The IBP-DL model for linear inverse problems

The model under study can be described ∀1 ≤ i ≤ N by

yi = Hixi + εi (4)

xi = Dwi where wi = zi � si, (5)

dk ∼ N (0, P−1IP ),∀k ∈ N (6)

Z ∼ IBP (α), (7)

si ∼ N (0, σ2
sIK), (8)

εi ∼ N (0, σ2
εIP ). (9)

where � is the Hadamard product. Fig. 2 shows the graphical model. Notations

are in Table 1. The observation matrix Y contains N column vectors of dimen-

sion P , only Q ≤ P in the compressive sensing (CS) case. The representation

coefficients are defined as wi = zi � si, in the spirit of a parametric Bernoulli-

Gaussian model. The vector zi ∈ {0, 1}K encodes which columns of D among

K are used to represent yi ; si ∈ RK represents the coefficients used for this

representation. The sparsity properties of W are induced by the sparsity of Z

drawn from the IBP prior. The IBP-DL model deals with a potentially infinite

number of atoms dk so that the size of the dictionary is not limited a priori.

The IBP prior plays the role of a regularization term that penalizes the number

K of active (non zero) rows in Z since IE[K] ' α logN in the IBP. Except for

σ2
D that is fixed to 1/P to avoid a multiplicative factor indeterminacy, conjugate

priors are used for parameters θ = (σ2
ε, σ

2
S , α): vague inverse Gamma distribu-

tions for variances with very small hyperparameters (c0=d0=e0=f0=10−6) are

used for σ2
ε, σ2

S , and a G(1, 1) for α associated to a Poisson law in the IBP. The

gamma distribution is defined as G(x; a, b) = xa−1ba exp(−bx)/Γ(a) for x > 0.

Linear operators Hi damage observations yi since Hi may be a non invertible

matrix. The simplest problem is denoising when Hi=IP [14]. In the inpainting

problem, see fig. 3, Hi is a diagonal binary matrix of size P × P where zeros

indicate missing pixels. In the case of compressive sensing, Hi is a rectangular

(random) projection matrix of size Q×P (typically Q� P). In the following, we
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Figure 2: Graphical model of IBP-DL for linear inverse problems with additive Gaussian noise.

(a) (b) (c)

Figure 3: Inpainting problem: an image (a) is damaged by a mask (b) so that there are

missing pixels in the observed image (c); the problem is solved by working on local patches.

describe Markov Chain Monte Carlo (MCMC) algorithms to generate samples

according to the posterior distribution p(Z,D,S,θ | Y,H, σ2
D).

5. MCMC algorithms for inference

This section details an MCMC sampling strategy to sample the posterior

distribution p(Z,D,S,θ | Y,H, σ2
D). Algorithm 1 summarizes this strategy. A

Gibbs sampler is proposed. Some essential steps are described in Algorithms 2, 3

& 4. The sampling of Z with an IBP prior calls for some special care. Sampling

Z goes in 2 steps: one first samples zki for active atoms, then a number of new

atoms are sampled. In addition to Gibbs sampling, we also present the collapsed

and accelerated Gibbs sampling for inference of IBP, see Algo. 2.
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Init. : K=0, Z=∅, D=∅, α=1, σ2
D=P−1, σ2

S=1, σε

Result: D ∈ RP×K ,Z ∈ {0; 1}K×P ,S ∈ RK×P , σε

for each iteration t

for data i=1:N

for k ∈ kused ← find(m−i 6= 0)

Sample Z(k, i) see eq. (14)

Infer new atoms, new coefficients see eq. (21)

Sample D, S, see eq. (42), eq. (44)

Sample θ = (σ2
ε, σ

2
S , α) see eq. (45), (46), (47)

Algorithm 1: Pseudo-algorithm of sampling for IBP-DL method.

5.1. Sampling of Z

Z is a matrix with an infinite number of rows but only non-zero rows are

kept in memory. In practice, one deals with finite matrices Z and S. Let mk,−i

the number of observations other than i using atom k. The 2 steps to sample

Z are:

1. update the zki = Z(k, i) for ‘active’ atoms k such that mk,−i > 0 (at least

1 patch other than i uses dk);

2. add new rows to Z which corresponds to activating new atoms in dictio-

nary D thanks to a Metropolis-Hastings step.

We elaborate on previous works in [13, 15] where the binary-valued latent fea-

tures model was considered to derive various versions of the Gibbs sampler.

We describe usual Gibbs sampling for linear inverse problems, collapsed Gibbs

sampling (CGS) for inpainting, and accelerated Gibbs sampling (AGS) for in-

painting. Note that any linear inverse problem can be considered by using a

usual Gibbs sampler. It appears that collapsed and accelerated Gibbs sampling

can be derived for the inpainting (a fortiori denoising) problem which may not

be the case for other problems.
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5.1.1. Gibbs sampling

In this approach, Z is sampled from the posterior distribution.

P (Z | Y,H,D,S, σ2
ε, α) ∝ p(Y|H,D,Z,S, σ2

ε)p(Z | α) (10)

Sampling zki for active atoms. Z(k, i) is simulated from a Bernoulli distribution

weighted by likelihoods for each couple (patch i, atom k). The prior term is

P (zki = 1|Zk,−i) =
mk,−i

N
(11)

The likelihood p(Y|H,D,Z,S, σ2
ε) is easily computed from the Gaussian noise

model, see Appendix A for a detailed derivation of the sampler. From Bayes’rule,

P (zki|Y,H,D,Z−ki,S, σε) ∝ N (yi|HiD(zi � si), σ
2
ε)P (zki|Z−ki) (12)

so that the posterior probabilities that zki = 0 or 1 are proportional to (p0, p1)

defined by
p0 = 1−mk,−i/N

p1 =
mk,−i

N exp

[
− 1

2σ2
ε
(s2kid

T
kHT

i Hidk − 2skid
T
kHT

i (yi −Hi

K∑
j 6=k

djzjisji)

]
(13)

As a result, zki can be drawn from the Bernoulli distribution

zki ∼ Bernoulli

(
p1

p0 + p1

)
(14)

