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Improving recognition of proper nouns in ASR through
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Abstract

Accurate phonetic transcription of proper nouns can be an important resource for
commercial applications that embed speech technologies, such as audio indexing
and vocal phone directory lookup. However, accurate phonetic transcription is
more difficult to obtain for proper nouns than for regular words. Indeed, pho-
netic transcription of a proper noun depends on both the origin of the speaker
pronouncing it and the origin of the proper noun itself.

This work proposes a method that allows the extraction of phonetic transcrip-
tions of proper nouns using actual utterances of those proper nouns, thus yielding
transcriptions based on practical use instead of mere pronunciation rules.

The proposed method consists in a process that first extracts phonetic tran-
scriptions, and then iteratively filters them. In order to initialize the process, an
alignment dictionary is used to detect word boundaries. A rule-based grapheme-
to-phoneme (G2P) generator (LIA_PHON [1]), a knowledge-based approach (JSM
[2]), and a Statistical Machine Translation (SMT)-based system [9] were evalu-
ated for this alignment. As a result, on the ESTER 1 French broadcast news
corpus, we were able to obtain a decrease of the Word Error Rate (WER) on seg-
ments of speech with proper nouns, without negatively affecting the WER on the
rest of the corpus.
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1. Introduction

This work focuses on an approach for enhancing automatic phonetic transcrip-
tion of proper nouns.

Proper nouns constitute a special case when it comes to phonetic transcription,
at least in French, which is the language used for this study. Indeed, there is much
less predictability in how proper nouns may be pronounced than for regular words.
This is partly due to the fact that, in French, pronunciation rules are much less
normalized for proper nouns than for other categories of words: a given sequence
of letters is not guaranteed to be pronounced the same way in two different proper
nouns.

The lack of predictability also finds its roots in the wide array of origins proper
nouns can come from: the more foreign the origin, the less predictable the pro-
nunciation, with variations covering the whole range from correct pronunciation
in the original language to a Frenchified interpretation of the spelling.

The high variability induced by this low predictability is a source of diffi-
culty for Automatic Speech Recognition (ASR) systems when dealing with proper
nouns. For an ASR system, being confronted with a proper noun pronounced us-
ing a phonetic variant very remote from any variant present in its dictionary is a
situation similar to encountering an unknown word, if the language model cannot
compensate for the acoustic gap. Such errors can have a strong impact on word
error rate (WER): according to a comparative study of out-of-vocabulary impact
of words in spontaneous and prepared speech [10] the recognition error on an out-
of-vocabulary word propagates through the language model to the surrounding
words, causing a WER of about 50 % within a window of 5 words to the left and
to the right (again, in French). This highlights that the influence of the quality
of the phonetic dictionary of proper nouns extends further than just the recogni-
tion of proper nouns themselves. It is particularly true in the case of applications
where proper nouns are frequently encountered, such as transcription of broadcast
news. However, aside from its potential impact on WER, accurate recognition of
proper nouns can also be very important—independently of the frequency of their
occurrence—in other contexts such as in the case of automatic indexing of multi-
media documents, or transcription of meetings.

Setting up a phonetic dictionary of proper nouns (or any other class of words)
requires grapheme to phoneme (G2P) conversion, be it manual or automatic. Au-
tomatic G2P conversion techniques are widely studied in the literature. The au-
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thors of [6] present an overview of techniques in 1999 and propose to classify
the G2P systems into two categories: the knowledge-based approaches, which
use existing linguistic knowledge to derive pronunciations, and the data-driven
approaches, which derive pronunciation models from acoustic data. Knowledge-
based approaches are further divided between formalized (e.g. rule based) and
non-formalized (e.g. dictionary lookup). [11] proposes a dictionary look-up strat-
egy (non-formalized knowledge-based). The authors of [1, 12, 3] present rule-
based knowledge-based techniques. The authors of [3] propose a rule-based strat-
egy that integrates different type of features (orthographic, syllabic, morpholog-
ical, ...) to describe the rule context. A large variety of knowledge-based tech-
niques are proposed in the literature: [13, 14, 15, 7] propose local classification
strategies and [16, 17, 2] propose some pronunciation-by-analogy approaches.
Many data-driven (acoustic-based) strategies can also be found in the literature
([18, 19, 20, 21]).

We propose an acoustic-based method to build a dictionary of phonetic tran-
scriptions of proper nouns by using an iterative filter to retain the most relevant
parts of a large set of phonetic variants, the latter being obtained by combining
three G2P methods with extraction from actual audio signals [22].

In this work for French, we compare three different G2P systems to initialize
the process, and we use a two-level iteration to converge on the best filtered dic-
tionary. The iterative filter is applied in order to reduce noise by invalidating the
variants that are deemed irrelevant because never used, and the ones that are found
to be too prone to generating confusion with other words.

First, related works will be presented. After proposing an overview of the
method, we will focus on the grapheme-to-phoneme systems used to initialize
the process. In the next part, the proposed method will be described, and before
concluding, experiments and results will be introduced and commented on. The
intermediate (before filtering) and final sets of phonetic transcriptions are evalu-
ated in terms of Word Error Rate (WER) and Proper Noun Error Rate (PNER),
computed over the corpus of French broadcast news from the ESTER evaluation
campaign [23].

