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INTRODUCTION

Fishing has always been a key activity for human
subsistence and archeological records show that
human tribes fished thousands of years ago. Never-
theless, with the development of industrial fisheries
and the worldwide increasing demand for marine
resources, overfishing has become one of the major
threats altering the structure and functioning of mar-
ine ecosystems (Jennings & Kaiser 1998, Pauly et al.
1998, Jackson et al. 2001, Bănaru et al. 2010). Conse-
quently, efficient policies are needed to limit fishing
pressure on marine ecosystems and to secure the sus-
tainability of fish resources. In coastal zones, artificial

reefs (ARs) within marine protected areas are cur-
rently considered as an efficient tool to manage and
support small-scale coastal fisheries and to restore
natural habitats affected by anthropogenic impacts
(Claudet & Pelletier 2004, Seaman 2007, Tessier et al.
2014). The term ‘artificial reefs’ encompasses multi-
ple definitions depending on their origin (waste
material deposited haphazardly or specifically de -
signed structures), their purpose (ecosystem restora-
tion, leisure activities, professional fisheries or pro-
tection against illegal trawling) and local policies
(Seaman & Jensen 2000, Baine 2001). The most
exhaustive definition describes ARs as ‘submerged
structures placed on the substratum (seabed) deliber-
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ABSTRACT: Artificial reefs (ARs) are used worldwide as a tool to manage and restore marine
coastal ecosystems and to support small-scale fisheries, as increases in fish biomass around them
commonly occur. Whether ARs actually produce biomass, or only attract fish from natural zones,
is strongly debated. Using stable isotope ratios to elucidate the trophic organization of the largest
Mediterranean artificial reef system, the present work demonstrates that the studied ARs effec-
tively support biomass production, as invertebrate species directly depended on locally produced
organic matter (OM). OM of pelagic origin was the main source of matter due to the predomi-
nance of filter-feeder organisms on the ARs, while benthic primary production was of secondary
importance. Isotopic ratios of fishes confirmed the importance of the ARs as a food supplier. Their
position in the trophic network was consistent with the hypothesis proposing the effective ability
of ARs to increase fish biomass through production mechanisms. Carbon and nitrogen stable iso-
tope ratios provided a basis for achieving an integrative view of trophic relationships and food
web functioning of ARs. This work constitutes a baseline for future work on efficient management
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ately, to mimic some characteristics of a natural reef’
(Jensen 1998). Fish biomass increases are generally
observed in the vicinity of ARs, with a benefit for fish-
eries (Bombace et al. 1994, Charbonnel et al. 2002,
Leitão 2013). Unlike other policies, coastal manage-
ment based on ARs relies not only on limitation of
fishing activity, but also on biomass enhancement.
This could explain why ARs are generally well-accep -
ted by fishermen and other stakeholders, with differ-
ent perceptions of ARs by different stakeholders, de -
pending on their objectives (Claudet & Pelletier 2004,
Ramos et al. 2007, Leleu 2012, Leleu et al. 2014).

Identifying the biological processes involved in this
fish biomass increase is crucial in AR research. Three
factors are generally considered: addition of new sub-
stratum, sheltering effect and enhancement of food
resources (Bohnsack 1989, Harmelin & Bellan-Santini
1997). The deployment of artificial structures creates
new hard substrata where benthic prey can settle, in-
creasing food resources (Steimle & Ogren 1982, Relini
et al. 2002, Leitão et al. 2007, Scarcella et al. 2011).
The architectural complexity of artificial structures
provides shelter from predation for low trophic-level
organisms or species at a vulnerable life stage, and al-
lows the presence of numerous species of all sizes
(Gorham & Alevizon 1989, Eklund 1997, Charbonnel
et al. 2002, Gratwicke & Speight 2005). Finally, over
time, these structures become a mating, spawning
and recruitment zone for fishes and could function as
a source of propagules for adjacent natural zones
(Gorham & Alevizon 1989, Eklund 1997).

Despite a wealth of literature on these issues and
identification of these 3 factors, no decisive evidence
has been provided to solve the ‘attraction vs. produc-
tion’ debate regarding the real functioning of ARs
(Bohnsack 1989, Polovina 1989, Grossman et al. 1997,
Lindberg 1997, Pitcher & Seaman 2000, Powers et al.
2003, Brickhill et al. 2005 and references therein). On
the one hand, the attraction hypothesis suggests that
ARs function as a sink for existing individuals coming
from adjacent natural zones (Bohnsack 1989, Polo vina
1989). Following this hypothesis, no effective biomass
production occurs on ARs, and their deployment has
no effect on the biomass of the whole zone (i.e. natural
rocky substrates and ARs). Over time, AR deployment
may have a counterproductive effect, as lower pro-
duction occurs in natural zones and fishermen concen -
trate on ARs (Grossman et al. 1997, Pitcher & Seaman
2000). On the other hand, the production hypothesis
states that ARs are effective producers of fish biomass,
by favoring the recruitment of new individuals and
enhancing growth, due to increased availability of
food and shelter (Powers et al. 2003). In this case, ARs

would be effective tools to support fisheries and re-
store natural rocky habitats by enhancing the total
biomass of the whole zone. The ‘attraction vs. produc-
tion’ de bate was largely driven by the fact that ARs
are mainly used as a tool to sustain  fisheries. Under-
standing which hypo thesis effectively governs the
functioning of ARs is crucial for the efficient manage-
ment of ARs and asso ciated fisheries.