Sampling new atoms. Following [20], we use a Metropolis-Hastings method to

sample the number knew of new atoms. This is equivalent to deal with rows of Z

such that mk,−i = 0: this happens either when an atom is not used (inactive, not

stored) or when it is used by patch i only. Rows with singletons have a unique co-

efficient 1 and zeros elsewhere: zki = 1 and mk,−i = 0. Sampling the number of

new atoms is equivalent to sampling the number of singletons since when a new

atom is activated, it creates a new singleton. Let ksing the number of such sin-

gletons in matrix Z and Dsing and Ssing the corresponding ksing atoms and the

associated coefficients. Let kprop ∈ N a proposal for the new number of single-

tons, Dprop the kprop new proposed atoms, Sprop the new proposed coefficients
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corresponding to Dprop. Thus the proposal is ζprop = {kprop,Dprop,Sprop}. Let

J the proposal distribution, we propose a move ζsing → ζprop with a probability

having the form :

J(ζprop) = JK(kprop)JD(Dprop)JS(Sprop) (15)

The proposal is accepted, that is ζnew = ζprop, if a uniform random variable

u ∈ (0, 1) verifies

u ≤ min
(
1, aζsing→ζpropo

)
(16)

where the acceptance threshold is

aζsing→ζprop =
P (ζprop | Y, rest)J(ζsing)

P (ζsing | Y, rest)J(ζprop)
=
p(Y|ζprop, rest)
p(Y|ζsing, rest)

aKaDaS (17)

where

aK =
P(kprop;α/N)JK(ksing)

P(ksing;α/N)JK(kprop)
(18)

aD =
N (Dprop; 0, σ2

D)JD(Dsing)

N (Dsing; 0, σ2
D)JD(Dprop)

(19)

aS =
N (Sprop; 0, σ2

S)JS(Ssing)

N (Ssing; 0, σ2
S)JS(Sprop)

(20)

If one uses the prior as the proposal on ζprop, the acceptance threshold is simply

governed by the likelihood ratio

aζsing→ζprop =
p(yi|ζprop, rest)
p(yi|ζsing, rest)

(21)

since aK = aD = aS = 1 in this case.

5.1.2. Collapsed Gibbs sampling for inpainting

Gibbs sampling may be convenient for a model with a constant number

of degrees of freedom (the number K of atoms) [12]. The IBP prior permits

to overcome this restriction by providing a model with a potentially infinite

number of atoms. The mixing times may be long especially if dimension P is

large. As far as possible a collapsed Gibbs sampler is desirable to reduce the

state space and therefore the convergence time. This is possible for the problem

of inpainting.
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One can integrate the dictionary D out in closed form thanks to conjugacy

properties (the Gaussian prior on matrix D). When a variable is integrated out

at some step, this variable must be sampled before reusing it [21]. Therefore

D must be sampled immediately after Z that is sampled from the collapsed

posterior

P (Z | Y,S,H, σ2
ε, σ

2
D, α) ∝ p(Y | H,Z,S, σ2

ε, σ
2
D)P (Z | α) (22)

In the case of inpainting, Hi is a binary diagonal matrix of size P × P . Let

{F`} the set of binary diagonal matrices of size N for `=1,...,P. If each Hi is

associated with each patch Y(:, i) then F` is associated with pixels Y(`, :) at

position ` in all patches. F`(i, i) indicates whether pixel at location ` in patch

i is observed or not so that F`(i, i)=Hi(`, `)=Hi,`.

p(Y | {Hi}i=1:N ,Z,S, σ
2
ε, σ

2
D) = p(Y | {F`}l=1:P ,Z,S, σ

2
ε, σ

2
D) (23)

=

∫
p(Y | {F`}l=1:P ,D,Z,S, σε)p(D | σD)dD

=
1

(2π)‖Y‖0/2σ
‖Y‖0−KP
ε σKPD

P∏
`=1

|M`|1/2exp

[
− 1

2σ2
ε

(Y`(I− FT` WTM`WF`)Y
T
`

]
where M` = (WF`F

T
` WT +

σ2
ε

σ2
D
IK)−1. The full derivation is detailed in Ap-

pendix B. Thus, Bernoulli distribution in (14) to sample zki depends on p0 = (1− mk,−i

N
)p(Y | {F`}l=1:P ,Z,S, σ

2
ε, σ

2
D)

p1 =
mk,−i

N
p(Y | {F`}l=1:P ,Z,S, σ

2
ε, σ

2
D)

(24)

Here, we chose to integrate D out so that we don’t need to propose new atoms

Dprop in Metropolis-Hastings step2. The proposal is now ζprop = {kprop,Sprop}

and the acceptance ratio is simply governed by the collapsed likelihood ratio,

see (23),

aζsing→ζprop =
p(Y|ζprop, rest)
p(Y|ζsing, rest)

(25)

Unfortunately, the proposal according to the prior rarely proposes new atoms

because the parameter α/N of the Poisson law as soon as the number of obser-

vations N is large. The sampler mixes very slowly. As a remedy we propose to

2Note that we can choose to integrate D or S out, but not both.
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modify the proposal distribution for the number knew of new atoms. The idea is

to distinguish small values of knew from large ones thanks to some Kmax. Then

we propose to use the following distribution:

JK(kprop) = π1(kprop>Kmax)P(kprop;
α

N
) (26)

+(1− π)1(kprop∈[0:Kmax])M(pk(0 : Kmax)) (27)

where

π = P (k > Kmax;
α

N
) =

∞∑
k=Kmax+1

P(k;
α

N
) (28)

pk(x) = P(x;
α

N
)N (yi;µyi,Σyi) = P(k;

α

N
)

P∏
l=1

N (yi(l);µyil,Σyil) (29)

and M is a multinomal distribution, P is a Poisson distribution. Now, the

proposal is accepted with the acceptance threshold :

aζsing→ζpropo =
P (ζpropo | rest,Y)J(ζsing)

P (ζsing | rest,Y)J(ζpropo)
(30)

=
p(Y|ζpropo,−)

p(Y|ζsing,−)

P(kprop;α/N)JK(ksing)

P(ksing;α/N)JK(kprop)
(31)

One limitation of this approach is its computational cost. The complexity per-

iteration of the IBP sampler is O(N3(K2 + KP )) due to the matrix in the

exponent of the collapsed likelihood (23). This motivates next section which

derives an accelerated Gibbs sampling following ideas from [15].