2. Related works

Many G2P systems are presented in the literature. Several names are attributed
to this task: grapheme-to-phoneme conversion [24, 17], phonetic pronunciation
modeling [25], letter-to-sound translation [26], letter-to-phoneme conversion [27,



O J o U W

AN TTUIUTUITUTUTUTUTOTOTE BB DD B DDASEDNWWWWWWWWWWNNNNNNONNNONNNNR R RRR PR PP
O™ WNFROWOJdNT D WNRPOW®O-JIAAUTDRWNR,OW®OW-JdNTIBRWNRFROWO®OW-JNU ™ WNROWOW-10U & WN R O WO

7], phonetic baseform generation [28, 29], phonetic transcription [30], text-to-
phoneme mapping [31], among others.

The simplest strategy to get phonetic transcriptions of a word is the dictionary
look-up, which consists in searching in a human-made phonetic dictionary. Mak-
ing such a dictionary is costly and time-intensive. We have at our disposal the
BDLEX dictionary [11]. This dictionary has the advantage of providing a very
complete and accurate set of transcriptions for each word it contains. However, it
only contains a limited number of entries, and more importantly for our case, it
does not contain any proper noun.

Rule-based conversion techniques have been developed in order to overcome
the kind of issues mentioned above. A rule-based phonetic transcription system
generate the possible chains of phones by relying exclusively on the spelling of
words. It offers the advantage of providing phonetic variants even for words for
which no speech signal is available. In the case of proper nouns, it generates the
most “common-sense” variants, i.e. the ones which people would use when they
have no a priori knowledge of the pronunciation of a particular proper noun. It
would be prohibitively difficult to establish the complete set of rules needed to
automatically find all the possible phonetic transcriptions of every proper noun.

In order to do so, an ideal automatic system would have to be able to detect
not only the origin of the proper noun, but also the various ways people might
pronounce this noun according to their own cultural and linguistic idiosyncrasies.
Unfortunately, both tasks are still open problems.

In the rest of this section, we will focus on a third approach: data-driven G2P
conversion systems based on the use of acoustic data. A thorough description of
the other methods can be found in [17] and in [2].

[32] and [33] use the A* algorithm to find the best phonetic transcriptions
from a set of acoustic representations of words. They use a heuristic function to
find the phonetic transcription that maximizes the likelihood from a set of acous-
tic representations. This method is based on the assumption that one phonetic
transcription only is enough to represent a word.

[21] improved that approach by computing that heuristic from the best path of
every acoustic representation. Unfortunately, the heuristic is too optimistic in con-
ditions of high inter-utterance variability. [34] proposes a method to suppress this
problem with the introduction of a pre-selection strategy which restricts search to
a confusion network built from heuristics. [35] develops a method that consists in
searching the £ best phonetic transcriptions from a set of extracted pronunciations.
Two decision criteria are tested. The first criterion is based on transcription occur-
rence frequency, and the second on the maximization of likelihood. The method

4
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that gives the best results is the one based on likelihood maximization. For each
acoustic realization, the n-best list (with n set experimentally to 50) is constructed
and constrained by the likelihood maximization of the union of those lists. [36]
uses the first criterion: the selection of the & most frequently extracted phonetic
transcriptions.

The authors of [30] propose a beam search approach with a two-level (in-
tra-arc, arc) pruning criteria. At least 10 samples are needed to get a reason-
able (between 5 and 10%) Phoneme Error Rate (PER). The PER is the average
edit distance between the found phonetic transcription and the reference phonetic
transcription.

[20, 37] develop a method based on an acoustic phonetic decoding for the
addition of words to the personalized vocabulary of their users. To do this, users
have to repeat one or two times every word they want to add to their lexicon.
[38, 29] describes an almost similar acoustic-phonetic decoding system, which
requires the user to repeat the various words to phonetize. Every user has to
pronounce twelve different proper nouns and has to call 10 times from different
phones (cellular and landline) and in several different acoustic environments (hall,
cafeteria, ...). The decoding strategy is based on the combination of speaker-
independent acoustic models and a language model that represents the transition
probabilities between various phonemes.

The work presented in [16] is based on the use of a bi-directional n-gram joint
sequence model. This model can be used to get a phonetic transcription of a word
thanks to its spelling or by using an acoustic representation of it.

In this part, we only focus on G2P acoustic data-driven strategies. Many more
G2P methods are compared in [2] on various corpora in English.

3. Overview of the proposed method

We propose a strategy that allows the extraction of phonetic transcriptions of
proper nouns from utterances. It is a multi-step, iterative process.The first step
consists in isolating portions of signal corresponding to proper nouns, using the
textual transcription of the audio and a forced alignment to get word boundaries.
During our study, we noticed that the dictionary used to perform this initialization
step had a great influence on our results. The use of bad phonetic transcriptions
results in boundary detection errors. Three different G2P techniques were com-
pared for this study: a rule-based phonetic transcription generator (LIA_ PHON
[1]), a Joint-Sequence Model based method (JSM [2]), and a Statistical Machine
Translation based grapheme-to-phoneme converter (SMT [9]).
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Portions of the speech signal assumed to be corresponding to proper nouns are
then extracted and fed to an APD (Acoustic Phonetic Decoding) system to obtain
their phonetic transcription. Thus, proper nouns which are present several times in
the corpus potentially get associated with several distinct phonetic transcriptions.
APD yields a high number of phonetic transcriptions per proper noun (specific
figures for our experimental corpus can be found in section 8.1). However some
of the extracted transcriptions may be flawed: often, some phonemes of neigh-
boring words are added or deleted at the end or at the beginning of the phonetic
transcription, and some wrong phonemes are inserted in noisy conditions. Also,
the high number of transcriptions increases the risk of generating confusion with
other words. Proper nouns could erroneously appear in the ASR output instead of
words from other categories. Therefore, it can negatively impact the quality of the
decoding for the rest of the corpus. In order to avoid these problems, the result of
the extraction is filtered to discard unfit phonetic transcriptions.