In their review regarding the ‘attraction vs. produc-
tion’ debate, Brickhill et al. (2005) list some of the
knowledge gaps in this topic. Most of them concern
trophic relationships on ARs and the transfer of organic
matter (OM) from producers to consumers. Brickhill et
al. (2005) promote the use of chemical tracers such as
carbon and nitrogen stable isotopes to link fish biomass
with primary production on ARs, as numerous works
demonstrate that this technique is well suited for
studying marine food webs (e.g. Kang et al. 2008,
Boecklen et al. 2011, Layman et al. 2012, Daigle et al.
2013). The isotopic ratios of a consumer are directly
linked with those of its prey with a difference between
them. This factor is relatively low for carbon (~1‰).
Consequently, the carbon isotopic ratio of a consumer
is close to those of the OM sources it is depending on,
and is used to trace them. In contrast, the nitrogen frac-
tionation factor is higher (theoretically 3 to 4 ‰ per
trophic level) and the isotopic ratio of nitrogen is com-
monly used as a proxy for trophic level (Post 2002). Sta-
ble isotope ratios of the diet are integrated in the
tissues of a consumer within several months. The cou-
pled use of carbon and nitrogen isotopic ratios allows a
better understanding of the trophic position of all or-
ganisms invol ved in a food web, and gives an inte-
grated view of the trophic functioning of an ecosystem.

Through the ‘RECIFS PRADO’ program, 400 ARs
were deployed in a 2 km2 zone in the Bay of Marseille
between 2007 and 2008 (NW Mediterranean Sea,
France). This program represents the largest AR sys-
tem in the Mediterranean (Charbonnel et al. 2011). It
was designed to support small-scale fisheries and to
restore degraded habitats. It was also a good opportu-
nity to scientifically assess the trophic functioning of a
coastal AR system. Papers dealing with trophic eco -
logy applied to ARs are scarce. To our knowledge,
only 2 studies use the integrative view possible
through stable isotope analyses to understand the
functioning of the whole trophic network of AR sys-
tems (Kang et al. 2008, Daigle et al. 2013). To date,
most studies performed on AR trophic relationships
were applied to particular fish species using stomach
content analyses (Steimle & Ogren 1982, Relini et al.
2002, Leitão et al. 2007, Castriota et al. 2012). Our
work has thus 3 major objectives: (1) to identify the
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major OM sources fueling AR trophic networks, (2) to
characterize the organization of the trophic networks
established on ARs and (3) to use the integrative view
offered by stable isotope analyses to add new insights
in the attraction−production debate.

MATERIALS AND METHODS

Sampling sites

ARs were deployed between 20 and 30 m depth on
a sandy bottom with Posidonia oceanica dead matte
(underlying structure of P. ocea nica meadows consti-
tuted of rhizomes and roots intermingled with sedi-
ments; Boudouresque et al. 2012) and close to natural
rocky substrates of the coastline and the Frioul Archi-
pelago (Fig. 1), covering a 2 km2 area. AR modules
were arranged in 6 triangular-shaped structures
called ‘villages’. Sampling was performed on 2 large
‘metal-basket’ ARs de ployed at similar depth (~30 m)
in the north (village V3) and in the south (village V6)
of the deployment zone. Metal basket is the largest
reef type (187 m3, 6 m high) deployed in Marseille. Its
basic modules are composed of a metal frame filled
with concrete cubes and concrete piles. Architectural

complexity of the module is increased by the addition
of octopus pots, breeze blocks and bags filled with
dead oyster shells (hereafter named ‘oyster bags’).
Such devices create additional shelters for numerous
small invertebrates and allow sampling of cryptic spe-
cies. At the time of sampling the AR zone was a full
no-take zones with the possibility of being opened to
small-scale coastal fisheries in a few years. For addi-
tional details on the design of the modules and the or-
ganization of the whole AR deployment zone, refer to
Charbonnel et al. (2011).

