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LIUM - University of Le Mans, France
firstname.lastname@univ-lemans.fr

Abstract

This study explores the use of a bidirectional recurrent neural network (RNN)
encoder/decoder based on a mechanism of attention for a Spoken Language Un-
derstanding (SLU) task. First experiments carried on the ATIS corpus confirm the
quality of the RNN baseline system used in this paper, by comparing its results on
the ATIS corpus to the results recently published in the literature. Additional ex-
periments show that RNN based on a mechanism of attention performs better than
RNN architectures recently proposed for a slot filling task. On the French ME-
DIA corpus, a French state-of-the-art corpus for SLU dedicated to hotel reserva-
tion and tourist information, experiments show that a bidirectionnal RNN reaches
a f-measure value of 79.51 while the use of a mechanism of attention allows us to
reach a f-measure value of 80.27.

1 Introduction

Spoken Language Understanding (SLU) can be defined as the interpretation of signs conveyed by a
speech signal [1]. This interpretation is usually understood as the extraction and the representation
of the meanings supported by the words within an uttered sentence.

1.1 Slot filling task

Nowadays, extracting meaning from speech is still a very complex process and, for an application,
SLU is often reduced to the construction of a task-specific semantic representation. This representa-
tion consists classically in the use of frames describing general concepts and their specific instances.
A frame is composed by a data structure which represents a predefined concept by associating to the
concept name a set of roles: these roles are represented by slots.

In this framework, SLU corresponds to a slot filling task and, classically, this task can be defined
as a concept tagging process, which is the extraction of a sequence of concepts out of a given word
sequence [2]. In the past, several sequence tagging methods have been proposed to extract such
sequences of concepts and Conditional Random Fields [3] (CRFs) were considered as the state-of-
the-art approach [2] until two years ago.

1.2 Purpose

Recently, it was shown in [4, 5] that recurrent neural networks (RNNs) could get better performances
for a SLU slot filling task than CRFs. These works were conducted on the ATIS corpus [6] but were
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not confirmed by a very recent work presented in [7] made on the MEDIA corpus [8]: in this last
study, CRF got significantly better results than RNN. This may be explained by the fact that the
MEDIA task seems more difficult to process than the ATIS one, while the size of the vocabulary and
the proportion of words in the corpus having a concept are greater in the MEDIA corpus than in the
ATIS one.

In this paper, we do not try to arbitrate if CRF or deep neural network (DNN) architectures are
the current state-of-the-art for SLU. We are convinced of the potentials of DNN architectures and
we aim to explore the use of attention-based recurrent neural networks [9] initially dedicated for
handwriting recognition and successfully used for speech recognition [10]. Since the MEDIA corpus
seems more challenging for SLU than the ATIS corpus, we have focused on this corpus to evaluate
the consequences for the SLU task of the use of the attention-based mechanism proposed in [11].

1.3 Attention-based RNN general principles

Very good descriptions of the principles of attention-based RNNs can be found in [11, 10, 12].
The attention mechanism was intuitively designed in order to take care about the positions of input
elements when encoding an input sequence in an RNN encoder-decoder approach. In this paper,
the attention-based RNN was largely inspired from the architecture proposed in [11] for machine
translation, depicted in figure 1 : we consider the concept tagging process as a translation problem
from words (source language) to semantic concepts (target language).

This architecture is based on a bidirectional RNN as an encoder. This bidirectional RNN computes
an annotation hi for each word wi from the input sequence {w1, ... ,wI}. This annotation is the
concatenation of the matching forward hidden layer state and the backward hidden layer state ob-
tained respectively by the forward RNN and the backward RNN comprising the bidirectional RNN.
Each annotation contains the summaries of both the preceding words and the following words. Since
hidden layers of RNNs tend to better represent recent inputs, each annotation hi will be focused on
the words around wi.

Figure 1: Illustration of Attention-based RNN from [11]
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As a result of applying the bidirectional encoder, for each word within the input sequence an an-
notation is computed: this sequence of annotations {h1, ... ,hI} will be used by the decoder to
compute a context vector ct. A context vector is recomputed after each emission of an output label.
This computation takes into account a weighted sum of all the annotations computed by the encoder.
This weighting depends on the current output target, and is the core of the attention mechanism: a
good estimation of these weights αti allows the decoder to choose parts of the input sequence to
pay attention to. This context vector will be used by the decoder in conjunction with the previous
emitted label output yt−1 and the current state st of the hidden layer of a RNN to take a decision
about the current label output yt.

2 Implementation

In order to compare RNN and attention-based RNN for an SLU task, implementations provided
by the authors of [4] and [11] were used to make our experiments. The RNN implementation
coming from [4] was not entirely the one used to make their experiments: only a forward RNN
implementation was available while this study used a bidirectional neural network. In order to
validate our implementation of this bidirectional neural network, first experiments were carried on
the ATIS corpus to compare our results with the ones presented in [4].