The proposed method for filtering is iterative: the filtered dictionary of each
iteration is used again to carry out the alignment step, and the process starts again.
This process is repeated until two consecutive filtered dictionaries are exactly the
same. At least one phonetic transcription of each proper noun is always kept in
the proper noun dictionary (i.e. there is no out-of-vocabulary word in the ASR
lexicon). The method was trained and evaluated using broadcast news in French
composed of French, European and world news reports. These data contain a high
number of foreign journalist names.

4. Initial dictionary generation

4.1. Rule-based generation of phonetic transcriptions

The rule-based generator we used is LIA_PHON [1]. LIA_PHON is available
under the GPL license. It participated in the ARC B3 evaluation campaign of
French automatic phonetizers, in which phonetic transcriptions generated by the
systems were compared with phonetizations made by human experts. This cam-
paign was held in 1997, and results were published by [39] in 1998. Error rate
was calculated according to the same principle as for the classical word error rate
used in speech recognition. Compared to human-made phonetic transcriptions,
99.3% of the transcriptions generated by LIA_PHON were correct (for a total of
86938 phonemes) (This measure is computed at the phone level). However, re-
sults reveal that transcription errors were not distributed evenly among the various
classes of words: erroneous transcription of proper nouns represented 25.6% of
the errors generated by LIA_ PHON even though proper nouns only represented

6
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5.8% of the test corpus. This reflects poorer performance by LIA_PHON on this
class of words.

4.2. Data-driven conversion techniques

In this section, we describe a G2P system based on the use of Joint-Sequence
Models (JSM) and a conversion technique based on the use of a Statistical Ma-
chine Translation (SMT) system. Both these systems need a bitext corpus for the
training step.

4.2.1. Bitext corpus format for data-driven methods

To convert graphemes to phonemes, a bitext associates sequences of letters
with sequences of phonemes. Table 1 shows examples of two representations of
the bitext corpus, denoted by A and B. In representation A, the sequence of letters
corresponds to a word. In representation B, the sequence of letters corresponds to
a group of words. A symbol is added to mark the boundary of each word and each
phonemic representation of the words. This representation allows to differentiate
inter- and intra-word influence. In order to build a bitext corpus for representation
B, every sequence of words of the training corpus between two fillers (silence,
music, laughter, hesitation, ...) is aligned using the baseline acoustic models and
the baseline dictionary. Our baseline dictionary contains variants that take into
account the interword coarticulation influence (liaisons in French). Indeed, we
hypothese that the influence of a word on the pronunciation of its neighbors is
negligible when they are separated by a filler. Representation B includes word
boundaries within each sequence using a dedicated marker symbol.

T mTmmmEEEEEEm—_————— ‘\ '/- ------------------------------- ‘\
{ Representation A : I Representation B :
I 1! [
H des ——> de H i !
1 b S P . 1
| Jeunes ——> ze@n ! ! des }{jeunes ) filles) —> {de ){ zeen }(fij) H
. . I 777777 N e P - NSe—” N N s
: filles —> f£fij : 1 :
I ! I
1 —_—> 8 1 TN et N ~ TN ITITIINSTTIN
1 un ® : 1 ‘un vieil ;i homme } ——> { & !vjej; om :
i RN e ATTE . et ANE ) AT
| vieil — > vjej b !
I 1! [
1 homme ——> om 11 ]
\ VAR ’
N - N o ——————————————— -

Figure 1: Examples of representations A and B of the bitext corpus



O J o U W

AN TTUIUTUITUTUTUTUTOTOTE BB DD B DDASEDNWWWWWWWWWWNNNNNNONNNONNNNR R RRR PR PP
O™ WNFROWOJdNT D WNRPOW®O-JIAAUTDRWNR,OW®OW-JdNTIBRWNRFROWO®OW-JNU ™ WNROWOW-10U & WN R O WO

4.2.2. Joint-Sequence models (JSM)

This system is a data-driven conversion system, available under the GPL li-
cense. The system is based on the idea that, given enough examples, it should be
possible to predict the pronunciation of unseen words, purely by analogy. The use
of joint-sequence models to convert graphemes to phonemes [2] will be denoted
by JSM in the rest of this article. JSM being a data-driven conversion system
means that we have to give it pronunciation examples in order to train it. Training
takes a pronunciation dictionary and creates new model files successively, start-
ing with unigram models and up to 6-gram models. Model files can then be used
to transcribe words that were not in the dictionary. The fundamental idea of joint
multigram model is that for each word, its orthographic form and its pronunciation
are generated by a common sequence of graphones. A graphone, or grapheme-
phoneme joint multigram is a pair ¢ = (g, ¢) € @ C G* x ¢* of a letter sequence
g and a phoneme sequence ¢ of possibly different length. G represents all the
letters of the alphabet, ¢ represents the inventory of phonemic symbols, () repre-
sents the inventory of graphones. For example, the pronunciation of “jeunes” may
be regarded as a sequence of three graphones:

“jeunes” j eu nes
30en 3 & n

The procedure for having the alignment between graphemes and phonemes
is described in [8]. The joint probability distribution p(y, g) is modeled using a

standard M -gram:
L+1

p((hL) = H p(QilQiflv e QzeM+1) (1)

i=1

Phonetic transcriptions are then obtained from words by searching the most

likely graph sequence matching the given spelling and projecting it onto the phonemes.

