
HAL Id: hal-01433206
https://hal.science/hal-01433206v1

Submitted on 21 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The LIUM ASR and SLT Systems for IWSLT 2015
Mercedes Garcia-Martinez, Loïc Barrault, Anthony Rousseau, Paul Deléglise,

Yannick Estève

To cite this version:
Mercedes Garcia-Martinez, Loïc Barrault, Anthony Rousseau, Paul Deléglise, Yannick Estève. The
LIUM ASR and SLT Systems for IWSLT 2015. 12th International Workshop on Spoken Language
Translation (IWSLT 2015), 2015, Da Nang, Vietnam. �hal-01433206�

https://hal.science/hal-01433206v1
https://hal.archives-ouvertes.fr


The LIUM ASR and SLT Systems for IWSLT 2015

Mercedes Garcı́a-Martı́nez, Loı̈c Barrault, Anthony Rousseau,
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Abstract

This paper describes the Automatic Speech Recognition
and Spoken Language Translation systems developed by the
LIUM for the IWSLT 2015 evaluation campaign. We par-
ticipated in two of the proposed tasks, namely the Auto-
matic Speech Recognition task (ASR) in German and the En-
glish to French Spoken Language Translation task (SLT). We
present the approaches and specificities found in our systems,
as well as our results from the evaluation campaign.

1. Introduction
This paper describes the ASR and SLT systems developed
by the LIUM for the IWSLT 2015 evaluation campaign. We
participated in the two tasks mentioned above, with German
language for the ASR task; and English to French for the SLT
task.

The remainder of this paper is structured as follows: in
section 2.1, we describe the data used for both tasks and how
the selection was performed. In section 2, we present the ar-
chitecture of our ASR system and the results obtained on the
various corpora used during the campaign. Then in section 3,
we expose the architecture of our SLT system, along with its
results during the campaign. Lastly, the section 4 concludes
this system description paper.

2. Automatic Speech Recognition Task in
English

In this section, we will describe the Automatic Speech
Recognition system developed by the LIUM for the IWSLT
2015 campaign, as well as present the results (both in-house
and official) obtained on various corpora.

2.1. Data selection for the ASR task

Performance of Natural Language Processing (NLP) systems
like the ones we are going to present here can often be en-
hanced using various methods, which can occur before, dur-
ing or after the actual system processing. Among these, one
of the most efficient pre-processing method is data selection,
i.e. the fact to determine which data will be injected into the
system we are going to build. For this campaign, many data
selection processing was done, both in ASR and SLT tasks.

2.1.1. Data selection for acoustic models training

For our acoustic modeling we used as a primary source the
Euronews ASR 2013 dataset [1] provided by the campaign
organizers. In order to strengthen this base, we added data
from various in-house sources. Then, we also collected a set
of TEDx talks in German and carefully removed the off-limit
talks. The Table 1 summarizes the characteristics of the data
included in our ASR system acoustic models.

Corpus Duration Segments Words
Euronews 62.5h 20 187 506 019
In-house 23.9h 6 196 232 716
TEDx 38.0h 42 633 312 142
Total 124.4 69 016 1 050 877

Table 1: Characteristics of the acoustic data used in the
LIUM ASR system acoustic models.

2.1.2. Data selection for language models training

Since language models training data is constrained for the
ASR task, we applied our data selection tool XenC [2] on
each allowed corpus at our disposal: basically all of pub-
licly available WMT15 data and a collection of TEDx Talks
closed-captions. Based on cross-entropy difference from a
corpus considered as in-domain and out-of-domain data, our
tool allows to perform relevant data selection by scoring
out-of-domain sentences regarding their closeness to the in-
domain data. The table 2 summarizes the characteristics of
the monolingual text data used to estimate our system lan-
guage models.

2.2. Architecture of the LIUM ASR system

Our architecture is based on two separate systems, mainly
based on the Kaldi open-source speech recognition toolkit
[3] which uses finite state transducers (FSTs) for decoding.
A first pass is performed by using a bigram language model
and deep neural network acoustic models. This pass gener-
ates word-lattices: an in-house tool, derived from a rescoring
tool included in the CMU Sphinx project, is used to rescore
word-lattices with a 3-gram, then a 4-gram back-off LM and



Corpus Original # Selected # % of
of words of words Orig.