2.1 RNN implementation

The RNN implementation is based on [4] and on the implementation also proposed by the first author
in [13] which gives an implementation of an Elman/Jordan-type forward RNN with T (previous time
steps vectors from the output layer as in the Jordan-type network or the hidden layer as in the Elman-
type network) fixed to 1. From this implementation, we used the Elman-type RNN (the operation
would be the same for a Jordan except the output layer is given back to the hidden layer at t+1).

hidden layer : h(t) = sigmoid(Wx.x(t) +Wh.h(t− 1) + bh))

output layer : s(t) = softmax(W.h(t) + b))

where x(t) is the input word of the RNN (embedding) at t and h(t − 1) the output of the hidden
layer at t−1. The parameters of the RNN areWx, Wh and W the weight matrices, bh and b the bias,
and h0 the initial hidden layer of the last step for the first word of the sentence for which nothing has
been calculated yet. The parameters are adjusted through training epochs with a gradient descent
performed on mini-batches.

The backward version was implemented from the forward distributed in [13]. A backward RNN
is similar to a forward one except that the prediction is from the future to the past. The sentence
is given backward to simulate this. Wh represents the weight matrix between the next step hidden
layer and the current one. h0 is the initial hidden layer of the next step for the last word of the
sentence (i.e. first word given to the RNN).

hidden layer : h(t) = sigmoid(Wx.x(t) +Wh.h(t+ 1) + bh))

output layer : s(t) = softmax(W.h(t) + b))

With a backward RNN acquired, the bidirectional one can be implemented. The bidirectional RNN
makes predictions taking into account the past (as a forward) and the future (as a backward). There-
fore already trained RNNs forward and backward are used jointly. There are two Wh weight ma-
trices: Wh fw between the last step hidden layer and the current one and Wh bw between the next
step hidden layer and the current one. It goes the same for bh fw et bh bw. Finally there is no initial
hidden layer h0 since those are recovered from the already trained forward and backward RNNs.

hidden layer : h(t) = sigmoid(Wx.x(t)+Wh fw.h(t−1)+ bh fw+Wh bw.h(t+1)+ bh bw)

output layer : s(t) = softmax(W.h(t) + b)

Our objective was to implement long-term dependencies as described in [4] by feeding the network
with the sum of the previous/next steps:
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hbidirectional(t) = f(Wx.x(t)+

T∑
k=1

(Wh bwk.h bw(t+k)+bh bw)+

T∑
k=1

(Wh fwk.h fw(t−k)+bh fw))

[13] give an implementation with T fixed to 1. Different values of T were experimented on the
ATIS corpus for the forward and backward RNNs to see if adding context improves the system, but
bidirectional RNN reached better results with a forward and backward RNNs having both T=1.

The forward and backward RNNs used for the bidirectional training or classification are trained
beforehand. We experimented with different ways to train those RNNs. First, the parallel train
learning, which consists on training forward, backward, and then bidirectional RNNs at each epoch.
Second, the get best learning, in which the training of the bidirectional RNN is based on the best
parameters of both forward and backward RNNs already trained separately before. Last, the train
best learning which combines the approaches described above: at each epoch the forward and the
backward RNNs are trained as in the parallel train. Then the bidirectional RNN uses only the
parameters of the last best epoch for the forward and the backward respectively as in get best.

Experiments have shown, that the best training is parallel train approach, followed by train best
and get best. This might, be because the bidirectional RNN learn more with forward and backward
RNNs, which have a variability through epochs even if they do not always give the best results. The
learning is more diversified. Indeed the get best approach using forward and backward parameters
fixed from their best epoch is the one giving the worst results.

2.2 Attention-based bidirectional RNN implementation

The attention-based RNN implementation used in our study was derived from the one used in [11]
and available at https://github.com/kyunghyuncho/GroundHog. This implementation
was made for a machine translation task. In this task, input and output sequences have often different
lengths. The RNN encoder-decoder approach is particularly well-fitted for such a case. For the
focused SLU task, it is important to get a very precise alignment between inputs (words) and outputs
(semantic concepts labeling words). To get a so precise alignment, we have modified the decoder
process of the bidirectional RNN in order to enforce an output label sequence to get the same length
of the input word sequence. This is the only modification we made on the implementation coming
from [11].

3 Experiments

As seen before, in order to validate our implementation of this bidirectional neural network, first ex-
periments were carried on the ATIS corpus to be able to compare our results with the ones presented
in [4]. At last, we will compare the RNN approach and the attention-based RNN approach on the
MEDIA corpus.

3.1 Validation of the RNN implementation on the ATIS corpus

The corpus used by [4] is the ATIS corpus (Airline Travel Information System) specialized in airline
ticket reservation requests. It is composed of 4978/893 (learning/testing) annotated sentences. There
are 128 semantic labels. The training corpus is divided as follows: 80% for learning and 20% for
validation.