Because computing time on representation B is very expensive using JSM, it
is trained only on representation A.

4.2.3. Grapheme to phoneme conversion using Statistical Machine Translation
(SMT)
We proposed a method in [9], based on the open source Moses toolkit [40] to
convert graphemes to phoneme sequences.
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A Statistical Machine Translation system (SMT) is used to transform text from
a source language into a target language. The training step needs a data corpus
which is composed of bitext data: source language sentences associated with their
translation in the target language.

The SMT system is based on the Moses toolkit. This toolkit is commonly used
to translate data in which the elementary unit is the word in both the source and
target parts.

The training of a grapheme-to-phoneme translation model is similar to the
training of a translation model as described in the Moses documentation.

SMT models. First, the bitext corpus has to be aligned at word level in both direc-
tions (source to target and target to source). The phrase pairs are extracted using
some heuristics known as diag-grow-final which start from the intersection of the
two alignments and then adds additional alignment points. After extraction, the
phrase pairs are scored. A standard translation model contains 5 different scores,
namely direct and inverse phrase translation probabilities, direct and inverse lexi-
cal probabilities and a phrase insertion penalty (always set to e'). Another compo-
nent of a standard SMT system is the lexicalized reordering model. A distortion
model is a model that allows phrase (sequence of words) permutation. As pre-
sented in figures 2 and 3, this model takes into account three different features
corresponding to three kinds of reordering, namely monotone (phrase pairs are
adjacent and in the same order), swap (phrase pairs are adjacent and in the reverse
order), and discontinuous (the phrase pairs are not adjacent). For each phrase pair,
the relative frequency of each kind of reordering is calculated (a smoothing tech-
nique is applied to avoid zero probabilities for unseen orientations). The last main
component of a SMT system is the language model which is trained on the target
side of the bitexts and all available monolingual data in target language.

Figure 4 shows how the SMT is learned and used for the translation of graphemes
to phonemes. We trained a 4-gram language model composed of phonemes learned
from a phonemic forced alignment of the ESTER 1 training corpus. The bitext
corpus is used to produce a translation model. However two training strategies
are proposed: the first one corresponds to the standard Moses training framework
based on the maximization of BLEU [42]. The second, based on the Levenshtein
metric, minimizes insertion, deletion, and substitution errors of phonemes.

BLEU score. The BLEU score is commonly used for the optimization in order
to have the best translation system according to this measure. Training reserves
3% of the corpus for optimization of the parameters according to the BLEU score.
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e e e e e e e e e e e e e Trom/ng
7 Bitext corpus \
! 1
: Source: graphemes Target: phonemes :
| T e e o
: r\des -'jeunes "fllles, lde s 3oen flj ) :
,,,,,,,,,,,,,,,,,,,,,,,, NN
1 . P -
: .un HVlell "homme : " 3 i VJaj u om 0 :
\-_;___’___'__7._ __________ X;:-__;_;J
. . LM
Training ..
Training
. i i Language Model
Translation Model Dlsfomqn Model gvag
(Disabled in our case) (Phonemes)

Figure 4: Using SMT for grapheme-to-phoneme translation

Experiments show that the best score (in terms of WER computed over our de-
velopment corpus) is obtained by using a distortion model for representation A,
while for representation B, the best score is obtained without a distortion model.
Weights of the different models where trained using the Minimum Error Rate
Training ([41]).

Levenshtein score. For our task, we decided to try using a normalized Levenshtein
edit distance for parameter optimization.

At the end of a training iteration, 3-best phonetic transcriptions for each train-
ing example (sequence of letters) are generated using the current translation model.
When using the Levenshtein score optimization, we only optimized the five weights
of the translation model (the distortion model was disabled). Assuming that
we want to convert a sequence of graphemes g to a sequence of phonemes p,
those weights are the phrase translation probability ¢(p|g), the lexical weighting
lex(p|g), the phrase translation probability ¢ (g|p), the lexical weighting lex(g|p),

11
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and the phrase penalty.
The sum of the normalized Levenshtein measures, .5, is computed between the
phonetic transcriptions and the references (equation 2).

d(pg,re)
maxlpn, 1., )

S = Zlog(l —min(Vn € [1, 3]

eck

) 2)

where p” is the phonetic transcription n of the example e. As stated before, we
consider the 3-best phonetic transcriptions, thus n vary from 1 to 3. d(p”,r.) is
the edit distance of Levenshtein of the phonetic transcription p., with . the refer-
ence phonetic transcription for example e. F is the set of the generated phonetic
transcriptions. [,» is the length of the phonetic transcription p; of the example e
and [,_ is the length of the reference phonetic transcription (r.). Every log argu-
ments are floored at 10~7 to avoid that just one bad phonetic transcription could
impact the measure of the entire database.

Until getting the lowest S over all the training examples, a simplex framework!
is used to tune the model parameters.

When using the Levenshtein optimization, the language model weight is set to
0.1 and the word penalty weight is set to 0.

For the task of grapheme-to-phoneme conversion, the best results were ob-
tained by using the Levenshtein optimization and representation B. Learning time
on our training corpus (ESTER 1 Training corpus, see section 7.1 for details) is
about 13 times more for JSM (175.5 hours) than for SMT (13.5 hours).