Sample collection

All OM pools and producers potentially influencing
AR trophic networks were sampled in spring, summer,
autumn and winter 2010, to take into account their
temporal variability. Particulate OM (POM) was sam-
pled from subsurface seawater by filtering on pre-
weighed GF/F Whatman filters precombusted to re-
move organic matter traces. Terrestrial inputs were
taken into account by sampling POM brought to the
sea by the Huveaune River. Additional isotopic data
on nanophytoplankton (2 to 10 µm) and offshore POM
(as a proxy for diatoms and dinobionts) were taken

from bibliographical references (Rau
et al. 1990, Darnaude et al. 2004). Sed-
iment OM (SOM) was sampled by
scraping the upper part of the sedi-
ment around ARs by SCUBA diving.
More de tails on sampling procedures
for OM pools are provided in Cresson
et al. (2012). Benthic primary produc-
ers were also sampled seasonally by
SCUBA diving. All ma cro algal species
observed were sampled. Samples of P.
oceanica were also taken in the sea-
grass meadow located close to the AR
zone. Back in the laboratory, all sam-
ples were rin sed, cleaned from epi-
phytes with ra zor blades, and identi-
fied at the species level. A total of 21
species of benthic producers were
sampled and analyzed and are de tai led
in Table S1 in the Supplement at www.
int-res. com/ articles/ suppl/ m509p015_
supp. pdf.

Consumers (benthic invertebrates
and fishes) were sampled during 2
campaigns in summer and winter 2010.
Benthic invertebrates were collected
manually or scraped off the AR by

17

Fig. 1. Location of artificial reefs (AR) in the Bay of Marseille. Sampling sites are
represented by the black stars (V3 and V6 artificial reefs, offshore particulate
organic matter [POM], and Huveaune River). Sampling was done on ‘metal-
 baskets’ reefs, presented here as a sketch of the basic cubic module, and a pic-
ture of the AR during deployment (modified from Charbonnel et al. 2011)

http://www.int-res.com/articles/suppl/m509p015_supp.pdf
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SCUBA diving. Small cryptic orga nisms were collected
by samp ling the oyster bag fauna. Analyses were run
on the 22 species observed on the 2 ARs at both sea-
sons. Macrobenthic invertebrate species were assigned
to 5 trophic groups based on their diet and feeding
habits (see Table S2 in the Supplement), following pre-
vious papers (e.g. Guerao 1995, Coma et al. 2001, Mor-
ton et al. 2007, Riisgård & Larsen 2010, Schaal et al.
2012). Regarding a potential problem where a species
may occur in 2 trophic groups, we do not believe it oc-
curred here. We chose to define a species on the basis
of its feeding mechanism; e.g. filtering, grazing or pre-
dation. The only problematic group may have been fil-
ter feeders, as they can retain some detritus and thus
be considered as detritivores. But, as we considered
the mechanisms, all filter feeders occur in the same
group, regardless of the matter they retain.

Fishes were sampled by trammel net during scien-
tific fishing campaigns or by spear fishing. A total of
325 individuals belonging to 23 species were kept for
analyses. More details on the fish sampling are pro-
vided in Cresson et al. (2014). In the laboratory, inver-
tebrates and fish were sorted and determined. The
largest organisms were dissected to keep only muscle
samples. For small organisms, several individuals
were pooled to obtain enough material for analysis.

All samples (SOM, primary producers, inverte-
brates and fishes) were stored frozen, freeze dried
and ground with an agate mortar and pestle before
analysis. Prior to stable isotope analysis, all samples
containing carbonates were acidified by adding HCl
1%. As HCl treatment modifies nitrogen isotope
ratios, samples were split in two; the acidified sub-
samble was used for δ13C determination and the
untreated subsample for δ15N determination.

Stable isotope ratio measurement

Stable isotope ratios were obtained with a continu-
ous flow mass spectrometer (Delta V Advantage,
Thermo Scienti fic). Results are expressed with the
classical δ notation

where (X is 13C or 15N and R the isotopic ratio 13C/12C
or 15N/14N, respectively). Standards were V-PDB for
carbon and atmospheric N2 for nitrogen. Measure-
ment precision was calculated from replicated meas-
urements of acetanilide laboratory standard and is
<0.1‰. All analyses were run at least in triplicate for
all samples.

