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Abstract

This paper presents the LIUM open-source speaker diarization
toolbox, mostly dedicated to broadcast news. This tool includes
both Hierarchical Agglomerative Clustering using well-known
measures such as BIC and CLR, and the new ILP clustering
algorithm using i-vectors. Diarization systems are tested on
the French evaluation data from ESTER, ETAPE and REPERE
campaigns.

Index Terms: speaker diarization, broadcast news, open-source

1. Introduction

Speaker diarization, the “who spoke when” task, consists in an-
notating recordings with labels representing the speakers. This
task is performed without any prior information: neither the
number of speakers, nor their identities, nor samples of their
voices are available.

Since 2004, the state-of-the-art system for broadcast news
speaker diarization is composed of 5 steps. First, music and
jingle regions are removed using a Viterbi decoding. Next, an
acoustic segmentation followed by a Hierarchical Agglomera-
tive Clustering (HAC) splits and then groups the signal into ho-
mogeneous parts according to speakers and background. In this
step, each segment or cluster is modeled by a Gaussian distri-
bution with a full covariance matrix and the Bayesian Informa-
tion Criterion (BIC) is employed both as similarity measure and
as stop criterion. Then, a Gaussian Mixture Model (GMM) is
trained for each cluster via the Expectation-Maximization (EM)
algorithm. The signal is then re-segmented through a Viterbi
decoding. The system finally performs another HAC, using
the Cross-Likelihood Ratio (CLR) measure and GMMs trained
with the Maximum A Posteriori algorithm (MAP). This kind of
system obtained the best results at NIST RT’04 fall [1], ESTER
[2, 3], ETAPE [4] and, more recently, REPERE [5] evaluation
campaigns.

LIUM SpkDiarization' is an application dedicated to pro-
cessing radio and TV shows. It has been developed to provide
a ready and easy to use tool for the multimedia community.
LIUM SpkDiarization is also a toolbox which allows the de-
velopment of new diarization systems, either by creating scripts
from basic tools (segmentation, classification, Viterbi decoder,
etc.), or by adding new functionality directly in the source code.
LIUM _SpkDiarization was not developed from scratch. It has
evolved from a previous speaker segmentation tool, mClust, de-
veloped in C++ by LIUM for the French ESTER evaluation
campaigns in 2005 and 2008. As a Java-based descendant of
mClust, LIUM _SpkDiarization has adopted an internal architec-
ture very close to that of its ancestor. The first public version of
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LIUM _SpkDiarization was made available at the 2010 Sphinx
Workshop [6]. This paper presents a review of the tools in-
cluded in the toolkit, and describes the latest improvements.

In the next section, we present other diarization tools. Then,
we describe the choices made for this tool before describing
the diarization system for broadcast news, in section 3. The
single-show speaker diarization system is described in section
4, and the cross-show speaker diarization is reported in section
5. In section 6, we describe experiments performed on various
corpora and give results. Finally, section 7 describes a video
shot boundary detector to illustrate how this toolbox could be
employed in other fields.

2. Other diarization tools

Several toolkits distributed under open-source licenses are
available on the web. One of the oldest is the CMU Segmen-
tation tool which was released in 1997 [7]. It was developed
during the former NIST broadcast news evaluation campaign to
address specifically the task of diarization for automatic speech
recognition.

AudioSeg [8], under the GPL license, is a toolbox developed
by IRISA during the ESTER campaign in 2005. It includes
an audio activity detector, BIC/GLR or KL2 segmentation and
clustering tools, as well as a Viterbi decoder. Note that CLR-
based clustering is not available.

The speaker recognition library ALIZE [9] also includes
speaker diarization tools. Diarization is based on the E-HMM
method [10] in which segmentation and clustering are done it-
eratively and jointly. Performance is better when dealing with
meetings and phone conversations rather than broadcast news.

The speech recognition toolkit SHoUT includes a
speech/non-speech detector and a diarization tool. This tool
seems to be well adapted for recordings of meetings as shown
by the results reported in [11].