5. Extraction of phonetic transcriptions using acoustic-phonetic decoding

5.1. Method

In order to enrich the set of phonetic transcriptions of proper nouns with some
less predictable variants, we gather actual utterances of proper nouns by actual
people. This process relies on an acoustic-phonetic decoding system (APD),
which generates a phonetic transcription of the speech signal.

In a corpus consisting of speech with a manual word transcription, portions
of the speech signal corresponding to proper nouns are extracted. They are then
fed to the APD system to obtain their phonetic transcription. Since the phonetic
decoding results of various utterances can be different, proper nouns which are

IThanks to the Condor toolkit [43]
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present several times in the corpus potentially get associated with several different
phonetic transcriptions each.

Speech signal + Textual transcription with mulfi-word segments

wﬁg'-w'ww»uw i R ”‘~"W*WWWWMMWWMWWWWMt\“.\\u\k\mm»v -
ron \. /,/'_\‘ N\
L _lollelailolieln @[5/91@11 Jl@l\;le_@/ ) lielaile @@@ ol(elailo]@la)

G2P* > tgz::: Hy‘fﬂ‘l Phonetic transcriptions

Joe - |dsol of proper nouns
*: LIA_PHON, SMT, or JSM i
Time Align <

\
/’ Extracted phonetic \

I’ transcriptions
S| (- —> APD —+>  louis - |lwes|
Joaours 'l Joe - |d3ou]
\

Louis - [luwis|

‘\ Phonetic dictionary  /
M. _ of proper nouns__ .

Language . Acoustic
Model Dictionary Model

Language model and dictionary contain phonemes instead of full words

Figure 5: Use of the acoustic-phonetic decoding system

5.2. Proper noun boundaries

As explained above, the first step consists in isolating the portions of signal
corresponding to proper nouns using word transcription. However, in the manual
transcription we used, words were not aligned with the signal. Start and end
times of individual words were not available; only longer segments (composed of
several words) had their boundaries annotated. Therefore, the start and end times
of each word of the transcription had to be determined by aligning the words with
the signal, using a speech recognition system (see figure 5 — “Time Align” step).

The phonetic transcriptions used for proper nouns during this forced alignment
were provided by three different G2P systems (see figure 5 — “G2P*” step).

In figure 5, we have two different boxes that contain phonetic transcriptions.
The first one represents phonemes that we get directly by using one of our three
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different G2P systems (LIA_PHON, SMT, or JSM). The second box represents the
phonetic transcriptions that we get from the signal, at the output of our Acoustic
Phonetic Decoding system.

5.3. Effect of inaccurate boundary detection

Because phonetic transcription is not very reliable using these three different
G2P systems, boundaries of proper nouns are not very accurate. Portions of signal
detected as proper nouns might overlap with neighboring words. As a result,
when applied to such portions of signal, the APD system might generate erroneous
phonemes at the beginning and/or at the end of the proper nouns, which might in
turn introduce errors when the flawed phonetic transcriptions are later used for
decoding.

5.4. APD based phonetic transcription

When boundaries of the proper nouns have been determined, APD is applied
to the corresponding portions of the signal. The decoding path gives a series of
phonemes considered as the phonetic transcription of the proper noun.

As noted in [30], unconstrained phonetic decoding does not allow the system
to obtain reliable phonetic transcriptions. Our own experiments lead us to the
same conclusion. The use of a language model allows for some level of guidance
for the speech recognition system: it does so by minimizing the risk of having
phoneme sequences with a very low probability appear in the transcription results.
We set constraints by using tied state triphones and a 3-gram language model as
part of the decoding strategy, to generate the best sequence of phonemes. While
this setup is close to a speech recognition system, the dictionary and language
model contain phonemes instead of full words. The trigram language model was
trained using the phonetic dictionary used during the 2005 ESTER evaluation
campaign [44]. It contains about 65,000 lexical entries of words, and was gener-
ated using BDLEX and LIA_PHON. Only the words which were not part of the
BDLEX corpus were phonetised automatically using LIA_PHON. Words which
were identified as proper nouns were deleted from this dictionary before learning
our 3-gram language model for phonemes.

6. Filtering of phonetic transcriptions

6.1. Motivation

The extraction of phonetic transcriptions for utterances yields an average of 6
phonetic transcriptions per proper noun in our experiments (complete results for
our experimental corpus can be found in section 8.1).

14
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However, as stated in the previous section, some of the extracted transcriptions
may be flawed. Also, the high number of transcriptions increases the risk of some
phonetic transcriptions of proper nouns being erroneously used to decode words
of another type. Therefore, it can negatively impact the quality of the decoding for
the rest of the corpus. Given that the number of occurrences of the other categories
of words is expected to be much higher than the number of occurrences of proper
nouns, there is a risk of seeing any gain in performance for proper nouns being
outbalanced by a negative impact on the rest of the corpus and on the global WER.
The goal of this filtering is to detect and remove the phonetic variants of proper
nouns that are the most likely to generate confusion with other words.

6.2. Iterative filtering

In order to minimize the risk of negatively affecting the global WER, it is
desirable to filter the set of phonetic transcriptions and keep only the most appro-
priate. We propose an iterative filtering method to select only those transcriptions
deemed to be reliable enough. We have already proposed a different approach to
select phonetic transcriptions in previous work [45]; however this early attempt
was rendered impractical because of its execution time which was directly pro-
portional to the number of extracted phonetic transcriptions. For a proper noun
present in s segments, with v phonetic transcriptions, it was necessary to decode
v X s segments to validate or invalidate the overall set of phonetic variants for this
proper noun.