5.1.3. Accelerated Gibbs sampling for inpainting

In [22], even though a rank one update for matrix inversion is used, there is

still an expensive matrix multiplication in the exponent of the collapsed likeli-

hood. This is the reason why we have followed the recommendations in [15] to

perform an accelerated Gibbs sampling. The two methods and their complexity

were compared in [23]. A study comparing the speed of different Gibbs samplers

for Z when {Hi} are identity matrices can be found in [15].

The computational time of the (collapsed) Gibbs sampler will be long due

to the repeated computation of likelihoods. However one can derive an acceler-

ated Gibbs sampler as suggested in [15] that achieves a computational cost of
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O(N(K2 +KP )) by proposing to maintain the D posterior instead of integrat-

ing D out completely. The derivation of this sampler is detailed in Appendix

C. The implementation is described by Algorithm 2.

In section 5.1.2, Z was sampled by integrating D out. In the derivation of

Appendix B, we show that the posterior of D has a Gaussian form.

p(D | Y,F,Z,S, σ2
ε, σ

2
D) ∝

P∏
`=1

N (D(`, :);µD(`,:),ΣD(`,:)) (32)

where ΣD(`,:) = σ2
εM`

µD(`,:) = Y(`, :)FT` WTM`

(33)

The main idea is to work with rows of D in place of columns (atoms) as usual.

The observations and the feature assignement matrices can split in two parts

according to Y = [yi,Y−i] so that

P (zki = 1 | Y,H,W, σD, σε, α) ∝ mk,−i

N
× (34)∫

p(yi | Hi,wi,D)p(Y−i | H6=i,W−i,D)p(D | σD)dD

∝ mk,−i

N

∫
p(yi | Hi,D,wi)

P∏
`=1

p(D(`, :) | F`,W−i, σD)dD

One can show that the posterior of D is a gaussian distribution with expectation

µD` and covariance ΣD`. The posterior of D given all of the data except data

i is also easily determined thanks to the use of sufficient statistics

gD` = Σ−1D` = (1/σ2
ε)M−1

`

hD` = µD`gD` = (1/σ2
ε)Y(`, :)FT` WT

(35)

This makes it easy to deal with the influence of one individual observation i

apart. Indeed, one can define

gD`,±i = gD` ± σ−2ε Hi,` wiw
T
i (36)

hD`,±i = hD` ± σ−2ε Hi,` yi(`) wT
i (37)

as well as the corresponding µD`,±i and ΣD`,±i. Since the likelihood is Gaussian,

(34) yields

P (zki = 1 | Y,H,W, σD, σε, α) ∝ mk,−i

N

P∏
`=1

N (yi(`);µyi`, σyi`) (38)
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where

µyi` = Hi,`µD(`,:),−iwi (39)

σyi` = Hi,`w
T
i ΣD(`,:),−iwi + σ2

ε (40)

At each iteration on observation i, one uses (36)& (37) to remove/restore the

influence of data i on the posterior distribution of D and therefore on the poste-

rior of zki. Once zi is sampled, we restore the influence of yi into this posterior.

The accelerated sampling [15] can reduce the complexity to O(N(K2 + KP )),

see Algorithm 2.

Init. : K=0, Z=∅, D=∅, α=1, σ2
D=P−1, σ2

S=1, σε

Result: D ∈ RP×K ,Z ∈ {0; 1}K×P ,S ∈ RK×P , σε

for each iteration t

Use information form of the D posterior according to (35)

for data i=1:N

Remove influence of data i from the D posterior via eq.(36),(37)

m−i ∈ NK×1 ←
∑

Z(:,−i)

for k ∈ {k : m−i 6= 0}

Infer Z(k, i), see Algo. 3

Infer new atoms, new coefficients, see Algo. 4

Restore influence of data i into the D posterior via eq.(36),(37)

for atoms k=1:K

Sample dk eq. (42)

Sample sk eq. (44)

Sample σε, σS , α see eq. (45), (46), (47)

Algorithm 2: Pseudo-algorithm of sampling by accelerated Gibbs sam-

pling of IBP-DL method for inpainting. See also Algo. 3 and 4 for details.

In practice, we need ΣD(`,:) = g−1D(`,:) rather than gD(`,:). This quantity can

be directly updated thanks to the matrix inversion lemma. One can easily add or

remove the influence of a single data i from ΣD(`,:), see Appendix D. Algorithm
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3 presents the sampling algorithm of zki by accelerated Gibbs sampling. In

practice, we work with the matrix W to save memory space.

Likelihood in case zki=1

if wi(k) = 0

wi(k) ∼ N (0, σ2
S) ;

tmp← wi(k) ;

µyi ← HiµD,−iwi (39) ;

for dimension ` = 1 : P

Σyi(`)← Hi,`w
T
i ΣD−i{l}wi + σ2

ε (40);

p1 ←
mk−i

N

P∏
`=1

N (yi(`);µyi(`),Σyi(`)) ;

Likelihood in case zki=0

wi(k)← 0 ;

µyi ← HiµD,−iwi (39) ;

for dimension ` = 1 : P

Σyi(`)← Hi,`w
T
i ΣD−i{l}wi + σ2

ε (40);

p0 ←
P∏
`=1

N (yi(`);µyi(`),Σyi(`)) (1-m−i(k)
N );

zki ∼ Bernoulli

(
p1

p1 + p0

)
;

if zki = 1

wi(k)← tmp ;