Recently, IDIAP published DiarTK [12] where clustering
and segmentation are based on the information bottleneck prin-
ciple. It was developed specifically for meetings recorded using
multiple distant microphones or microphone arrays.

3. Guidelines of the toolkit

LIUM _SpkDiarization is developed in Java to minimize de-
pendency problems with the various operating systems and li-
braries. This tool is distributed as one self-contained JAR
archive, which can be run directly, with no need of additional
third-party packages. Indeed, all the required packages are in-
cluded in the precompiled version, as well as models (UBM,
gender or speech/non-speech models).

LIUM SpkDiarization is a simple program for those who
only need to perform speaker diarization for their own applica-
tions (speech recognition, speaker recognition, multimedia in-
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dexing, etc.). The execution of the JAR archive calls upon the
speaker diarization method dedicated to broadcast news record-
ings. The acoustic parameters (MFCC) are computed directly
by the program using Sphinx4 (one of the included third-party
packages).

LIUM SpkDiarization is also designed to carry out re-
search. The toolkit is composed of elementary programs, such
as segment and cluster generator, decoder, and model trainers.
Fitting those elementary tools together in a shell script is an
easy way to develop a specific diarization system.

This toolbox can employ alien features. By default, the
tools read Sphinx MFCC files; however, it also reads HTK,
SPro files, as well as text files where each line corresponds to a
frame. Regarding speaker models, the toolkit has its own binary
file format but is also able to read ALIZE files.

LIUM SpkDiarization allows the management of a speaker
diarization which works with clusters of segments. A segment
is an object defined by the name of the recording it belongs to,
its start time in the recording, and its duration. These three val-
ues identify a unique region of signal in a set of audio record-
ings. The elementary programs that compose the toolkit are
able to work with a set of audio recordings. This way, mod-
els can be learnt from parts of recordings without having to cut
them, making cross-show diarization systems easy to develop
(see section 5).

4. Single-show diarization system

MFCC
computation
Viterbi

‘ BIC segmentation H BIC clustering H re-segmentation

ILP/i-vector
clustering

=

‘ CLR clustering | ‘ ";:Z;‘:z:gr |

CLR clusterii
Single-show diarization ‘ clustering

Cross-show diarization

Figure 1: Diarization steps

The proposed diarization system was inspired by the sys-
tem [13] which won the RT’04 fall evaluation as well as the ES-
TER evaluation in 2005. It was developed for transcription and
diarization tasks, and with the goal of minimizing both Word
Error Rate and speaker error rate (i.e. Diarization Error Rate —
DER).

Automatic transcription requires accurate segment bound-
aries.  Segment boundaries have to be set within non-
informative zones such as filler words. Indeed, having a word
cut by a boundary disturbs the language model and increases
the Word Error Rate; whereas the main objective of speaker di-
arization is to produce the minimum number of pure clusters,
each of which corresponds to only one single speaker.

Non-speech segments must be rejected to save computation
time in both tasks: in transcription, non-speech segments gener-
ate insertion of words and, in diarization, non-speech segments
make the speaker models less accurate.
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4.1. Diarization for speech transcription

This system is widely described in [6]. Only an outline is given
below:

1. The acoustic frames are composed of 13 MFCCs with coeffi-
cient Co, and feature normalization is not applied. In the two
last steps, the acoustic frames are composed of 12 MFCCs
(Cp is removed) as well as the first-order derivatives of those
coefficients.

2. The speaker segmentation is composed of two passes. The
first detects the instantaneous change points using General-
ized Likelihood Ratio (GLR) distance. The second pass over
the signal uses BIC distances between speakers in order to
fuse consecutive segments that are found to correspond to
the same speaker.

3. The Hierarchical Agglomerative Clustering merges the two
closest clusters at each iteration until the best BIC distance
is positive. In this step and in the previous one, speakers are
modeled by a Gaussian distribution with a full covariance
matrix.