In the present work, we have managed to detect and remove phonetic variants
of proper nouns generating confusion with other words by decoding the devel-
opment corpus using the newly built phonetic dictionary (as well as a separate
phonetic dictionary for all the other categories of words, of course). This decod-
ing is unconstrained, with no forced alignment.

Any phonetic transcription that was never used to decode the corresponding
proper noun in the right place gets removed from the dictionary, since it either
caused an error or was not used at all. However, a heuristic is set in order to keep
at least one phonetic transcription for each proper noun.

The process then gets repeated: the corpus is decoded again using the modified
dictionary, which then gets filtered according to the results of this decoding. The
whole decoding/filtering process is repeated until no more phonetic transcriptions
are removed from the dictionary.

This process is illustrated in figure 6, using the same example data as in figure
5.
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¢ Non PN Dictionary
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Decoded text:
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Reference: = =

... blah blah|Louis |blah blah/ Joe blah blah Louis |blah|blah |...

(Louis f1lwes| ) (Louis 3| luwis|)
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New phonetic dictionary of proper nouns
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phonetic variants

decoded at least once
in the right place

YES # previous
dictionary?

Figure 6: Illustration of iterative filtering of phonetic transcriptions. The initial value of the pho-
netic dictionary of proper nouns is the union of rule-based and extracted transcriptions.

6.3. Two-level iterative filtering

As stated earlier, the alignment dictionary used to initialize the process has a
strong impact on the accuracy of the phonetic transcriptions generated. For this
reason, we have decided to rerun the whole process, this time using the iteratively
filtered dictionary (the output of the iterative filtering described above) instead of
G2P systems to get boundaries of proper nouns inside the audio data during the
forced alignment step. This allows the system to call proper noun boundaries into
question with the newly built dictionary.

This extraction+filtering cycle, illustrated in figure 7, is repeated until two
consecutive iteratively filtered dictionaries are exactly identical.
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Speech signal + Textual transcription with multi-word segments

v v
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transcriptions of
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Figure 7: Overview of the double iterative process: the filtered dictionary is used for the initializa-
tion of the next extraction+filtering cycle, until the result is stable

7. Experiments

7.1. Corpus

Our experiments were carried out on the ESTER 1 corpus. ESTER is an eval-
uation campaign of French broadcast news transcription systems which took place
in January 2005 [23]. The ESTER corpus was divided into three parts: training,
development, and evaluation. The training (81 hours) and the development (12.5
hours) corpora are composed of data recorded from four radio stations in French
(France Inter, France Info, Radio France Internationale, and Radio TV Maroc).
The test corpus is composed of 10 hours coming from the same four radio stations
plus two other stations (France Culture and Radio Classique), all of which were
recorded 15 month after the development data. Each corpus is annotated with
named entities, allowing easy spotting of proper nouns.

The training corpus was used to learn our automatic speech recognition sys-
tem. The training corpus and the development corpus are jointly employed to
extract phonetic transcriptions and to filter them. The JSM and SMT grapheme-
to-phoneme converters were also trained over the ESTER 1 training corpus.

7.2. Metrics

The intermediate and final sets of phonetic transcriptions were evaluated in
terms of Word Error Rate (WER) and Proper Noun Error Rate (PNER). PNER is
computed the same way as the WER, but it is computed only for proper nouns and
not for every word:

I+S+FE

PNER = ——— 3
R i 3)

with I being the number of wrong insertions of proper nouns, S the number
of substitutions of proper nouns with other words (where the reference word is a

17



O J o U W

AN TTUIUTUITUTUTUTUTOTOTE BB DD B DDASEDNWWWWWWWWWWNNNNNNONNNONNNNR R RRR PR PP
O™ WNFROWOJdNT D WNRPOW®O-JIAAUTDRWNR,OW®OW-JdNTIBRWNRFROWO®OW-JNU ™ WNROWOW-10U & WN R O WO

proper noun), £ the number of elisions of proper nouns, and NV the total number
of proper nouns.

The use of PNER as a metric reflects the goal of this work, which is to en-
hance the recognition of proper nouns, and not merely have an accurate chain of
phonemes.

While PNER allows to evaluate the quality of the detection of proper nouns,
WER is used to evaluate the impact of the new phonetic transcriptions on the
whole test corpus.

7.3. Acoustic and language models

The decoding system is based on CMU Sphinx 3.6 [46].

Our experiments were carried out using a one-pass decoding coming from
the LIUM ESTER 1 system [44], using 12 MFCC acoustic features plus the en-
ergy, completed with their primary and secondary derivatives. Acoustic models
were trained on the ESTER training corpus. These models are composed of 5500
tied states, each state being modeled by a mixture of 22 diagonal Gaussians. De-
coding employs tied-state word-position 3-phone acoustic models which are made
gender- and bandwidth-dependent through MAP adaptation of means, covariances
and weights. The trigram language model was learned on three different data
sources :

e On the manual transcriptions of our training and development corpus (81h
training + 12.5h development = 93.5 hours recorded from the four radio
stations). These transcriptions contain about 1.35M occurrences of 34k dis-
tinct words.

e On the articles coming from the French newspaper “Le Monde” from the
year 2003 (19M occurrences of 220k distinct words).

e On articles coming from the French newspaper “Le Monde” from 1987 to
2002 (300M word occurrences).