Algorithm 3: Algorithm for sample Z(k,i) of accelerated Gibbs sampling

of IBP-DL method for inpainting, see Algo. 2

When sampling new atoms, the proposal can be either the prior distribution

or the distribution we proposed in section 5.1.2. When a data i proposes knew

atoms, the acceptance threshold depends on the likelihood in (38) which itself

depends on µDnew(`,:),−i = 0 and ΣDnew(`,:),−i = σ2
DIknew . As a consequence,

Algo. 4 uses prior distributions as proposal to sample new atoms as well as new

coefficients.
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Former singletons

singletons← {k : mk−i = 0 & wi 6= 0} ; % Find the singletons

µyi ← HiµD,−iwi ;

for each dimension ` = 1 : P

Σyi(`)← Hi,`w
T
i ΣD−i{l}wi + σ2

ε ;

psing ←
P∏
`=1

N (yi(`);µyi(`),Σyi(`)) ;

% eq.(38) with the singletons

New proposed singletons

kprop ∼ P(α/N) ;

wprop ← wi ;

wprop(singletons)← 0 ; % Remove former singletons

sprop ∈ Rkprop×1 ∼ N (0, σ2
S) ; % Propose new singletons

µyi ← HiµD,−iwprop ;

for each dimension ` = 1 : P

Σyi(l)← Hi,`w
T
propΣD−i{l}wprop + σ2

ε +Hi,`s
T
propσ

2
Dsprop;

pprop ←
P∏
`=1

N (yi(`);µyi(`),Σyi(`)) ;

% eq.(38) with the new singletons

if min

(
pprop
psing

, 1

)
> U[0,1]

wi = [wprop; sprop] ;

for each dimension ` = 1 : P

ΣD−i{l} ←

ΣD−i{l} 0

0 σ2
DIkprop

 ;

hD,−i ← [hD,−i zeros(P, kprop)] ;

Algorithm 4: Metropolis-Hastings algorithm using prior like proposal to

infer new atoms and new coefficients when using the accelerated Gibbs

Sampling of IBP-DL method for inpainting, see Algo. 2
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5.2. Sampling D

The dictionary D can be sampled by Gibbs sampling. The posterior of each

atom dk is given by

p(dk|Y,H,Z,S,D−k,θ) ∝
N∏
i=1

N (yi; HiDwi, σ
2
εI‖Hi‖0)N (dk; 0, P−1IP ) (41)

so that

p(dk|Y,H,Z,S,D−k,θ) ∝ N (µdk
,Σdk

)

Σdk
= (σ−2D IP + σ−2ε

N∑
i=1

w2
kiH

T
i Hi)

−1

µdk
= σ−2ε Σdk

N∑
i=1

wki(H
T
i yi −HT

i Hi

K∑
j 6=k

djwji)

(42)

5.3. Sampling S

The posterior of each element ski of S is given in (44).

p(ski|Y,H,D,Z,Sk,−i,θ) ∝ N (yi; HiD(si� zi), σ
2
εI‖Hi‖0)N (si; 0, σ2

SIK) (43)

so that

p(ski|Y,Hi,D,Z,Sk,−i,θ) ∝ N (µski
,Σski

)

zki = 1⇒


Σski

= (σ−2ε dTkHT
i Hidk + σ−2S )−1

µski
= σ−2ε Σski

dTk (HT
i yi −HT

i Hi

K∑
j 6=k

djwji)

zki = 0⇒

 Σski
= σ2

S

µski
= 0

(44)

5.4. Sampling σ2
ε , σ2

S, α

The other parameters are sampled according to their posterior that is easily

obtained thanks to conjugacy properties:

p(σ−2ε | Y,H,D,W) ∝
N∏
i=1

N (yi | HiDwi, σ
2
εI‖Hi‖0)G(σ−2ε | c0, d0)

σ−2ε ∼ G
(
c0 + 1

2

N∑
i=1

‖Hi‖0, d0 + 1
2

N∑
i=1

‖yi −HiDwi‖22
) (45)

p(σ−2S | S) ∝
N∏
i=1

N (si | 0, σ2
SIK)Γ(σ−2S | c0, d0)

σ−2S ∼ G
(
e0 + KN

2 , f0 + 1
2

N∑
i=1

sTi si

) (46)
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It is moreover possible to sample the concentration parameter of the Indian

Buffet Process:

p(α | K) ∝ P(K | α
N∑
j=1

1
j )G(α | 1, 1)

α ∼ G

(
1 +K, 1 +

N∑
j=1

1/j

) (47)

As a result, the proposed BNP approach is really non parametric since there

remains no parameter to tune. Hyperparameters take very vague values and do

not call for any optimal tuning.

5.5. Inference: marginalized MAP estimate

To alleviate notations, let θ = (σε, σS , α). A sequence {D(t),Z(t),S(t),θ(t)}TMCMC
t=1

is sampled by the MCMC algorithms. The purpose of this work is to restore

damaged original X by using (D, W), see (1). The aim of this section is to de-

fine a relevant estimate of (D, W) for practical use in solving inverse problems.

We derive in Appendix E the marginal posterior distribution resulting from the

marginalization of the joint posterior distribution with respect to the nuisance

parameters θ:

p(D,Z,S | Y,H) =

∫
p(D,Z,S | Y,H,θ)p(θ)dθ (48)

∝ 1

(2πσ2
D)PK/2

exp

(
−‖D‖

2
F

2σ2
D

) ( N∑
i=1

‖yi −HiDwi‖2F

)−N0/2

Γ(NK/2)

πNK/2‖S‖NKF

K!

(HN + 1)K+1
2N−1∏
h=1

Kh!

K∏
k=1

(N −mk)!(mk − 1)!

N !
(49)

where N0 =
N∑
i=1

‖Hi‖0, HN =
N∑
j=1

1/j. Then one can define the marginal maxi-

mum a posteriori (mMAP) estimator

(DmMAP ,WmMAP ) = argmax
{D(t),Z(t)}TMCMC

t=1

log p(D,Z,S | Y,H) (50)

Fig. 4(a) shows an example of the evolution of this marginalized posterior during

the burn-in period for an inpainting experiment, see Section 6, with the Barbara
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image with 50% missing data and σε = 15. Fig. 4(b) shows the evolution of the

mean-square reconstruction error across Gibbs iterations. The reconstruction

error nearly always decreases which means that the first step of our Monte

Carlo simulation behave like an optimization algorithm first. One must take

care of this long burn-in period when the marginalization posterior remarkably

nearly always decreases. This behaviour can probably be explained by the

evolution of the 1/‖S‖NKF in the mMAP distribution during first iterations

(then K incresases from 0 and ‖S‖F is expected to increase as well). Recall that

an mMAP estimate can be properly defined only in the stationary regime of the

Markov chain.
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Figure 4: (a) Logarithm of the marginalized posterior (burn-in); (b) reconstruction error on

the result of the Barbara segment with 50% missing data and σε = 15.