IWSLT14 2.85M 2.85M 100.00
Common Crawl 48.04M 4.24M 8.82
Europarl 47.40M 3.20M 6.74
News Crawl 1.4G 130.60M 9.26
News-Comm. 5.06M 0.62M 12.25
Total (w/o IWSLT14) 1.5G 138.66M 9.18

Table 2: Characteristics of the monolingual text data used in
the LIUM ASR system language models.

5-gram Continuous Space Language Model [4]. Last, an ac-
celerated version of the consensus approach [5], which takes
into account temporal information to speed up the process-
ing, is applied on the confusion networks built from the 5-
gram rescored word-graphs.

2.2.1. Acoustic modeling

The GMM-HMM (Gaussian Mixture Model - Hidden
Markov Model) models are trained on 13-dimensions PLP
features with first and second derivatives by frame. By
concatenating the four previous frames and the four next
frames, this corresponds to 39 ∗ 9 = 351 features projected
to 40 dimensions with linear discriminant analysis (LDA)
and maximum likelihood linear transform (MLLT). Speaker
adaptive training (SAT) is performed using feature-space
maximum likelihood linear regression (fMLLR) transforms.
Using these features, the models are trained on the full
124.4 hours set, with 9 500 tied triphone states and 325 000
gaussians.

On top of these models, we train two separate deep neural
networks (DNNs). The first one is based on TRAP features:
For each frame, DNN inputs were composed of 368 TRAP
coefficients computed on a sliding window of 31 frames.
Each frame was constituted by the outputs of 23 Mel-scale
filterbanks. Speaker adaptation was trivial: it only consists
on mean subtraction applied on all frames associated to a
speaker. It has been trained on the full 124.4 hours set. The
DNN was built following the approach described in [6] and
it was composed of 6 hidden layers with 2048 units, while
the output softmax layer had 4627 outputs. The second one
is based on the same fMLLR transforms as the GMM-HMM
models and on state-level minimum Bayes risk (sMBR) as
discriminative criterion. Again we use the full 124.4 hours
set as the training material. The resulting network is com-
posed of 6 hidden layers with 2 048 units, while the out-
put dimension is 7 827 units and the input dimension is 440,
which corresponds to an 11 frames window with 40 LDA
parameters each.

To speed up the learning process, each DNN is trained us-
ing general-purpose graphics processing units (GPGPU) and

the CUDA toolkit for computations.

2.2.2. Language modeling

For language modeling, we rely on the SRILM language
modeling toolkit [7] as well as the Continuous Space
Language Model toolkit. The vocabulary used in the LIUM
ASR systems is composed of 131 435 entries. The language
models are trained on the data presented in section 2.1.2 and
separate sets are trained for each system.

With the SRILM toolkit, a 2-gram LM is estimated
for each corpus source, with no cut-offs and the modified
Kneser-Ney discounting method. These 2-gram LM are
then linearly interpolated to produce the final 2-gram LM
which will be used in the final system, using the German
IWSLT 2013 test corpora. To rescore the word-lattices pro-
duced by Kaldi, a trigram and a quadrigram language mod-
els (namely 3G and 4G) are estimated with the same toolkit,
again by training one LM by corpus source and then linearly
interpolating them. A 5G continuous-space language model
(CSLM) is also estimated for the final lattice rescoring, with
no cut-offs and the same discounting method as for the bi-
gram language model. Table 3 and table 4 details the inter-
polation coefficients for the 2G, 3G and 4G language models
as well as the final perplexity for each final model used in
the two systems, respectively for the TRAP-based and the
fMLLR-based system.

Corpus Coefficients
2G 3G 4G

manual transcriptions of speech 0.21 0.16 0.16
Common Crawl 0.03 0.05 0.05
News Crawl 0.21 0.18 0.17
Europarl 0.04 0.06 0.07
News-Comm. 0.51 0.55 0.0.55
Perplexity 379 279 264

Table 3: Interpolation coefficients and perplexities for the
bigram (2G), trigram (3G) and quadrigram (4G) language
models used in the LIUM ASR TRAP-based system.

