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Abstract. In this paper we investigate GMM-derived features recently
introduced for adaptation of context-dependent deep neural network
HMM (CD-DNN-HMM) acoustic models. We present an initial attempt
of improving the previously proposed adaptation algorithm by applying
lattice scores and by using confidence measures in the traditional max-
imum a posteriori adaptation (MAP) adaptation algorithm. Modified
MAP adaptation is performed for the auxiliary GMM model used in a
speaker adaptation procedure for a DNN. In addition we introduce two
approaches - data augmentation and data selection, for improving the
regularization in MAP adaptation for DNN. Experimental results on the
Wall Street Journal (WSJ0) corpus show that the proposed adaptation
technique can provide, on average, up to 9.9% relative word error rate
(WER) reduction under an unsupervised adaptation setup, compared to
speaker independent DNN-HMM systems built on conventional features.
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1 Introduction

Nowadays, deep neural networks (DNNs) have replaced conventional GMM-
HMMs in most state-of-the-art automatic speech recognition (ASR) systems,
because it has been shown that DNN-HMM models outperform GMM-HMMs
in different ASR tasks. However, various adaptation algorithms that have been
developed for GMM-HMM systems cannot be easily applied to DNNs because
of the different nature of these models. Many new adaptation methods have
recently been developed for DNNs, and a few of them [1–5] take advantage of
robust adaptability of GMMs. However, there is no universal method for effi-
cient transfer of all adaptation algorithms from the GMM framework to DNN
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models. The purpose of the present work is to make a step in this direction using
GMM-derived features for training DNN models.

Most of the existing methods for adapting DNN models can be classified into
several types: (1) linear transformation, (2) regularization techniques, (3) aux-
iliary features, (4) multi-task learning, (5) combining GMM and DNN models.
Linear transformation can be applied at different levels of the DNN system: to
the input features, as in linear input network transformation (LIN) [6] or feature-
space discriminative linear regression (fDLR); to the activations of hidden layers,
as in linear hidden network transformation (LHN) [6]; or to the softmax layer,
as in LON or in output-feature discriminative linear regression. The second type
of adaptation consists in re-training the entire network or only a part of it using
special regularization techniques for improving generalization, such as L2-
prior regularization [7], Kullback-Leibler divergence regularization [8], conserva-
tive training [9]. The concept of multi-task learning (MTL) has recently been
applied to the task of speaker adaptation and has been shown to improve the
performance of different model-based DNN adaptation techniques, such as LHN
and learning speaker-specific hidden unit contributions [10]. Using auxiliary
features is another approach in which the acoustic feature vectors are aug-
mented with additional speaker-specific or channel-specific features computed
for each speaker or utterance at both training and test stages. An example of
effective auxiliary features is i-vectors [11]. Alternative methods are adaptation
with speaker codes [12] and factorized adaptation [13].The most common way of
combining GMM and DNN models for adaptation is using GMM-adapted
features, for example fMLLR, as input for DNN training [1]. In [2] likelihood
scores from DNN and GMM models, both adapted in the feature space using
the same fMLLR transform, are combined at the state level during decoding.
The authors of [5] propose combining the GMM and DNN models using the
temporally varying weight regression framework.

In this work we investigate a novel approach for SAT of DNNs based on
using GMM-derived features as the input to DNNs [3, 4]. We present an initial
attempt of improving the previously proposed scheme for DNN adaptation by
using recognition lattices in MAP adaptation and by the data augmentation and
data selection approaches.

2 SAT for DNN-HMM based on GMM-derived features

Construction of GMM-derived features for adapting DNNs was proposed in [3,4],
where it was demonstrated, using MAP and fMLLR adaptation as an example,
that this type of features makes it possible to effectively use GMM-HMM adap-
tation algorithms in the DNN framework.

Our features are obtained as follows (see Figure 2). First, 39-dimensional
Mel-frequency cepstral coefficients (MFCC) with delta and acceleration coeffi-
cients are extracted with per-speaker cepstral mean normalization (CMN). Then
an auxiliary GMM monophone model is used to transform cepstral feature vec-
tors into log-likelihoods vectors. At this step, speaker adaptation of the auxiliary
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speaker-independent (SI) GMMmodel is performed for each speaker in the train-
ing corpus and the new speaker-adapted (SA) GMM model is obtained in order
to extract SA GMM-derived features. In the auxiliary GMM, each phoneme is
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Fig. 1. Using speaker adapted GMMD features for SAT DNN training.