6. Experimental results in image processing.

6.1. Reconstruction of the original image

As a first illustration and consistency check, IBP-DL is trained on a seg-

ment of size 256×256 of Barbara image, see Fig. 1. A full data set of 62001

overlapping 8x8 patches is used. Fig. 1 shows the reconstruction of the original

image by using the dictionary learnt by IBP-DL from the original image without

noise. We use the mMAP estimate of (D,W) defined in section 5.5. The dictio-

nary contains 150 atoms and the reconstruction is very accurate since one gets
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PSNR=44.97 dB. For comparison, K-SVD [3] typically produces a dictionary of

size 256 and a larger reconstruction error with PSNR = 43.97 dB. The Bayesian

method proposed in [12] with a dictionary of maximal size 256 as well yields

PSNR=42.92 dB. We remark that IBP-DL produces a relevant dictionary since

it restores the image with an adapted yet smaller number of atoms to reach a

better quality of approximation.

6.2. Denoising
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Figure 5: Denoising results of IBP-DL for noise levels σε = 25 and σε = 40: (a) average

PSNR using IBP-DL learnt from a reduced training set, K-SVD with 256 atoms learnt from

the reduced training set, or learnt from the full training set (as IBP-DL) and BM3D; (b)

Average PSNR using IBP-DL and BPFA [12] learnt from the same full training set.

The most simple model where H = IP corresponds to the problem of image

denoising. The results have already been presented in [14] and showed that

IBP-DL denoising performances are similar to those of other state-of-the-art

DL approaches. This was a first proof of the relevance of the learnt dictionaries.

Fig. 5 (a) & (b) summarize denoising results, see [14] for details, by illustrating

the PSNR averaged over 9 images for 2 noise levels σε=25 and 40 corresponding

to PSNR=20.17dB and 16.08dB respectively. Fig. 5(a) compares the denoising

performances of IBP-DL learnt from a reduced data set 50%-overlapping patches

only with K-SVD based methods [3] and BM3D [24]. Results from BM3D [24]
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are used as a reference only since we do not expect to obtain better results

here. The main observation is that IBP-DL performances are comparable to

K-SVD. An important observation is that the performances of K-SVD drop

dramatically when a reduced training set is used which may indicate a worse

learning efficiency than IBP-DL. Fig. 5(b) compares the denoising performances

of IBP-DL and BPFA [12] using the same full data set. They are comparable.

One can observe that IBP-DL dictionary sizes strongly depend on the considered

image. They are often smaller or only a little larger than 64 while K-SVD and

BPFA usually fix the dictionary size at 256 or 512. Moreover, the number of

non-zero coefficients is smaller as well when using IBP-DL. For instance, for the

image House with a noise level of σ = 25, we found that BPFA led to 116380

non-zero coefficients using a dictionary of K=256 atoms (0.73% sparsity) while

IBP-DL yields a dictionary of size K=57 associated to 67028 non zero coefficients

(1.9% sparsity). This trend is general: IBP-DL produces smaller dictionaries

than the standard 256 or 512 choice, and the number of non-zero coefficients

is smaller as well. Despite a smaller dictionary, a very sparse and efficient

representation is obtained, which is illustrated by restoration performances. We

emphasize that the noise level is accurately estimated as well with an estimation

error of at most 10% only. This is an essential benefit of the IBP-DL approach,

see [14] for a detailed discussion on IBP-DL for denoising. We now turn to the

more difficult inverse problems of image inpainting and compressive sensing.

6.3. Image inpainting

This section presents numerical experiments of image inpainting that is the

restoration of missing pixels, e.g. due to some damaged sensor.

Fig. 6 displays several inpainting examples on a segment of Barbara. Atoms

are ordered by decreasing weight of their coefficients in the reconstruction.

Table 2 gathers several restoration examples on the segment of Barbara

image. It presents the size of the dictionary and the PSNR obtained by using

IBP-DL for restoration for various proportions of missing pixels (from 0% to

80%) and various noise levels (0, 15, 25) for 8 bits images (gray levels range
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(a1)Dico : 43 atoms (b1) PSNR=11.84dB (c1) PSNR=28.10dB

(a2)Dico : 52 atoms (b2) PSNR=8.31dB (c2) PSNR=26.54dB

(a3)Dico : 39 atoms (b3) PSNR=6.37dB (c3) PSNR=23.74dB

Figure 6: IBP-DL restoration of a Barbara segment. From top to bottom are restoration of

the noisy (σε=25) masked image with 20%, 50% and 80% missing pixels. From left to right

are IBP-DL dictionary, observed image, restored image.

σε � Missing 80% 50% 20% 0%

0 BPFA 26.87 35.60 40.12 42.94

IBP-DL 57 - 27.49 47 - 35.40 40 - 38.87 150 - 44.94

15 BPFA 25.17 29.31 29.93 32.14

IBP-DL 62 - 25.28 58 - 28.90 45 - 30.68 121 - 31.87

25 BPFA 23.49 26.79 27.58 29.30

IBP-DL 39 - 23.74 52 - 26.54 43 - 28.10 67 - 28.90

Table 2: Restoration results of a Barbara grayscale segment. In each cell (top) PSNR (dB)

using BPFA with 256 atoms to restore the image; (bottom) K - PSNR are the IBP-DL

dictionary size K and the restoration PSNR (dB).
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Missing Cameraman House Peppers Lena