4. A Viterbi decoding is performed to generate a new segmen-
tation using GMMs as speaker models. Cj is removed from
the features and first-order derivatives of the coefficients are
added.

5. A segmentation into speech/non-speech is obtained using a
Viterbi decoding in order to remove music and jingle re-
gions. The initial segmentation is less accurate if this de-
tection step is done before the speaker segmentation, like
most of the diarization systems do. The main reason is that
speaker segmentation cannot make correct decisions on the
2.5 seconds at the beginning and at the end of a segment.
This problem is exacerbated when the speech/non-speech
segmentation is done first because it generates many seg-
ments to cut.

6. The gender and bandwidth of clusters are detected using a
GMM over normalized frames as in CLR-like clustering de-
scribed below. The segment boundaries produced are not
perfect: for example, some of them fall within words. In
order to avoid this situation, boundaries are moved to low
energy regions. Long segments are also cut in order to yield
segments shorter than 20 seconds.

4.2. Diarization optimized for speaker clustering

Step 6 described above was not required in order to perform
an accurate speaker diarization, because only gender and band-
width information, as well as boundary location, are needed for
speech transcription. In the current case, another clustering step
is performed instead.

4.2.1. CLR-like Clustering

The second Hierarchical Agglomerative Clustering merges the
two closest clusters at each iteration until the similarity between
the two candidate clusters is positive. Most systems use the
CLR measure to estimate similarity between clusters [14], but it
has been shown that normalized CLR measure [15] gives better
results in most cases. The difference between CLR and normal-
ized CLR resides only in the denominators, which are the UBM
log-likelihood scores and the log-likelihood scores of the clus-
ters respectively. In this step, the first order derivative is added
to the 12 MFCCs (Cj is removed) and the features are normal-
ized: short-term windowed mean and variance are computed



to normalize the frame, and a feature warping normalization is
applied. Only the means of the Universal Background Model
(UBM) are adapted for each cluster in order to obtain the model
for its speaker.

4.2.2. ILP/i-vectors clustering

A new clustering algorithm in which the problem is solved as an
Integer Linear Programming (ILP) problem has been proposed
[16]. Experiments were carried out using i-vectors to model
and measure the similarity between clusters. This method is
now available in the LIUM _SpkDiarization toolbox.

The i-vectors is a state-of-the-art method in the field of
Speaker Verification [17]. The acoustic data of a speaker are
compacted into a low-dimension vector, which only retains the
relevant information about the speaker. This approach was first
adapted to 2-speaker diarization using the k-means algorithm to
find utterances of the two speakers within a phone call recording
[18].

In broadcast news, the number of speakers is unknown a
priori . The proposed method replaces the standard CLR-like
clustering step. According to an initial speaker segmentation,
an i-vector is extracted from each cluster using 19 MFCCs pa-
rameters completed with energy, their first and second order
derivatives, and a 1024 GMM-UBM. The N resulting i-vectors
are then normalized in an iterative process [19]. The clustering
problem consists in jointly minimizing the number K of cluster
centers as well as the dispersion of i-vectors within each cluster.
The value K € {1, ..., N}isto be automatically determined.

This clustering problem is expressed as an ILP problem,
where the objective solving function (eq. 1) is minimized sub-
ject to constraints:

Minimize
N 1 N N
Dower 20> dk a1
k=1 k=1j=1

Subject to
xr; € {0,1} VE, Vi (1.2)
N
> ak; =1 Vi (1.3)
k=1
:L'k,]' — xk,k S 0 VJ (1.5)

Where x5 (eq. 1) is a binary variable equal to 1 when the
i-vector k is a center. The number of centers K is implicitly
included in equation 1, indeed K = Zszl Zk,k. The distance
d(k,j) is computed using the Mahalanobis distance between
i-vectors k and j. D is a normalization factor equal to the
longest distance d(k, j) for all k£ and j. The binary variable
Tk,; is equal to 1 when the i-vector j is assigned to the cen-
ter k. Each i-vector j will be associated with a single center
k (eq. 1.3). The i-vector j associated with the center k (i.e.
Zk,; = 1) must have a distance d(k, j) shorter than a threshold
0 empirically determined (eq. 1.4). Equation 1.5 ensures that
the cluster k is selected if an i-vector is assigned to cluster k.