Statistical analyses

Statistical analyses were run separately: (1) on OM
sources and pools, (2) on invertebrates and (3) on
fishes. Following the fate of OM sources in the trophic
networks requires differences in their δ13C and δ15N
values. To this aim, mean annual values measured for
each OM pool (terrestrial and marine POM, SOM)
and benthic primary producers groups (rhodobionta,
chromobionta, chlorobionta and the seagrass P. ocean-
ica) were compared. Values for nano- and micro -
phytoplankton available in the literature (Rau et al.
1990, Darnaude et al. 2004) were not included in this
comparison. For invertebrates, seasonal differences
were checked for each invertebrate species, by com-
paring mean C and N isotopic ratios of in di vi duals
sampled in summer and winter. Then, interspecific
variations of isotopic ratios were assessed by compar-
ing the mean annual values observed for each spe-
cies. Finally, similarity between species was con-
firmed by hierarchical clustering analyses based on
species annual average δ13C and δ15N, using Euclid-
ean distance and Ward criterion. When needed, groups
were refined using data on taxonomical proximity or
previous knowledge re garding feeding groups. Ana -
lyses run on fishes were detailed in Cresson et al.
(2014). Briefly, species were classified in different
groups with a hierarchical clustering based on iso-
topic ra tios, and refined with knowledge about diet
and habitats. Their mean annual δ13C and δ15N values
were also compared. All comparison tests were per-
formed with 1-way ANOVAs after checking for nor-
mality (Kolmogorov-Smirnov test) and homogeneity
of variances (Levene test) and using Fisher’s least
square distance post-hoc test when ANOVA showed
significant differences. Relationships be tween mean
δ13C and δ15N values observed for invertebrates and
fishes were assessed by a linear regression. A signifi-
cant relationship (p < 0.05) between δ13C and δ15N
values measured for consumers generally indicates
that they belong to the same trophic network. All
analyses were performed with R software and the
‘cluster’ package (R Development Core Team 2012,
Maechler et al. 2013).

RESULTS

Isotopic ratios of OM pools and primary producers

Comparison of annual mean values revealed sig-
nificant differences between OM pools and sources
for their δ13C (ANOVA, F6, 608 = 112.0, p < 0.0001) and

( )δ = − ×1 10sample

standard

3X
R

R
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δ15N (ANOVA, F6, 608 = 28.7, p < 0.0001), allowing the
use of stable isotope ratios to follow their fate in the
trophic network (Table 1, Fig. 2). A wide range of
δ13C values was recorded, the highest in Posidonia
oceanica leaves (−15.55 ± 1.03‰) and the lowest in
rhodobionta (−26.66 ± 2.17‰). Values measured for
chromobionta and SOM were not significantly differ-
ent. Among OM pools and sources, POM δ15N ratio
(5.13 ± 0.90‰) was significantly higher. The lowest
δ15N value of OM sources measured on the ARs
occurred for rhodobionta (3.63 ± 0.22‰) and was not
significantly different from those measured for SOM
(3.67 ± 0.25‰) and chromobionta (3.66 ± 0.29‰).
According to the literature (Rau et al. 1990, Dar-
naude et al. 2004), nano- and microphytoplankton
exhibited even lower δ15N values (1.77 ± 0.25‰ and
3.17 ± 1.25‰, respectively).

Isotopic ratios of invertebrates

Comparison of mean δ13C and δ15N
revealed strong isotopic differences
(ANOVA F45, 854 = 64.6, p < 0.0001 for
δ13C; ANOVA F45, 827 = 244.0, p <
0.0001 for δ15N) among all inverte-
brate species (Table 1, Fig. 2), en -
compassing a wide range of isotopic
values (6‰ for δ13C, 5‰ for δ15N).
Invertebrates displayed heteroge-
neous isotopic ratios, consistent with
different feeding strat egies, the use of
different food sources and the occu-
pation of several trophic levels. Low-
est δ13C and δ15N were observed for
species in the group of filter feeders
(bivalves, asci dians, and the annelid
Chaet opterus variopedatus). Values
measured for filter-feeders except as -
cidians were lower than those meas-
ured for POM sampled on the ARs,
but higher than those of nano- and
microphytoplankton. Comparison of
seasonal means revealed few signifi-
cant differences (data not shown) for
most of the species except filter feed-
ers, which displayed systematically
lower δ13C values in summer than in
winter (Fig. 3). Except for Galathea
intermedia and Palaemon sp., all
crustaceans came within the same
group due to close intermediate val-
ues (Fig. 4). The gra zing gastropods
exhibited a parti cular signature, with
relatively low δ15N but high δ13C val-

ues. Finally, despite using different feeding modes, 3
species belonged to the same group characterized by
high δ13C and δ15N values. The detritivore species
Holoturia tubulosa exhibited high δ13C and δ15N val-
ues, close to those measured for the predatory inver-
tebrate species Marthasterias glacialis and Hexaplex
trunculus.