80% 75 - 24.02 46 - 31.00 86 - 26.05 24 - 30.98

22.87 - 24.11 28.38 - 30.12 23.51 - 25.92 28.57 - 31.00

50% 87 - 29.02 52 - 37.86 93 - 32.66 84 - 36.66

26.56 - 28.90 33.40 - 38.02 28.36 - 32.58 33.25 - 36.94

20% 75 - 35.14 56 - 42.37 90 - 37.58 44 - 39.20

27.56 - 34.70 34.66 - 43.03 30.09 - 37.73 34.37 - 41.27

Missing Mandrill Boat F.print Hill

80% 63 - 21.93 29 - 27.86 44 - 26.52 98 - 29.33

21.24 -21.47 25.95 - 27.81 21.01 - 26.03 27.88 - 29.33

50% 48 - 25.70 84 - 33.39 45 - 33.74 71 - 33.82

24.16 - 25.98 30.34 - 33.78 27.56 - 33.53 31.61 - 34.23

20% 65 - 29.48 62 - 37.54 86 - 39.88 68 - 37.34

25.36 - 31.67 31.48 - 39.50 29.04 - 40.17 32.67 - 38.75

Table 3: Inpainting using IBP-DL or BPFA applied to gray-scale images: (top of cell) IBP-

DL dictionary size K, IBP-DL restoration PSNR (dB) compared to (bottom of cell) KSVD

and BPFA restoration PSNR in dB.

from 0 to 255). As a minimal reference, note that using only the constant atom

for restoration, that is equivalent to a local averaging filter (or a nearest neighbor

interpolation), yields a PSNR of 22 dB: at least, IBP-DL brings a significant

improvement with respect to this basic method.

For 80% missing data without noise , BPFA yields a PSNR of 26.87 dB while

IBP-DL yields a PSNR of 27.49 dB with 57 atoms; for 50% missing data and

σε=25, PSNRBPFA=26.79 dB and PSNRIBP-DL=26.54 dB with K=52. This

experiment clearly shows the relevance of IBP-DL that proposes an adapted

and efficient dictionary for inpainting, even in the presence of additional noise.

Table 3 compares our results to those of BPFA [12] on a set of images.

Depending on the considered image, the performance is in general either in

favor of IBP-DL or BPFA for a difference of about ±0.1 dB. Larger differences
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are sometimes observed for 20% missing pixels, more often in favor of BPFA.

For 80% missing pixels in House, IBP-DL and BPFA yield a PSNR of 31.0 dB

and 30.12 dB respectively, in favor of IBP-DL this time. Therefore inpainting

performances are very similar while the number of atoms inferred by IBP-DL

(39 ≤ K ≤ 150) is in general smaller than that of BPFA that is always close to

its maximum value of 256 or 512 atoms. As a baseline for comparisons, we also

compare our results with those obtained by using K-SVD [3] from the original

image to learn a dictionary of size 256. Then an orthogonal matching pursuit

algorithm is used to estimate the coefficients for restoration of the damaged

image. From our experiments, IBP-DL always performs better than K-SVD.

Fig. 7 shows IBP-DL inpainting results for 3 images with 80%, 50% and 20%

missing pixels leading to PSNR of 26.05 dB, 33.82 dB and 35.14 dB respectively.

In addition to quantitative PSNR performances, qualitative results are visually

fine.

6.4. Compressive sensing

In the compressive sensing experiment, we use the Castle grayscale image

(481 × 321). Each patch xi is observed through the same random Gaussian

projection matrix H. Then we use standard Gibbs sampling for inference ac-

cording to model 1. The Castle image has 148836 overlapping 8 × 8 patches

in dimension P = 64. The projection matrix H ∈ RQ×P , Q ≤ P , is random

with i.i.d. coefficients H(i, j) ∼ N (0, 1). Fig. 8 displays the restoration of the

Castle image with 50% compressive sensing rate, that is for Q = P/2. The

estimated dictionary is made of 26 atoms only. The relative quadratic error is

0.004 corresponding to an SNR of 23.9 dB and PSNR = 32.9 dB which means

a quite good restoration performance. Fig. 9 displays the restoration of the

Castle using a random Gaussian i.i.d. dictionary of 26 atoms. The images are

restored by averaging pixel estimates from overlapping patches reconstructed

by Orthogonal Matching Pursuit (OMP). The restored image has an SNR of

17.37 dB to compare with the 23.9 dB using IBP-DL. The IBP method gives

better performance.
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(a) (b) (c)

Figure 7: Illustration of typical inpainting results obtained by using IBP-DL. From top to

bottom are the IBP-DL dictionary, the masked and the inpainted images; (a) Peppers (80%

missing), from a PSNR of 6.53 dB to 26.05 dB, (b) Hill (50% missing) from a PSNR of 8.70

dB to 33.82 dB, (c) Cameraman (20% missing) from a PSNR of 12.48 dB to 35.14 dB.
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(a) (b) (c)

Figure 8: (a) Initial Castle image; (b) restored image with a relative reconstruction error from

compressive sensing at 50% (Q = P/2) obtained by IBP-DL: SNR = 23.9 dB, PSNR = 32.9

dB; (c) the estimated dictionary is made of 26 atoms only.

(a) (b)

Figure 9: (a) Initial Castle image; (b) Restored image using random dictionary and OMP:

SNR = 17.37 dB (c) the random dictionary of 26 atoms.
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7. Conclusion

This article describes IBP-DL, a Bayesian non parametric method for dic-

tionary learning to solve linear inverse problems. The proposed approach uses

an Indian Buffet Process prior. It permits to learn a dictionary of adaptive size

starting from an empty dictionary, except the trivial constant atom. Therefore a

matrix factorization problem is solved in a really non parametric manner since

no parameter tuning is needed in contrast with most optimization methods.

Moreover we have formulated the dictionary learning problem in the context of

linear inverse problems with Gaussian noise. Various MCMC algorithms have

been proposed. In particular, we have presented a collapsed Gibbs sampler as

well as an accelerated Gibbs sampler to solve the problem of image inpainting

(completion of missing data). We have proposed a new method to sample new

atoms. We have also derived a marginalized maximum a posteriori estimate for

the dictionary. Numerical experiments have shown the relevance of the proposed

approach in image processing for inpainting as well as compressive sensing. Fu-

ture work will explore even more general models (e.g., extensions of the IBP)

and other inference methods for scalability since the main practical limitation

is the computational cost of Gibbs sampling.