Three 3-gram language models were learned: one using the 81h of our training
corpus, and the others on the two other data sources. A linear interpolation was
performed to minimize perplexity on the remaining 12.5 hours of data coming
from the development corpus. The vocabulary contains all of the 34k distinct word
of the manual transcriptions, and words appearing more than ten times in the 2003
articles (about 19k words). The most frequent words in the rest of the articles from
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“Le Monde” (from 1987 to 2002) are used to complete the vocabulary, up to 65k
words.

Using this vocabulary, all the textual data of the training corpus is used to
train a trigram language model. To estimate this model, the SRILM toolkit [47]
is employed using the modified Kneser-Ney discounting method. Unigrams and
bigrams are all kept, but trigrams occurring only once are discarded.

The language model includes all the proper nouns present in the development
corpus. All the dictionaries contain the same proper nouns, with only their pho-
netic transcriptions varying.

8. Results

8.1. Number of phonetic transcriptions per proper noun

Table 1 presents the number of phonetic transcriptions generated with the three
G2P methods. The ESTER 1 corpus (development plus training) contains 3,348
distinct proper nouns, appearing 28,866 times.

Table 1: Number of phonetic transcriptions generated by each method

Generated | Extracted After 1 After 2 After 3
variants variants iteration iterations iterations
Method (G2P) (APD) | (All process) | (All process) | (All process)
LIA_PHON 4,364 20,218 6,776 6,524 6,502
SMT 7,031 20,184 7,065 6,813 6,802
JISM 3,626 20,008 6,876 6,711 6,708
| Average | 5007 [ 20,137 | 6906 | 6683 | 6,671

On average, the number of phonetic transcriptions between G2P generation
and APD extraction grows from 5k to 20k. We only consider the best hypothesis
generated by the APD.

One pass of iterative filtering keeps about 7k phonetic transcription variants
from the 20k variants generated by the APD. For each of our three grapheme-
to-phoneme strategies, filtering is done in 3 iterations. The number of variants
contained in the final filtered dictionary slightly decreases compared to the first
iteration. The number of variants generated is stable across methods used for the
initialization. Figure 8 shows the overlap among the generated dictionaries. As we
can see, there are 2467 variants common to the 3 generated dictionaries. Figure
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9 shows the overlap among the final dictionaries. As we can see, there is more
overlap: 5461 phonetic transcriptions are common to the 3 final dictionaries.

An analysis of the best filtered dictionary (generated with SMT and after 3
filtering iterations) shows the following composition: 65.6% of its phonetic vari-
ants were initially present in the generated SMT dictionary (4460 variants, 2043
from the 3457 pure SMT phonetic transcriptions, 2307 from the 2467 common
variants, 103 from the 803 SMT U LIA_PHON variants, and 7 from the 304 SMT
U JSM variants); 30.9% (2100) are new variants; and 3.6% (242) are phonetic
transcriptions that were present in either the LIA_PHON or the JSM initialization
dictionaries.

Generated SMT
e i 7031 variants

GeneratedUIA_PHON ! T TT T e —em .
4364 vorionts_ I PRSI 1 |
! | 803 1 |
. 592 . 3 ‘
' el o S |

[ : ’ ' : '

. 1304 S

' ' | ' ] |

] 502 , ‘ .

. S 2467 o ;
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' ! 3 ' ] N

" -E- .- \_-.w ——zc '_'_._-_-_. : .'

T 353 AT - ’

N e e e e e e e e e ccccccccccaaaa- J
Generated JSM

3626 variants

Figure 8: Overlap among the 3 initialization dictionaries

8.2. Results of the first iteration

This section compares the results obtained by directly using the three G2P
methods with the use of the extraction and filtering of proper nouns.

Figure 10 shows the PNER obtained using the filtering method after the first
iteration for each G2P system on the ESTER test corpus.

These results show that the filtering method produces significant gains in terms
of PNER for every G2P system. As we can see, the APD method supplemented
by the SMT-based grapheme-to-phoneme conversion system is the one that yields
the lowest PNER.
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Figure 9: Overlap among the final dictionaries

As explained previously, phonetic transcriptions for non-proper nouns are
taken from the BDLEX database, or generated by the rule-based grapheme-to-
phoneme tool LIA_PHON for words which are not in the database. The generated
dictionaries (SMT, JSM, and LIA_PHON) include the non-proper noun dictio-
nary, supplemented by the phonetic transcriptions of all proper nouns generated
using SMT, JSM, or LIA_PHON. Figure 11 compares the results obtained us-
ing the three generated dictionaries (SMT, JSM, and LIA_PHON) to initialize the
method, in term of WER computed only over segments that contain proper nouns.

Figures 10 and 11 show the interest of filtering: it reduces both the PNER and
the WER on segments with proper nouns.

8.3. Using iterative acoustic-based phonetic transcription

Table 2 shows the results obtained with the full iterative process initialized
with LIA_PHON, SMT, and JSM G2P systems. The results in bold are those with
the best gain in terms of WER and PNER. WER and PNER are computed on
segments that contain proper nouns. We can see a small gap between the first
filtering iteration and the last one. Using LIA_PHON to initialize our method,
the WER decreased from 24.1% (after the first filtering iteration) to 24.0% (at the
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Figure 10: PNER using each G2P method (ESTER test corpus)
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Figure 11: WER on segments with proper nouns in the test corpus

end) and the PNER decreased from 22.6% to 22.5%. With SMT, there is a gain of
0.2 point in terms of WER and a gain of 0.3 point in terms of PNER between the
first and the last filtering iterations. Finally, when using JSM, the gains are of 0.2
point in terms of WER and 0.3 point in terms of PNER.