Isotopic ratios of fishes

Detailed results on isotopic ratios of fishes were
presented in Cresson et al. (2014). Thus, major infor-
mation only is summarized below. The range of iso-
topic ratios measured in fishes was lower for δ13C
(2‰ only), but higher for δ15N (7‰) than in inverte-
brates, suggesting a lower diversity of carbon
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Taxon Trophic No. of δ13C (‰) δ15N (‰)
group species

Chlorobionta pp 4 −17.42 ± 1.38 4.41 ± 0.42
Posidonia oceanica pp 1 −15.44 ± 1.03 3.74 ± 0.90
Rhodobionta pp 7 −26.66 ± 2.17 3.63 ± 0.22
Chromobionta pp 10 −21.47 ± 1.17 3.66 ± 0.29
Nanophytoplanktona pp − −25.23 ± 1.16 1.77 ± 0.25
Microphytoplanktonb pp − −22.70 ± 0.76 3.17 ± 1.25
SOM po − −21.95 ± 0.57 3.67 ± 0.25
POM po − −24.18 ± 0.85 5.13 ± 0.90
Riverine POM po − −26.25 ± 0.51 4.48 ± 0.41
Holoturia tubulosa de 1 −16.60 ± 1.03 7.55 ± 0.41
Bivalves ff 5 −21.67 ± 1.25 3.94 ± 0.58
Chaetopterus variopedatus ff 1 −22.17 ± 1.09 3.60 ± 0.46
Ascidians ff 3 −21.92 ± 1.13 5.52 ± 0.58
Gastropods gr 4 −19.16 ± 1.10 4.89 ± 0.49
Palinurus elefas om 1 −20.00 ± 0.57 5.76 ± 0.81
Palaemon sp. pr 1 −19.93 ± 0.55 7.44 ± 0.46
Other crustaceans om 6 −21.25 ± 0.82 5.77 ± 0.57
Echinaster sepositus pr 1 −18.91 ± 2.74 5.84 ± 0.57
Marthastarias glacialis pr 1 −17.17 ± 0.53 8.15 ± 1.13
Hexaplex trunculus pr 1 −17.94 ± 0.49 8.69 ± 0.72
Zooplankton-feeding fishes Fz 3 −19.75 ± 0.37 8.28 ± 0.51
Labrids Fc 3 −18.88 ± 0.65 9.49 ± 0.49
Macrocarnivores Fc 3 −17.91 ± 0.50 9.89 ± 0.43
Sandy-bottom mesocarniv. Fc 3 −17.89 ± 0.58 10.30 ± 0.71
Benthic piscivores Fp 3 −18.11 ± 0.33 10.30 ± 0.53
Diplodus spp. Fc 3 −18.59 ± 1.00 11.64 ± 1.31
Pelagic piscivores Fp 3 −18.71 ± 1.73 13.34 ± 2.29
aValues are from Rau et al. (1990)
bValues are from Darnaude et al. (2004)

Table 1. Mean (±SD) δ13C and δ15N isotopic ratios measured for groups used in
the artificial reef trophic network. Trophic group: pp, primary producer; po,
organic matter pool; de, detritivore; ff, filter feeder; gr, grazer; om, omnivore;
pr, predator; Fz, zooplankton-feeding fish; Fc, benthic invertebrate-feeding
fish; Fp, piscivorous fish. SOM: sediment organic matter; POM: particulate
organic matter. Values for each species are detailed in Tables S1 & S2 in the 

Supplement at www.int-res.com/articles/suppl/m509p015_supp.pdf
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sources, but stronger trophic differences. Fish spe-
cies occupied at least 3 trophic levels on the ARs.
Signi ficant differences were observed in fish δ13C
(ANOVA F22, 522 = 24.1; p < 0.0001) and δ15N (ANOVA
F22, 522 = 66.2; p < 0.0001) values. Fish species could
be split into 7 groups, based on their isotopic ratios,
diet and habitat (water column, soft or rocky bottom)

(Fig. 2, Table S2 in the Supplement).
The lowest isotopic ratios were meas-
ured for the group of zooplankton-feed-
ing species (Boops boops, Spicara
maena and S. smaris) and were consis-
tent with their diet. Piscivores exhibited
the highest δ15N values and could thus
be considered as the highest trophic-
level species on ARs, even if isotopic
dif ferences occurred between benthic
(Phy cis phycis, Synodus saurus and
Scorpaena scrofa) and pelagic species
(Dicentrarchus labrax, Sphyraena viri -
densis and Trachurus mediterraneus).
Consequently, they belonged to 2 dif-
ferent groups of piscivores. The other
species were separated within 4 groups,
with intermediate iso topic ratios, and a

diet based on in vertebrates, mainly crustaceans. The
3 Diplodus species clustered apart from other sparids
due to rather high δ15N values. The position of fish
groups on the δ13C versus δ15N biplot (Fig. 2) indi-
cated that all fish species fitted well into continuity of
the position occupied by invertebrates in ARs trophic
network. This result was also consistent with the sig-