5. Cross-show diarization system

The recently introduced cross-show speaker diarization [20, 21,
22] aims to expand the diarization task to a broader context,
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where speakers appearing in different recordings of the same
show (the cross-show speakers) will always be identified in
the same way in every recording. Each show from a collec-
tion is first individually processed with the single-show speaker
diarization system, as described in section 4. Then it is pro-
cessed collectively using a CLR or ILP clustering. Experiments
showed that ILP clustering provides a better speed/accuracy
trade-off [22].

6. Single- and cross-show diarization
evaluation

6.1. Data
Evaluation has been performed on three different corpora:

e The test corpus of the ESTER 22 evaluation campaign is
composed of 26 broadcast news recordings coming from
seven French radio stations. Most of the corpus contains
prepared speech. 15 hours of the shows are fully anno-
tated.

e The test corpus of the ETAPE® evaluation campaign is
composed of 15 TV shows recorded from two French
TV channels and one French radio station. Most of the
corpus contains spontaneous speech or very spontaneous
speech. 7 hours of the shows are fully annotated.

e The test corpus of the REPERE 2012* evaluation cam-
paign is composed of 3 hours of data drawn from 28
TV shows recorded from French TV channels BFM and
LCP. The corpus is balanced between prepared speech,
with 7 broadcast news from French radio stations, and
spontaneous speech, from 21 political discussions or
street interviews. Only a part of the recordings are an-
notated, giving a total duration of 3 hours.

6.2. Evaluation metrics

The Diarization Error Rate (DER) is the metric used to measure
performance. DER was introduced by the NIST as the fraction
of speaking time which is not attributed to the correct speaker
using the best match between references and hypothesis speaker
labels. The scoring tool we used was developed by the LNE? as
part of the ETAPE and the REPERE campaigns.

The LNE evaluation tool computes two different error rates.
The single-show DER is computed considering each show inde-
pendently. In this context, the overall DER corresponds to the
mean of individual DERs (one per show), weighted by the du-
ration of each show. The cross-show DER is computed over all
the shows, taking into account multiple appearances of the same
speaker in several shows. In order to assess the cross-show di-
arization task, the same label must necessarily identify speakers
appearing in several shows.

6.3. Results and comments

Single- and cross-show speaker DER on the three test corpora
are reported in Table 2. Both CLR and ILP clustering methods
were tested. The cross-show CLR clustering was performed
using the single-show CLR segmentations, and the cross-show
ILP clustering with the single-show ILP segmentations.

’http://catalog.elra.info, reference ELRA-S0338
3http://www.afcp-parole.org/etape—en.html
‘http://www.defi-repere.fr

5The French National Laboratory of Metrology and Testing



distance (set 2)
distance (set 3)

Tools Feature Description
MFCC format Sphinx, HTK, SPRO, text
normalization mean (+variance) by show, cluster, segment or in a sliding window, feature mapping
derivative first and/or second order with or without energy, Sphinx or SPro formula
frames discarding | energy threshold or bi-Gaussian on energy
Segmentation distance (set 1) GLR or BIC using Gaussian (full or diagonal)
distance (set 2) KL2, GD[13] or ICR[23] using diagonal Gaussian
change points recursive or local minimum search form left to right
HAC distance (set 1) KL2 using diagonal Gaussian or GMM [24]

CLR, normalized CLR[15] or T-test [25] using GMM
BIC using Gaussian (full or diagonal)