30%

20%

10%

LIA_PHON SMT JSM

™ Generated dictionary ™ Extracted dictionary
Filtered dictionary (3rd iteration)

Figure 12: WER on every segment in the test corpus

Figure 12 shows the WER obtained on the whole ESTER 1 test corpus. The
test corpus contains 11087 segments. 1412 of them contain proper nouns. With
no filtering, extracted dictionaries, while improving the WER on segments that
contain proper nouns, also increase the global WER. Errors are introduced: other
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Table 2: WER and PNER using the full iterative process

Dictionary \ WER (segments with PN) \ PNER
LIA_PHON 24.7% 26.2%
SMT Generated 24.9% (+0.2) 26.4% (+0.2)
JSM Generated 25% (+0.3) 26.5% (+0.3)
Two-level filtering iteration 1
LIA_PHON 24.1% (-0.6) 22.6% (-3.6)
SMT 23.6% (-1.1) 20.5% (-5.7)
ISM 24.1% (-0.6) 20.8% (-5.4)
Two-level filtering iteration 2
LIA_PHON 24.1% (-0.6) 22.6% (-3.6)
SMT 23.5% (-1.2) 20.3% (-5.9)
JISM 24% (-0.7) 20.5% (-5.7)
Two-level filtering iteration 3
LIA_PHON 24% (-0.7) 22.5% (-3.7)
SMT 23.4% (-1.3) 20.2% (-6)
JISM 23.9% (-0.8) 20.5% (-5.7)

words are substituted by proper nouns, and some proper nouns are wrongly in-
serted. The results show that with the filtering step, our method does not generate
new errors with other word classes. The WER on segments with no proper nouns
remains the same using filtered dictionaries as it is with the generated dictionaries.
This highlights the role of filtering, which removes confusable variants from the
lexicon.

8.4. Analysis of the results

In our evaluation corpus, 640 different proper nouns are present, with a total
of 2080 occurrences. The proposed method decreases the PNER for 152 proper
nouns, and increases the PNER for 26 of them. Most of those 152 proper nouns
are foreign, therefore they do not follow the usual rules of pronunciation used in
French. Examples of those nouns are: Jiantao, Fatima, Rumsfeld, Yahia, Ahmed.

When pronounced in Arabic (Radio TV Maroc station), certain proper nouns
contain phonemes that are not present in our French phoneme set. Those phonemes
are replaced with French phonemes.

As explained earlier, during filtering, a rule was set in order to avoid elimi-
nating the last phonetic transcription variant of each noun. The average number
of phonetic transcriptions per proper noun is about 2. It is only 1.3 for the 26
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Table 3: Some examples of phonetic transcriptions

Proper Nouns SMT Proposed method
(initialized with SMT)
Jintao 3intao jintao
Roger BO3€ Bod3eE
Decaens doeken deeka
Fatima fatima fatma
Rumsfeld pymsfeld poemsfeld
Yahia jaja jasja
Ahmed amed askmed

proper nouns for which the PNER is increased. This actually corresponds to 20
proper nouns with only one variant, which would have been eliminated without
this heuristic.

9. Conclusion

In this article, we proposed an iterative, two-step acoustic-based process for
phonetic transcription generation, and applied it to the specific case of proper
nouns.

The first step adopts a data-driven approach of building a dictionary of pho-
netic transcriptions, aiming for a closer match to actual usage of proper nouns
than knowledge-based approaches can provide. This is accomplished through ex-
traction of phonetic variants from actual audio signals, which is used to filter
and enrich an initial set of phonetic transcriptions generated by a knowledge-base
grapheme-to-phoneme system—filtering out unused variants and adding variants
that the G2P system could not generate.

The second step of our method consists in filtering the resulting dictionary
in order to avoid a negative impact on the other classes of words. Indeed, the
extraction of phonetic transcriptions for proper nouns in the first step yields a high
number of phonetic variants, which generates noise during the decoding. Many
of these phonetic variants are too close to the pronunciation of other words of the
dictionary. As a result, when used directly, this dictionary has a negative impact
on the WER on segments that do not contain any proper noun. The goal of the
iterative filtering process is the detection and removal of the phonetic variants that
are the most likely to generate confusion with words from other classes.
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The method loops, rerunning steps one and two over the resulting dictionary,
iterating until stability is reached.

The use of the resulting phonetic dictionaries of proper nouns yields a gain in
terms of PNER (Proper Noun Error Rate) and WER on the ESTER corpus. The
best results are obtained by using an SMT (Statistical Machine Translation [9])
system to generate the initial proper noun dictionary for the process. The WER
on segments that contain proper nouns decreased by 1.3 points and the PNER de-
creased by 6 points compared to the simpler, rule-based system. As was expected,
with the filtering step, the WER on segments without proper nouns is unaffected,
thus allowing the global WER to improve slightly thanks to better detection of
proper nouns.

Even though the impact on the global WER is only minor on a corpus such as
ESTER, improved detection of proper nouns is crucial for some tasks. An inter-
esting field where the proposed method is useful is named speaker identification,
which consists in the automatic extraction of speaker identities (first name and last
name) from the transcription [4, 5]. The new phonetic transcriptions generated by
the proposed method should contribute to render detection easier by improving
the decoding of proper nouns.

Finally, one of the advantages of the filtering method described here is that its
execution time is not linked to the size of the set of transcriptions to be filtered.
This opens up the possibility of applying it to other, larger classes of words.
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