20

Fig. 2. Mean (±SD) isotopic ratios
(δ13C and δ15N) of organic matter
(OM) sources, invertebrates and
fishes sampled on the artificial
reefs. Symbols refer to the na ture
of the OM or the trophic mode of
invertebrates. Groups of fish spe-
cies are represented by empty cir-
cles. Colors stand for the taxo-
nomic group of organisms (red:
rhodobionta; brown: chromobi -
onta; light green: chlo robionta;
dark green: seagrass; purple:
mollusks; orange: crustaceans;
yellow: echinoderms; black: as -
cidians; white: fishes). The blue
zone represents the in fluence of
pelagic OM on trophic networks,
the dashed line the δ13C versus
δ15N regression. SB: sandy-bot-
tom; SOM: sediment organic mat-
ter; Zoopk: zooplankton-feeding
fish. See Table 1 for species 

abbreviations

Fig. 3. Differences between δ13C values measured for filter feeders in 
summer and winter. Color code as in Fig. 2
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nificant correlation observed be tween δ15N and δ13C
of all consumers, invertebrates and fishes combined
(δ15N = 0.96 δ13C + 27.15; r2 = 0.46, p < 0.0001), sug-
gesting that most consumers belonged to the same
trophic pathway, with fishes at its top.

DISCUSSION

Understanding how organic matter is used in an
AR system has been demonstrated to be a crucial
question to assess the actual mechanisms involved in
its functioning (Brickhill et al. 2005, Leitão 2013). Iso-
topic ratios measured on AR organisms in the Bay
of Marseille corroborate the hypothesis that 2 main
pathways support secondary production on ARs, the
‘pelagic pathway’, based on the consumption of OM
of pelagic origin, and the ‘benthic pathway’, based
on local benthic production.

OM fueling of the AR trophic network

Isotopic ratios (Fig. 2) allowed the construction of a
conceptual model of the AR trophic network, from
organic matter sources up to fishes (Fig. 5). In natural
ecosystems, carbon comes mainly from the use of

pelagic OM and/or local benthic primary production
(Fig. 6). These mechanisms are also involved in the
functioning of AR systems. The topology of the model
denoted the predominance of pelagic primary pro-
duction as the main source of OM supporting the
trophic network. Sessile filter feeders dominate in the
fauna of the Marseille ARs (Rouanet et al. 2012). Due
to their strong filtration abilities, they are mainly
responsible for the increase in pelagic OM fluxes
toward benthic communities. The low isotopic ratios
measured for filter feeders confirmed their oppor-
tunistic diet and the preferential consumption of the
main POM fraction (Coma et al. 2001). Nanophyto-
plankton is dominant in the Bay of Marseille in
spring (Grégori et al. 2001) and represents a high
amount of OM for filter feeders. This trend was con-
firmed by the lowest δ13C values recorded in summer
for all filter feeders (Fig. 3). Due to the integration
time, isotopic ratios measured in filter feeders sam-
pled in summer reflect their diet in the past few
months, and the high consumption of nano phyto -
plankton during the spring bloom.

New substrates can also be colonized by benthic
micro- and macroalgae, and enhance the total
amount of local benthic primary production available
for benthic consumers. The occurrence of small ben-
thic grazers on ARs (Cerithium vulgatum, Fissurela
nubecula, or Jujubinus exasperatus) indicates that
benthic primary production is directly consumed by
herbivorous species. They exhibited particular iso-
topic signatures, with higher δ15N than filter feeders,
consistently with a diet based on benthic primary
producers (Nadon & Himmelman 2006). This benthic
OM could also be used indirectly through the detrital
pool, as confirmed by the similar isotopic ratios rec -
orded between SOM and macroalgae, and previous
results on SOM composition (Cresson et al. 2012).
The use of drifted algal detritus to complement their
diet was previously demonstrated for filter feeders
(Schaal et al. 2012). Many crustaceans were also con-
sidered as partly detritivores. Furthermore, the high
isotopic values measured for Holothuria tubulosa
were consistent with its detritivorous feeding and the
consumption of Posidonia oceanica dead leaf detri-
tus, abundant in surface sediment (Cresson et al.
2012). Finally, higher amounts of benthic and pelagic
OM trapped in the AR contribute to the increase of
orga nic matter in sediment (SOM), and enhance bac-
terial recycling of OM.