2.3. Word-lattice merging

Both systems used the same audio segmentation, provided by
the LIUMSpkDiarization[8] speaker diarization toolkit. Us-
ing the same segmentation makes easier the merging between
the two ASR outputs: final outputs were obtained by merging
word-lattices provided by both ASR systems.

Both systems provide classical word-lattices with usual
information: words, temporal information, acoustic and lin-
guistic scores. Before merging lattices, for each edge, these
scores are replaced by its a posteriori probability. Posteriors
are computed for each lattice independently, then weighted



Corpus Coefficients
2G 3G 4G

IWSLT14 0.016 0.014 0.012
Common Crawl 0.028 0.023 0.020
Europarl 0.075 0.090 0.097
News Crawl 0.872 0.866 0.865
News-Comm. 0.008 0.008 0.006
Perplexity 514 349 326

Table 4: Interpolation coefficients and perplexities for the
bigram (2G), trigram (3G) and quadrigram (4G) language
models used in the LIUM ASR fMLLR-based system.

by 1
n , where n is the number of word-lattices to be merged

(here, n = 2). In our experiments, we did not find significant
improvements by using more tuned weights.

For each speech segment, the use of weighted posteri-
ors allows to merge starting (respectively ending) nodes from
both lattices together into a single lattice in order to process
directly with an optimized version of the consensus network
confusion algorithm. This optimization reduces very signifi-
cantly the computation time by managing temporal informa-
tion during the clustering steps.

2.4. Results

The LIUM ASR system officialy achieved a Word Error Rate
score of 17.8 on the 2015 test set, however, at this time of
writing, ranks for each participant and full results have not
been disclosed, thus we are not able to provide comparisons.

3. Spoken Language Translation Task
In this section, the architecture of our Statistical Machine
Translation (SMT) system used in the SLT task is described.

3.1. Architecture of the LIUM SLT system

The SMT system is based on the Moses toolkit [9]. The
standard 14 feature functions were used (i.e. phrase and lexi-
cal translation probabilities in both directions, seven features
for the lexicalized distortion model, word and phrase penalty
and target language model (LM) probability). In addition to
these, a 5-gram Operation Sequence Model (OSM) [10] have
been trained and included in the system.

3.2. Data processing and selection for the SLT task

All available corpora have been used to train the different
components of the SMT system. The source side of the bi-
texts have been processed in order to make it more similar to
speech transcriptions. After a standard tokenization, the pro-
cessing mainly consisted in applying regular expressions to
delete punctuations and unwanted characters, convert capital
letters in lowercase and rewrite numbers in letters.

Once the processing performed, monolingual and bilin-
gual data selection has been applied using XenC [2]. For this
purpose, the TED corpus has been used as in-domain cor-
pus (to compute in-domain cross-entropy). The development
corpus (named liumdev15 ) was used to determine the quan-
tity of data by perplexity minimization. It is composed of the
following corpora : dev2010, tst2010 tst2013.

3.2.1. Translation model

The translation models have been trained with the standard
procedure. First, the bitexts are word aligned in both direc-
tions with GIZA++ [11]. Then the phrase pairs are extracted
and the lexical and phrase probabilities are computed. The
weights have been optimized with MERT using two versions
of the development data. For some systems, the provided
transcriptions were used, and for others, the outputs of our
ASR system was used. This was performed for the sake
of comparing the impact of ASR systems improvement (ob-
served during the last few years).

3.2.2. Language modeling

The language model is an interpolated 4-gram back-off LM
trained with SRILM [7] on the selected part of the French
corpora made available. The vocabulary contains all the
words from the development sets, the target side of bitexts
and only the more frequent words from the large monolin-
gual corpora. The interpolation coefficient have been opti-
mized using the standard EM procedure. The perplexity of
this model on liumdev15 was 67.02.