modeled using a three state left-right context-independent GMM. For a given
acoustic MFCC-feature vector, a new GMM-derived feature vector is obtained
by calculating log-likelihoods across all the states of the auxiliary GMM mono-
phone model on the given vector. Suppose ot is the acoustic feature at time t,
then the new GMM-derived feature vector ft is calculated as follows:

ft = [p1t , . . . , p
n
t ], (1)

where n is the number of states in the auxiliary GMM model,

pit = log (P (ot | st = i)) (2)

is the log-likelihood estimated using the GMM. Here st denotes the state index
at time t. In our case n is equal to 132 (39×3+3×5), coming from: 39 three-state
phones, one five-state silence model, and two five-state (speech and non-speech)
noise models. Hence this procedure leads to a 132-dimension feature vector per
speech frame. After that, the features are spliced in time taking a context size of
11 frames (i.e., ±5). We will refer to these resulting features as GMMD features.
The dimension of the resulting features is equal to 1452 (11×132). These features
are used as the input for training the DNN. The proposed approach can be
considered a feature space transformation technique with respect to DNN-HMMs
trained on GMMD features.
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3 MAP adaptation using lattices scores

The use of lattice-based information and confidence scores [14] is a well-known
method for improving the performance of unsupervised adaptation. In this work
we use the MAP adaptation algorithm for adapting the SI GMM model. Speaker
adaptation of a DNN-HMMmodel built on GMMD features is performed through
the MAP adaptation of the auxiliary GMM monophone model, which is used
for calculating GMMD features. We modify the traditional MAP adaptation al-
gorithm by using lattices instead of alignment from the first decoding pass as
follows. Let m denote an index of a Gaussian in SI acoustic model (AM), and
µm the mean of this Gaussian. Then the MAP estimation of the mean vector is

µ̂m =
τµm +

∑
t γm(t)ps(t)ot

τ +
∑

t γm(t)ps(t)
, (3)

where τ is the parameter that controls the balance between the maximum likeli-
hood estimate of the mean and its prior value; γm(t) is the posterior probability
of Gaussian component m at time t; and ps(t) is the confidence score of state
s at time t in the lattice obtained from the first decoding pass by calculating
arc posteriors probabilities. The forward-backward algorithm is used to calculate
these arc posterior probabilities from the lattice as follows:

P (l|O) =

∑
q∈Ql

pacc(O|q) 1
αPlm(w)

P (O)
, (4)

where α is the language model scale factor (the optimal value for α is found
empirically); q is a path through the lattice corresponding to the word sequence
w;Ql is the set of paths passing through arc l; pacc(O|q) is the acoustic likelihood;
Plm(w) is the language model probability; and p(O) is the overall likelihood of
all paths through the lattice. In a particular case, when ps(t) = 1 for all states
and t, formula (3) represents the traditional MAP adaptation. In addition to
this frame-level weighting scheme, we apply confidence base selection scheme,
when we use in (3) only those observations, which confidence scores exceed the
given threshold.

4 Data augmentation and data selection for SAT

In this work we explore two approaches to improve the performance of SAT DNN
models with MAP adaptation. The first approach is based on using different
values of τ (in formula (3)) when extracting adapted GMMD features for DNN
training. In this approach we extract features for all training corpus several times
for a set of τ values. And then the DNN models are trained on the union of the
obtained features. The intuition behind this approach is similar to that used in
data augmentation.

The second approach, which we call data selection strategy, consists in split-
ting training data for each speaker in the training corpus into several parts and
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then performing MAP adaptation independently on each of the part. In this
paper we use a simple implementation of this strategy - we randomly separate
training data for each speaker into several subsets so that the total amount of
data in each subset is approximately equal to the average amount of data per
speaker in the test set. This strategy serves as a regularization and is supposed
to make adaptation more robust to the size of the adaptation set. Hence, the
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Fig. 2. Data augmentation and data selection scheme for SAT

original data from the training corpus are used in AM training several times
with different values of τ and inside different subsets of data chosen for adap-
tation. The motivation for these two approaches lies in obtaining more robust
SAT DNN models for MAP adaptation, especially when the training corpus is
relatively small.

The GMMD feature dynamic in the training corpus for different values of
τ and for different data selection strategies is shown in Figure 3. In both pic-
tures ”full” means that during the SAT training for a given speaker all data of
that speaker from the training corpus are used for MAP adaptation, whereas
”selection” means that data selection strategy is applied and training data for
this speaker is randomly spitted into two subsets so that MAP adaptation is
performed for each subset independently. Let denote T1 and T2 two types of
features, (or more precisely, to GMMD features extracted with different param-
eters). Every curve in Figures 3.a and 3.b, marked as ”T1–T2”, corresponds to the
average differences between T1 and T2 features and is calculated as follows. First,
we subtract coordinatewise features T2 from T1 on the training corpus. Then we
found mean (Figure 3.a) and standard deviation values (Figure 3.b) for each
feature vector coordinate. Finally, we sort the obtained values for each feature
vector dimension by descending order. We can see that GMMD features calcu-
lated for various τ and with (or without) data selection strategy have different
amplitude and dynamic characteristics, therefore they can contain complemen-
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tary information. Hence data augmentation might improve AM by making them
more robust to τ and to the size of the adaptation set.
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Fig. 3. Differences in GMMD-features.