The trophic position inferred from stable isotope
ratios for organisms at higher trophic levels (inver-
tebrates and fishes) demonstrated that AR biomass
production is able to support a whole trophic
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Fig. 4. Hierarchical clustering tree based on invertebrate
isotopic δ13C and δ15N values. Solid squares represent
trophic groups. Dashed squares represent groups based on
both stable isotope values and taxonomic data, and in use in
Fig. 2 and Table 1. Colors represent the taxonomic groups of 

organisms and are the same as in Fig. 2
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Fig. 6. Theoretical comparison of mechanisms involved in carbon fixation in the Posidonia oceanica dead matte ecosystem
before artificial reef deployment (‘natural’, left) and after deployment (‘artificial’, right). BP: benthic production; Pel OM: 

pelagic organic matter. Symbols courtesy of the Integration and Application Network (http://ian.umces.edu/symbols/)

Fig. 5. Conceptual model of the trophic network of the Marseilles Bay artificial reefs. Sizes of arrows or boxes are not propor-
tional to flux intensity or group dominance. Box color indicates the importance of each pathway supporting this group (green:
benthic; blue: pelagic; brown: terrestrial). The larger grey box indicates the AR ecosystem. Dashed arrows represent inorganic 

nutrient fluxes. Symbols courtesy of the Integration and Application Network (http://ian.umces.edu/symbols/)



Cresson et al.: Artificial reefs increase biomass production

 network. Species such as Marthasterias glacialis or
Hexaplex trunculus are considered to be predators
of mollusks (Morton et al. 2007), whereas Palaemon
spp. are predators of small crusta ceans (Guerao
1995). Their respective isotopic positions were con-
sistent with predatory diets, based on the pelagic
pathway when feeding on filter feeders, and/or the
benthic pathway when preying on grazers. The
role of ARs as a food provider for fishes was previ-
ously demonstrated in Marseille (Cresson et al.
2014) and elsewhere in the Mediterra nean (Relini
et al. 2002) from stomach content analyses. The
integrative view provided by stable isotope analysis
confirmed that fishes belonged to the AR network
in spite of differences in feeding behaviors. Benthic
carnivorous fishes with sedentary habits, such as
Scorpaena spp. or Phycis phycis, are closely
dependent on AR production as they directly prey
on the small cryptic organisms of the ARs (Relini et
al. 2002, Cresson et al. 2014). In contrast, pelagic
piscivores with an extensive home range rely only
partly on AR resources (Leitão et al. 2008). Never-
theless, the isotopic ratios measured for all fish spe-
cies, including pelagic piscivores with low site
fidelity in reef structures, collected on the ARs of
Marseille demonstrated that both primary and sec-
ondary  production of the ARs supported the
increase in fish biomass observed since their
deployment (Rouanet et al. 2012).

Assessment of OM fluxes and comparison with
other artificial reef systems

Despite ARs being used worldwide, few studies
attempt to assess their whole trophic functio ning
(Kang et al. 2008, Daigle et al. 2013). With respect
to local specificities, their results are consistent with
those obtained in Marseille, and confirm the respec-
tive role of pelagic and benthic OM pathways in the
functioning of all AR systems. The importance of the
pelagic production as the main organic matter
source in ARs is supported by the general idea that
phytoplanktonic production is largely dominant in
the world ocean and supports trophic networks
even in coastal zones. This idea is reinforced by the
predominance of sessile filter feeders among the AR
fauna (Bombace et al. 1994, Moura et al. 2006, Nico-
letti et al. 2007, Cheung et al. 2010). The importance
of the filtering activity on ARs was previously
exploited to deploy artificial structures as ‘biofilters’
under fish farms or in eutrophised environments
(Angel & Spanier 2002). In oligotrophic Mediterran-

ean and tropical ecosystems, nanophytoplankton
dominates and could be more easily retained by fil-
ter feeders, as they mainly retain the predominant
fraction of POM (Coma et al. 2001, Grégori et al.
2001, Ribes et al. 2003). The use of picophytoplank-
ton as a food source by hard-bottom filter feeder
communities was also observed in Mediterranean
(Topçu et al. 2010) and in tropical rocky ecosystems
(Ribes et al. 2003). Due to the trophic plasticity of
filter feeders, the fraction of the planktonic OM sup-
porting an AR trophic network depends on the
nature of the environment (oligotrophic or eutro -
phic), the relative abundance of filter-feeding spe-
cies and POM composition.

Benthic primary production is also a source of the
OM fueling AR trophic networks. This pathway was
demonstrated using herbivore exclusion experiments
(Bulleri et al. 2000) and stable isotope analyses (Kang
et al. 2008). Kang et al. (2008) use ARs to restore a
current barren ground previously colonized by large
macroalgal beds and find an equal contribution of
benthic and pelagic OM to the trophic networks of
the artificial structures. In the Mediterranean, the
removal of limpets from ARs results in higher fila-
mentous algal cover, suggesting that these gastro -
pods strongly graze on ARs (Bulleri et al. 2000). How-
ever, these 2 studies were performed in shallow
environments, where benthic primary production is
high and macrograzers abundant. In Marseille, the
ARs are much deeper, their associated benthic pro-
duction lower and no macrograzers occur. Thus, in
shallow environments pelagic and benthic pathways
could be of a similar order of magnitude, while in
deeper environments, such as in Marseille, the pela -
gic pathway dominates.