ILPILP/i-vector

BIC penalty factor | global log(NV), local log(n; + n;), square root BIC [26]
Other clustering E-HMM 2-speakers E-HMM segmentation and classification with MAP adaptation [10]
Meeting based on IDIAP/ICSI meeting method (experimental) [27]

model computed using ALIZE 9]

Training EM iteration control minimum and maximum iterations
minimum gain of likelihood per iteration

variance control ceiling and flooring
Training MAP algorithm standard, linear, Variable Prior MAP [28]

adaptation of weight and/or mean and/or variance
Viterbi model pre-computed GMM only

penalty for each HMM state, set the loop and exit penalties

duration n states minimum (default n = 1), change only to multiple-of-n states
Data model 8 GMM s for speech/non-speech

model for i-vector

3 GMMs for silence
512-components GMM
4x128-components GMM for gender / bandwidth detection

Table 1:

Because the segmentation is unchanged during the cluster-
ing steps, False Alarms (FA) and Missed Detections (MISS)
obtained on a corpus remains the same, regardless of the clus-
tering method or the evaluation metric. The values are as fol-
lows: 1.58% FA and 0.98% MISS on the ESTER 2 test cor-
pus; 4.10% FA and 4.24% MISS on the ETAPE test corpus;
1.10% FA and 3.83% MISS on the REPERE 2012 test corpus.

It is important to note that the systems were not specifically
tuned according to the test corpora, and better DER could be
obtained by doing so. Single- and cross-show CLR thresholds
were set to 0.35 and 0.80 respectively. Single- and cross-show
ILP distance thresholds were set to 100 and 60 respectively.

[ Type Corpus [ Single-show DER  Cross-show DER |
ESTER 2 11.27 % 20.43 %
CLR ETAPE 21.57 % 27.79 %
REPERE 17.19 % 23.95 %
ESTER 2 8.35 % 17.51 %
ILP ETAPE 24.49 % 26.31 %
REPERE 15.46 % 19.59 %

Table 2: Single- and cross-show DER on the ESTER 2, ETAPE
and REPERE 2012 test corpora.

7. Extension to computer vision tasks

Recent studies show that there is quite a large similarity be-
tween audio and video tasks, especially for solving several iden-
tification and segmentation problems. In [29], the authors show
that successful speaker identification techniques are also very
good for face identification. Furthermore, in [30], the authors
show that speaker segmentation techniques using the general-
ized likelihood ratio (GLR) and the Bayesian information crite-
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Tools and features of the LIUM_SpkDiarization v8.0

rion (BIC) can also be used for other segmentation tasks such as
video shot boundary detection or TV program boundary detec-
tion. In this work, we give the example of shot boundary detec-
tion to show how easily LIUM _SpkDiarization can be extended.
Shot boundary detection (SBD) is a well-known segmentation
process. It aims at breaking down the massive volume of video
into smaller chunks. Quite a lot of approaches have been pro-
posed in the literature in the last two decades [31]. The main
ideas behind their assumption is that 1) shots, similarly to audio
turns, are homogeneous segments, and 2) color features simi-
larly to MFCC features, can be modeled by Gaussian distribu-
tions.

Because of this similarity, the implementation of SBD in
LIUM _SpkDiarization is straightforward. Although the visual
feature extractor module is missing, LIUM_SpkDiarization has
a good option that allows the user to use external features, and
in various file formats. This option makes the integration of new
tasks very simple. Consequently, results obtained by our SBD
implementation are equivalent to the best state-of-the-art sys-
tems (F-measure > 95% on TV Broadcast news and debates).

8. Conclusions

This paper presents a diarization toolkit mostly dedicated
to broadcast news recordings. Developed by the LIUM,
this toolkit is published under the GPL license. =~ When
used for broadcast news diarization, it represents the state-
of-the-art in terms of performance; in addition, only mi-
nor work is required in order to reuse its components
for other tasks.  The LIUM_SpkDiarization toolbox, as
well as its documentation and some examples, is avail-
able at: http://www-lium.univ-lemans.fr/en/
content/liumspkdiarization.
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