Besides, two large context CSLM [12] have been trained,
each with a different architecture. Those models are used to
rescore the n-best list of SMT hypotheses. Table 5 shows

Name Order Proj. Layer #hidd. x size Perplexity
CSLM11 11 512 3x1024 41.98
CSLM19 19 320 3x1024 41.38

Table 5: Architecture of the CSLM trained for rescoring the
n-best list of SMT hypotheses. The third and fourth columns
show the projection layer size and the number and size of the
hidden layers, respectively.

the details of the architectures of the CSLMs as well as the
perplexities obtained on the development corpus liumdev15.

3.2.3. Neural network machine translation system

In addition to the phrase-based SMT system, we trained a
neural network machine translation (NNMT) system based
on [13] during 4 days. It is implemented in the Groundhog
framework. It consists in a bidirectionnal encoder-decoder
deep neural network equiped with an attention mechanism,
as described in Figure 1.

We tried to translate using different values of the beam
size. We can observe that in table 6 the more the beam size
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The decoder is often trained to predict the next word yt0 given the context vector c and all the
previously predicted words {y1, · · · , yt0�1}. In other words, the decoder defines a probability over
the translation y by decomposing the joint probability into the ordered conditionals:

p(y) =

TY

t=1

p(yt | {y1, · · · , yt�1} , c), (2)

where y =
�
y1, · · · , yTy

�
. With an RNN, each conditional probability is modeled as

p(yt | {y1, · · · , yt�1} , c) = g(yt�1, st, c), (3)

where g is a nonlinear, potentially multi-layered, function that outputs the probability of yt, and st is
the hidden state of the RNN. It should be noted that other architectures such as a hybrid of an RNN
and a de-convolutional neural network can be used (Kalchbrenner and Blunsom, 2013).

3 LEARNING TO ALIGN AND TRANSLATE

In this section, we propose a novel architecture for neural machine translation. The new architecture
consists of a bidirectional RNN as an encoder (Sec. 3.2) and a decoder that emulates searching
through a source sentence during decoding a translation (Sec. 3.1).

3.1 DECODER: GENERAL DESCRIPTION

x1 x2 x3 xT

+
αt,1
αt,2 αt,3

αt,T

yt-1 yt

h1 h2 h3 hT

h1 h2 h3 hT

st-1 s t

Figure 1: The graphical illus-
tration of the proposed model
trying to generate the t-th tar-
get word yt given a source
sentence (x1, x2, . . . , xT ).

In a new model architecture, we define each conditional probability
in Eq. (2) as:

p(yi|y1, . . . , yi�1,x) = g(yi�1, si, ci), (4)

where si is an RNN hidden state for time i, computed by

si = f(si�1, yi�1, ci).

It should be noted that unlike the existing encoder–decoder ap-
proach (see Eq. (2)), here the probability is conditioned on a distinct
context vector ci for each target word yi.

The context vector ci depends on a sequence of annotations
(h1, · · · , hTx

) to which an encoder maps the input sentence. Each
annotation hi contains information about the whole input sequence
with a strong focus on the parts surrounding the i-th word of the
input sequence. We explain in detail how the annotations are com-
puted in the next section.

The context vector ci is, then, computed as a weighted sum of these
annotations hi:

ci =

TxX

j=1

↵ijhj . (5)

The weight ↵ij of each annotation hj is computed by

↵ij =
exp (eij)PTx

k=1 exp (eik)
, (6)

where
eij = a(si�1, hj)

is an alignment model which scores how well the inputs around position j and the output at position
i match. The score is based on the RNN hidden state si�1 (just before emitting yi, Eq. (4)) and the
j-th annotation hj of the input sentence.

We parametrize the alignment model a as a feedforward neural network which is jointly trained with
all the other components of the proposed system. Note that unlike in traditional machine translation,

3

Figure 1: Architecture of the encoder-decoder deep neu-
ral network machine translation system equiped with an
attention-based mechanism. Taken from [13]

Corpus Beam size
10 100 1000

liumtst15 36.79 36.1 35.24
liumdev15 31.62 30.95 30.12

Table 6: Results obtained with the deep NNMT system with
different values of beam size.

is increased, the lower the results in BLEU.
An explanation to this is that the BLEU score differs from

the internal score calculated by the model (at the output of
the softmax layer). Consequently, a partial hypothesis with
a low score which is pruned with a small beam size, is kept
and extended when the beam size is greater. Moreover, the
NN output probability distributions are known to be sharp,
giving a high probability to a small number of outputs and a
low probability to the rest. This can lead to worse hypotheses
having higher results in final. This is an undesirable behavior,
which a deeper analysis of the correlation between BLEU
score and NN outputs probabilities could explain.