5 Experimental results

The experiments are conducted on the WSJ0 corpus [15]. For AM training we use
7138 utterances of 83 speakers from the standard SI-84 training set, which cor-
respond to approximately 15 hours of data, recorded with the Sennheiser micro-
phone, 16 kHz. AMs are trained using the Kaldi speech recognition toolkit [16],
following mostly Kaldi WSJ recipe (except for GMMD-features and adaptation).
We use conventional 11×39MFCC features (39-dimensional MFCC (with CMN)
spliced across 11 frames (±5)) as baseline features and compare them to the pro-
posed GMMD features. We train four DNN models: SI model on 11×39MFCC;
SI and two SAT models on GMMD features. These four DNNs have identical
topology (except for the dimension of the input layer) and are trained on the
same training dataset. An auxiliary monophone GMM is also trained on the
same data.

The first SAT DNN on GMMD features is trained as described in Section 2
with parameter τ for adaptation equal to 5. The second SAT DNN on GMMD
features is trained using data augmentation (with τ equal to 0.1, 1 and 5) and
data selection strategy, as described in Section 4. For training SI-DNN on GMMD
features, we apply the scheme shown in Figure 1, but eliminate the speaker
adaptation step. All four CD-DNN-HMM systems had six 2048-neuron hidden
layers and 2355-neuron output layer. The neurons in the output layer correspond
to context-dependent states determined by tree-based clustering in CD-GMM-
HMM. The DNN is initialized with the stacked restricted Boltzmann machines by
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using layer by layer generative pre-training. It is trained with an initial learning
rate of 0.008 using the cross-entropy objective function. After that five iterations
of sequence-discriminative training with per-utterance updates, optimizing state
Minimum Bayes Risk (sMBR) criteria, are performed.

In all experiments further we consider SI DNN trained on 11×39MFCC fea-
tures as the baseline model and compare the performance results of the other
models with it. Evaluation is carried out on the standard WSJ0 evaluation test
si et 20, which consists of 333 read utterances (5645 words) from 8 speakers. A
WSJ trigram open NVP LM with a 20k word vocabulary is used during recog-
nition. The OOV rate is about 1.5%. The LM is pruned as in the Kaldi [16]
WSJ recipe with the threshold 10−7. The adaptation experiments are conducted
in an unsupervised mode on the test data using transcripts or lattices obtained
from the first decoding pass. For adapting an auxiliary GMM model we use
MAP adaptation algorithm. We perform two adaptation experiments: (1) with
traditional MAP and (2) with lattice-based MAP using confidence scores, as
described in Section 3. For lattice-based MAP the value of confidence threshold
is 0.6. The performance results in terms of word error rate (WER) for SI and
adapted DNN-HMM models are presented in Table 1. We can see that using
confidence scores can give an additional slight improvement in MAP adaptation
for DNN models over adaptation, which uses an alignment. The best result is
obtained using data augmentation and data selection strategies. For comparison
purposes we also train six DNN models with τ values 0.1, 1 and 5 with and
without data selection strategies, but in all cases the results are worse than the
one obtained combining both strategies, so we do not report other results here.

Type of Features Adaptation WER, % ∆ WER, %

11×39MFCC SI 7.51 baseline

GMMD

SI 7.83 −
MAP (alignment) 7.09 5.6

MAP (lattice-based) 6.93 8.4
MAP (data augmentation & selection) 6.77 9.9

Table 1. Summary of WER (%) results on WSJ0 evaluation set si et 20. ∆ WER -
relative WER reduction.

6 Conclusion

In this work we have investigated GMM-derived features recently introduced for
adaptation of DNN AMs. MAP adaptation algorithm is performed for the aux-
iliary GMM model used in a SAT procedure for a DNN. We present an attempt
of improving the previously proposed adaptation algorithm by using confidences
scores in adaptation. In addition we introduced two approaches, so called data
augmentation and data selection strategies, for improving the regularization in
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MAP adaptation for DNN. Experimental results on the WSJ0 corpus demon-
strate that, in an unsupervised adaptation mode, the proposed adaptation tech-
nique can provide, approximately, up to 9.9% relative WER reduction compared
to the SI DNN system built on conventional 11×39MFCC features.
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