Appendix A. Gibbs sampling

We derive the posterior over zki for ‘active’ atoms k, see (13).

p(zki|Y,H,D,Z−ki,S, σε) ∝ N (yi|HiD(zi � si), σ
2
ε)P (zki|Z−ki)

∝ exp

[
− 1

2σ2
ε

((yi −HiD(zi � si))
T (yi −HiD(zi � si))

]
P (zki|Z−ki)

∝ exp

 −1

2σ2
ε

((zkiski)
2dTkHT

i Hidk − 2zkiskid
T
kHT

i (yi −Hi

K∑
j=1
j 6=k

djzjisji)

P (zki|Z−ki)

Appendix B. Collapsed Gibbs sampling

We derive the collapsed likelihood p(Y | {Hi},Z,S, σε, σD) by integrat-

ing D out in (23). The integration must be carried out with respect to the
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rows of D due to the presence of binary mask. We recall that {F`} is the

set of binary diagonal matrices of size N for `=1,...,P. If each Hi is associ-

ated with each data Y(:, i) then F` is associated with y`, dimension ` of data.

F`(i, i) indicates whether pixel at location ` in patch i is observed or not so that

F`(i, i)=Hi(`, `)=Hi,`.

p(Y | {Hi},Z,S, σε, σD) = p(Y | {F`},Z,S, σε, σD)

=

∫
p(Y | {F`},D,Z,S, σε)p(D | σD)dD (B.1)

Let y` = Y(`, :), c` = D(`, :), we have:

p(Y | {F`},D,W, σε) =
1

(2πσ2
ε)‖Y‖0/2

exp

[
− 1

2σ2
ε

P∑
l=1

(y` − c`WF`)(y` − c`WF`)
T

]

p(D | σ2
D) =

1

(2πσ2
D)KP/2

exp

[
− 1

2σ2
D

P∑
l=1

D(`, :)D(`, :)T

]

Then, the product in the integral (B.1) becomes

p(Y | {F`},D,W, σε)p(D | σ2
D) =

1

(2π)(‖Y‖0+KP )/2σ
‖Y‖0
ε σKPD

(B.2)

exp

[
−1

2

P∑
l=1

(
1

σ2
ε

(y` − c`WF`)(y` − c`WF`)
T +

1

σ2
D

c`c
T
`

)]

1

σ2
ε

(y` − c`WF`)(y` − c`WF`)
T +

1

σ2
D

c`c
T
`

=
1

σ2
ε

y`y
T
` +

1

σ2
ε

c`WF`F
T
` WT cT` −

2

σ2
ε

y`F
T
` WT cT` +

1

σ2
D

c`c
T
`

=
1

σ2
ε

y`y
T
` + c`(

1

σ2
ε

WF`F
T
` WT +

1

σ2
D

IK)cT` −
2

σ2
ε

y`F
T
` WT cT`

=
1

σ2
ε

y`y
T
` + c`(σ

2
εM`)

−1cT` −
2

σ2
ε

y`F
T
` WT cT`

=(c` − y`F
T
` WTM`)(σ

2
εM`)

−1(c` − y`F
T
` WTM`)

T +
1

σ2
ε

Υ`

where

M` = (WF`F
T
` WT +

σ2
ε

σ2
D

IK)−1, (B.3)

Υ` = y`(I− FT` WTM`WF`)y
T
` . (B.4)
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It can be shown that c` = D(`, :) can be drawn from a Gaussian distribution

p(c` | y`,F`,Z,S, σε, σD) ∝ N (µD`
,ΣD`

)

ΣD`
= σ2

εM` (B.5)

µD`
= y`F

T
` WTM`

and

p(D | Y,F,Z,S, σε, σD) ∝
P∏
`=1

p(c` | y`,F`,Z,S, σε, σD) (B.6)

Therefore, the integral in (B.1) yields (23)

p(Y | {F`},Z,S, σ2
ε, σ

2
D) =

1

(2π)(‖Y‖0+KP )/2σ
‖Y‖0
ε σKPD

exp

[
−1

2

P∑
l=1

1

σ2
ε

Υ`

]

×
∫

exp

[
−1

2

P∑
l=1

(
(c` − µD`

)Σ−1D`
(c` − µD`

)T dD
)]

=

P∏
`=1

(2π)K/2|ΣD`|1/2

(2π)(‖Y‖0+KP )/2σ
‖Y‖0
ε σKPD

P∏
`=1

exp

[
− 1

2σ2
ε

Υ`

]
(B.7)

=
1

(2π)‖Y‖0/2σ
‖Y‖0−KP
ε σKPD

P∏
`=1

|M`|1/2exp

[
− 1

2σ2
ε

Υ`

]

Appendix C. Accelerated gibbs sampling

Here is the derivation of (38) to (40).

p(Z | Y,S,H, σ2
ε, σ

2
D, α) ∝ p(Z | α)

∫
p(Y | H,D,Z,S, σε)p(D | σD)dD (C.1)

The data is split into 2 sets according to Y = [yi,Y−i], W = [wi,W−i] and

H = {Hi, {H6=i}}.

p(Y | {Hi},Z,S, σε, σD) =

∫
p(Y | {Hi},D,Z,S, σε)p(D | σD)dD

=

∫
p(yi,Y−i | Hi, {H6=i},D, zi,Z−i, si,S−i, σ2

ε)p(D | σD)dD (C.2)

=

∫
p(yi | Hi,D, zi, si, σε)p(Y−i | {H6=i},Z−i,S−i,D, σ2

ε)p(D | σD)dD
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The likelihood p(Y−i | {H6=i},Z−i,S−i,D, σ2
ε) and the prior p(D | σD) are both

Gaussian. We apply the Bayes rule. The posterior p(D | Y−i, {H6=i},Z−i,S−i, σε, σD)

is also Gaussian :

p(Y | {F`},Z,S, σ2
ε, σ

2
D)

∝
∫
p(yi | Hi,D, zi, si, σε)p(D | Y−i, {H6=i},Z−i,S−i, σε, σD)dD

∝
∫
p(yi | Hi,D, zi, si, σε)

P∏
`=1

N (c`;µD`,−i,ΣD`,−i)dD (C.3)

p(yi | Hi,D, zi, si, σε) and p(D | Y−i, {H6=i},Z−i,S−i, σε, σD) are both Gaus-

sian so that the integral in equation (C.3) yields

p(Y | {F`},Z,S, σ2
ε, σ

2
D) ∝ p(yi | Hi,D, zi, si, σε,µD`,−i,ΣD`,−i)

∝
P∏
`=1

N (yi(`);µyi`, σyi`) (C.4)

where µyi` = Hi,`µD`,−iwi

σyi` = Hi,`w
T
i ΣD`,−iwi + σ2

ε

(C.5)

Appendix D. Matrix inversion lemma

In section 5.1.3 we need to compute the inverse of gD` and remove or restore

the influence of each data i.