Implications for future management of natural 
and artificial rocky substrates

In the context of global pressure on coastal eco-
systems and the extensive use of ARs as restoring
tools, the assessment of their trophic functioning is
a prerequisite for better management of artificial
structures. The results obtained from the Marseille
AR system could serve as a reference baseline to
apprehend the alteration of its trophic network in
terms of community changes. The ARs in the Bay of
Marseille are of recent origin, as their deployment
was completed in 2008. Long-term surveys of ARs
demonstrated that benthic communities, even if
always dominated by filter feeders, do change in
time, the first settling organisms being gradually
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replaced by others (Nicoletti et al. 2007). AR
deployment also influences the adjacent soft-
bottom ecosystems. Altered hydro dynamic condi-
tions, higher predation and higher waste production
by AR organisms lead to alteration of the nature
and composition of surrounding soft-bottom com-
munities (Danovaro et al. 2002, Cheung et al. 2010,
Dewsbury & Fourqurean 2010, Leitão 2013). Do
such alterations induce changes in trophic relation-
ships and AR functioning? Does nitrogen enrich-
ment of benthic primary production (Dewsbury &
Fourqu rean 2010) lead to increased herbivory?
Could these potential alterations change the rela-
tive importance of ‘pelagic’ and ‘benthic’ pathways?
Data from the present study and previous ones
(Cresson et al. 2012, 2014, Rouanet et al. 2012),
along with long-term monitoring of a system are
crucial in understanding the patterns of change in
AR trophic functioning.

Results from stable isotope analyses enabled un -
derstanding some of the mechanisms involved in the
ecological efficiency of ARs compared to the dead
matte ecosystem they were settled on (Fig. 6). By
enhancing local retention of pelagic OM and benthic
production, ARs clearly enhance bottom-up effects to
effectively produce high trophic-level organisms.
The conceptual model designed in the present study
(Fig. 5) offers one of the first integrated views of the
trophic relationships in an AR system. Up to now
relationships were assessed for one trophic level
only. For example, stomach contents of some fish
species demonstrated that they prey on AR fauna
(Steim le & Ogren 1982, Relini et al. 2002, Leitão et al.
2007, Castriota et al. 2012). Similarly, gastropod
exclusion confirmed the grazing of benthic primary
production on AR (Bulleri et al. 2000). But these stud-
ies could not assess what OM sources fuel the fish
preys, or what species consume grazers. The use of
stable isotope analyses allowed further understand-
ing of the whole trophic role of ARs, from OM
sources to consumers. The present study demon-
strated 2 pathways linking OM retention or produc-
tion to the secondary biomass production. This ‘bot-
tom-up’ effect of ARs (i.e. enhancement of primary
production and fluxes of matter up to high trophic
levels) is one of the reliable factors justifying produc-
tion as the mech anism supporting the biomass in -
crease ob served around ARs (Lindberg 1997, Leitão
2013). By enhan cing the production of fish species of
commercial interest, ARs can be considered as effi-
cient tools to sustain small-scale coastal fisheries,
even if this idea should also be supported by future
fisheries catch assessment.

Using the results of the present study as a base,
future work on AR functioning could be directed
towards a better assessment of the role of ARs in an
integrated management of coastal zones. One of the
objectives of ARs, as set up by the accepted defini-
tions, is that they must ‘mimic’ the features of natural
rocky substrates. A robust comparison of the trophic
functioning of natural and artificial reefs is thus
needed to confirm similar organization. Unfortu-
nately, few data dealing with the trophic functioning
of natural Mediterra nean reefs are available to per-
form such a comparison. A similar importance of the
pelagic pathway in natural reefs might be presumed,
as benthic filter feeders (such as gorgonians or
sponges) also predominate in natural reefs. Future
work on this topic is needed. Future work should also
allow the combination of qualitative data (such as the
data obtained in the present study) with quantitative
data such as fish biomasses, OM flux intensities or
fisheries catches. Combining qualitative and quanti-
tative approaches in AR trophic network ana lysis
would provide a basis for better understanding the
functioning of this ecosystem and defining  suitable
management policies to maintain artisanal fisheries.

The results obtained in this work demonstrate that
ARs enhance the amount of OM retained or pro-
duced locally and enhance secondary biomass pro-
duction. In the context of the attraction/production
debate raised by the use of ARs as a tool to support
small-scale fisheries, the results clearly demonstrate
that de ployment of ARs can enhance the biomass of
commercial fish species and thus may sustainably
support fisheries if well-managed. To this aim, future
work should include quantitative approaches (fish
biomass or fisheries catch assessment) and should be
dedicated towards understanding how ARs can be
included in the integrated management of coastal
zones, using both natural and artificial reefs.
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