In order to help the classifier to delimit the sequences of words having the same label, a common
way is to attach aB/I/O suffix to the semantic labels, respectively for Beginning, Inside and Outside
of a sequence, as an added information. Only theB and I suffixes are used here. O is represented by
the NULL label which is associated to words that do not convey any semantic information within
the specific task.

The evaluation is made by computing the f-measure which uses recall and precision metrics to
calculate a score taking into account the presence or the absence of a concept in a sentence without
the notion of sequentiality.

4

https://github.com/kyunghyuncho/GroundHog


f −measure = 2(precision.recall)

precision+ recall

In [4] precision and the recall are defined1 as:

recall =
number of correct segments

number of segments in the reference

precision =
number of correct segments

number of segments in the hypothesis

A segment of concepts is correct if it begins and ends with the same words for the hypothesis and
the reference. The f-measure is maximized on the validation corpus during the training process.

Table 1 presents the results obtained in [4] and the results obtained by our implementation used
by using the following hyper-parameters: number of epochs=100 ; window=5 ; unit number in the
hidden layer=200 ; embeddings dimension=50.

Experience Architecture Type f-measure
[Mesnil et al. 2013] Jordan bidirectional 93.98

RNN baseline Elman bidirectional 94.13

Table 1: Comparison between the performances of the RNN presented in [4] and our implementation
of a RNN baseline on the ATIS corpus.

As shown in Table 1, our bidirectional RNN baseline system reaches similar results to the bidirec-
tional RNN presented in [4]. This validates our implementation and allow us to explore the use for
a SLU slot filling task of an attention-based RNN in comparison to a classical RNN.

3.2 Comparison between RNN and attention-based RNN performances on the MEDIA
corpus

The MEDIA corpus [8] is a French state-of-the-art dialog corpus. It contains 1257 dialogs between
users and a simulated system (Wizard of Oz protocol) in the domain of hotel reservation and tourist
information. Only the user’s turns are considered for the training and the classification. This set of
turns is divided into three corpora : the TRAIN set contains 17,6k utterances, the DEV set contains
1,3k utterances and finally the TEST set is composed of 3,5k utterances.

Each utterance has been manually transcribed and annotated according to 74 concept labels from
general simple response (e.g. the word “yes” is associated with the concept response) to specific-
task requirements (e.g. the words “with bath” are associated with the concept room equipment). A
much richer annotation is available in MEDIA including modals, specifiers and values but as a first
step we choose to only evaluate semantic concept labels.

In MEDIA, the purpose of the dialog for the user is to obtain information that is stored in a database.
As a consequence, names of the streets, cities or hotels, lists of room equipments, food type, etc.
are known. Furthemore, more general words representing figures, days, months are also known.
All these words (specific to the SLU task or general) have been gathered in a semantic lexicon that
enables to associate a word to a semantic class.

A user’s utterance is represented by the sequence of words and semantic classes. If it exists, the
word is substituted by its semantic class. An example of the utterance representation is shown in
Table 2. As in ATIS, suffixes I/O are associated to label concepts.

Table 3 presents the performances measured in terms of f-measure of different RNN architectures
on the MEDIA corpus.

1It is calculated with the conlleval.pl script provided by [13]
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Words please I would like to book a hotel for the first three
days of May in Marseille.

Words+Sem. Class please I would like to book a hotel for the ORDINAL
UNIT days of MONTH in CITY.

Table 2: Representation of a user’s utterance by words or words+semantic classes.

Architecture f-measure
RNN forward 74.04

RNN backward 77.42
RNN bidirectional 79.51

Attention-based mechanism 80.27
RNN Encoder-Decoder without attention mechanism 38.25

Table 3: Results on MEDIA with semantic classes

As expected, the results are not as good as on the ATIS corpus. The bidirectional RNN architecture
gets better results in comparison to a backward or forward RNN. This emphasizes the utility of using
information from past and future context together.

At last, results presented in Table 3 show that the bidirectional RNN encoder-decoder based on an
attention-based mechanism performs better than a more classical bidirectional RNN.

Also it is shown that a RNN Encoder-Decoder performs very poorly without the attention mech-
anism in order to produce an output label sequence having the same length that the input word
sequence.

4 Conclusion

This study aims to explore the use of a bidirectional RNN based on an mechanism of attention for
a SLU slot filling task. Our experiments show that this architecture reaches better results than a
more classical bidirectional RNN approach on a complex SLU corpus. This former bidirectional
RNN approach had been introduced and presented as a state-of-the-art approach for SLU two years
ago by [4] on the ATIS corpus. Even if [7] has shown that CRF still performs better than this
bidirectional RNN on more complex data like the MEDIA corpus, our results show that promising
approaches like the mechanism of attention can still improve RNN approach for SLU.
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