1. To remove the influence of data i one needs ΣD`,−i = g−1D`,−i, see (36),

g−1D`,−i =
(
gD` − σ−2ε Hi,`wiw

T
i

)−1
= g−1D` −

Hi,`

Hi,`wT
i g
−1
D`wi − σ2

ε

g−1D`wiw
T
i g
−1
D` (D.1)

2. Restore the influence of data i to recover ΣD`
= g−1D` from ΣD`,−i

g−1D` =
(
gD`,−i + σ−2ε wiHi,`w

T
i

)−1
= g−1D`,−i −

Hi,`

Hi,`wT
i g
−1
D`,−iwi + σ2

ε

g−1D`,−iwiw
T
i g
−1
D`,−i (D.2)
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Appendix E. Marginalized MAP

Let θ = (σε, σS , α). We compute:

p(D,Z,S | Y,H) =

∫
p(D,Z,S | Y,H,θ)p(θ)dθ. (E.1)

We have

p(D,Z,S | Y,θ) ∝ p(Y | H,D,Z,S,θ)p(D)p(Z)p(S) (E.2)

p(θ) = p(α)p(
1

σ2
ε

)p(
1

σ2
S

) (E.3)

also

p(Y | D,Z,S, σε) =
1

(2πσ2
ε)N0/2

exp

(
− 1

2σ2
ε

N∑
i=1

‖yi −HiDwi‖2F

)
(E.4)

p(D | σD) =

K∏
k=1

1

(2πσ2
D)P/2

exp

(
− 1

2σ2
D

‖dk‖22
)

(E.5)

p(Z | α) =
αK

2N−1∏
h=1

Kh!

exp (−αHN )

K∏
k=1

(N −mk)!(mk − 1)!

N !
(E.6)

p(S | σS) =

N∏
i=1

K∏
k=1

1

(2πσ2
S)1/2

exp

(
− s2ki

2σ2
S

)
(E.7)

p(α) = G(1, 1) (E.8)

p(1/σ2
ε) = G(c0, d0) (E.9)

p(1/σ2
S) = G(e0, f0) (E.10)

where G(x; a, c) = xa−1ba exp(−bx)/Γ(a) ; HN =
N∑
j=1

1

j
; N0 =

N∑
i=1

‖Hi‖0

Marginalize out α. We have α ∼ G(1, 1) = exp(−α).

∫ ∞
0

αK exp(−αHN ) exp(−α)dα =

∫ ∞
0

αK exp(−α(HN + 1))dα (E.11)

Since Γ(x) =
∫∞
0
tx−1 exp(−t)dt, we have∫ ∞

0

αK exp(−α(HN + 1))dα =
Γ(K + 1)

(HN + 1)K+1
=

K!

(HN + 1)K+1
for K ∈ N

(E.12)
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so that ∫
p(Z|α)p(α)dα

=
K!

(HN + 1)K+1

1
2N−1∏
h=1

Kh!

K∏
k=1

(N −mk)!(mk − 1)!

N !

(E.13)

Marginalize out σε. Let N0 =
N∑
i=1

‖Hi‖0.∫ ∞
0

p(Y | H,D,Z,S, σε)p

(
1

σ2
ε

)
d

(
1

σ2
ε

)

∝
∫

exp

− 1

σ2
ε

d0 +

N∑
i=1

‖yi −HiDwi‖2F

2


( 1

σ2
ε

)N0/2+c0−1

d

(
1

σ2
ε

)

(E.14)

In practice, very small hyperparameters (c0=d0=10−6) are used for σ2
ε.∫ ∞

0

p(Y | H,D,Z,S, σε)p

(
1

σ2
ε

)
d

1

σ2
ε

∝
∫

exp

− 1

σ2
ε


N∑
i=1

‖yi −HiDwi‖2F

2


( 1

σ2
ε

)N0/2−1

d
1

σ2
ε

∝ 1 N∑
i=1
‖yi−HiDwi‖2F

2

N0/2
Γ(
N0

2
)

∝

(
N∑
i=1

‖yi −HiDwi‖2F

)−N0/2

(E.15)

Marginalize out σS:. Very small hyperparameters (e0=f0=10−6) are also used

for σ2
S . ∫ ∞

0

p(S | σS)p(1/σ2
S)d

1

σ2
S

∝
∫

1

(2π)NK/2
exp

[
− 1

σ2
S

(
f0 +

‖S‖2F
2

)](
1

σ2
S

)NK/2+e0−1
d

1

σ2
S

∝ 1

(π)NK/2
1

(‖S‖F )
NK

Γ(
NK

2
) (E.16)
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Then, from (E.13),(E.15),(E.16) and (E.5), we obtain:

p(D,Z,S | Y) ∝ K!

(HN + 1)K+1

1
2N−1∏
h=1

Kh!

K∏
k=1

(N −mk)!(mk − 1)!

N !

1

(2πσ2
D)PK/2

exp

(
−‖D‖

2
F

2σ2
D

)( N∑
i=1

‖yi −HiDwi‖2F

)−N0/2

1

(π)NK/2
1

(‖S‖F )
NK

Γ(
NK

2
)

(E.17)

where N0 =
N∑
i=1

‖Hi‖0, HN =
N∑
j=1

1/j.
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