We used the trained NNMT model to rescore the 1000-
best list produced by the previous trained SMT model.

3.2.4. Submitted systems

A total of six systems were submitted for evaluation. Sev-
eral rescoring process have been performed. For the sake
of comparison, our best single SMT system has been sub-
mitted as contrastive2 as well as our best NNMT system
based on Groundhog (contrastive5). This SMT system has
been rescored with the two CSLM presented in previous sec-
tion. contrastive3 and contrastive4 correspond to the rescor-
ing with CSLM11 and CSLM19, respectively. Those two
systems have also been rescored with the NNMT model ob-
tained with Groundhog. The primary system corresponds
to the contrastive3 rescored with Groundhog NNMT model

and the contrastive1 corresponds to the contrastive4 rescored
with the same NNMT model.

The results and discussion are presented in the next sec-
tion.

3.3. Results and discussion

The results obtained on the development and test data are
presented in Table 7.

The main observation that we can make is that all the re-
sults are coherent. Improvement obtained by rescoring with
the CSLM and the NNMT model on the development cor-
pus are reflected on the internal test (liumtst15) and the of-
ficial evaluation test corpus (test2015). The gains observed
by rescoring the 1000-best list of hypotheses with a high or-
der CSLM are along previous results in the literature (around
+1 BLEU point on development and test data). One can no-
tice that the two different CSLM provide very similar results
(in terms of perplexity during training and in terms of BLEU
after rescoring).

During system development, we were surprised by the
gains observed when rescoring with the NNMT system com-
pared to the lower results obtained (on liumdev15 and li-
umtst15). An interesting result is that the rescoring with the
NNMT model provides similar results on the official test set.

A key point when applying a rescoring process is the op-
timization of the feature functions weights. The weights for
the CSLM and the NNMT model have been optimized with
CONDOR [14], a numerical optimizer, with -BLEU as the
objective function to minimize. The initial weights are set
to those obtained with MERT during the SMT system tuning
phase. The initial weights for the CSLM and NNMT features
are set to the backoff LM weight (e.g. 0.0357). This is moti-
vated by the fact that the LM and CSLM features have a sim-
ilar distribution. After optimization, the LM had its weights
decreased to 0.0314, the CSLM weight increased to 0.0391
while the NNTM feature function saw its weight highly in-
creased (0.0486).

4. Conclusion
We presented the LIUM’s ASR and SMT systems which par-
ticipated in the ASR and SLT tracks of the IWSLT’15 evalu-
ation campaign.

For ASR, we participated to the German transcription
task, which is a new challenge to us since we built our first
German systems for the campaign. We achieved an official
WER of 17.8 of the 2015 test set which seems consistent with
our experiments on previous development and test sets.

By rescoring with a continuous space language model,
we obtained a gain of about 0.6% BLEU on the SLT test
data. On top of that, an additional gain of almost %1 BLEU
point is obtained by rescoring with a neural network trans-
lation model. The latter result is more surprising since the
translation score of the NNMT system is significantly lower
than the SMT systems.



Name CSLM NNMT liumdev15 liumtst15 test2015
rescoring rescoring Case No-Case

%BLEU %BLEU %BLEU %TER %BLEU %TER
Primary CSLM11 yes 33.81 39.61 18.51 79.06 20.02 76.41
Contrast1 CSLM19 yes 33.82 39.65 18.53 78.96 20.10 76.29
Contrast2 - no 31.81 37.35 16.95 80.61 18.36 78.01
Contrast3 CSLM11 no 32.81 38.36 17.54 80.04 19.02 77.31
Contrast4 CSLM19 no 32.70 38.28 17.56 80.07 19.03 77.45
Contrast5 - - 31.62 36.79 14.88 84.69 16.98 80.38

Table 7: Results obtained with the submitted systems on internal dev and test corpora and the official evaluation test corpus.
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