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Abstract

This paper presents the systems developed
by LIUM and CVC for the WMT16 Mul-
timodal Machine Translation challenge.
We explored various comparative meth-
ods, namely phrase-based systems and at-
tentional recurrent neural networks mod-
els trained using monomodal or multi-
modal data. We also performed a hu-
man evaluation in order to estimate the
usefulness of multimodal data for human
machine translation and image description
generation. Our systems obtained the best
results for both tasks according to the auto-
matic evaluation metrics BLEU and ME-
TEOR.

1 Introduction

Recently, deep learning has greatly impacted the
natural language processing field as well as com-
puter vision. Machine translation (MT) with deep
neural networks (DNN), proposed by (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014)
and (Bahdanau et al., 2014) competed successfully
in the last year’s WMT evaluation campaign (Bo-
jar et al., 2015).

In the same trend, generating descriptions from
images using DNNs has been proposed by (Elliott
et al., 2015). Several attempts have been made to
incorporate features from different modalities in
order to help the automatic system to better model
the task at hand (Elliott et al., 2015; Kiros et al.,
2014b; Kiros et al., 2014a).

This paper describes the systems developed by
LIUM and CVC who participated in the two pro-
posed tasks for the WMT 2016 Multimodal Ma-
chine Translation evaluation campaign: Multi-
modal machine translation (Task 1) and multi-
modal image description (Task 2).

The remainder of this paper is structured in two
parts: The first part (section 2) describes the archi-
tecture of the four systems (two monomodal and
two multimodal) submitted for Task 1. The stan-
dard phrase-based SMT systems based on Moses
are described in section 2.1 while the neural MT
systems are described in section 2.2 (monomodal)
and section 3.2 (multimodal). The second part
(section 3) contains the description of the two
systems submitted for Task 2: The first one is a
monomodal neural MT system similar to the one
presented in section 2.2, and the second one is a
multimodal neural machine translation (MNMT)
with shared attention mechanism.

In order to evaluate the feasibility of the multi-
modal approach, we also asked humans to perform
the two tasks of this evaluation campaign. Results
show that the additional English description sen-
tences improved performance while the straight-
forward translation of the sentence without the im-
age did not provide as good results. The results of
these experiments are presented in section 4.

2 Multimodal Machine Translation

This task consists in translating an English sen-
tence that describes an image into German, given
the English sentence itself and the image that it
describes.

2.1 Phrase-based System

Our baseline system for task 1 is developed fol-
lowing the standard phrase-based Moses pipeline
as described in (Koehn et al., 2007), SRILM
(Stolcke, 2002), KenLM (Heafield, 2011), and
GIZA++ (Och and Ney, 2003). This system is
trained using the data provided by the organizers
and tuned using MERT (Och, 2003) to maximize
BLEU (Papineni et al., 2002) and METEOR (Lavie
and Agarwal, 2007) scores on the validation set.



We also used Continuous Space Language
Model1 (CSLM) (Schwenk, 2010) with the auxil-
iary features support as proposed by (Aransa et al.,
2015). This CSLM architecture allows us to use
sentence-level features for each line in the train-
ing data (i.e. all n-grams in the same sentence will
have the same auxiliary features). By this means,
better context specific LM estimations can be ob-
tained.

We used four additional scores to rerank 1000-
best outputs of our baseline system: The first two
scores are obtained from two separate CSLM(s)
trained on the target side (i.e. German) of the par-
allel training corpus and each one of the following
auxiliary features:

• VGG19-FC7 image features: The auxiliary
feature used in the first CSLM are the image
features provided by the organizers which are
extracted from the FC7 layer (relu7) of the
VGG-19 network (Simonyan and Zisserman,
2014). This allows us to train a multimodal
CSLM that uses additional context learned
from the image features.

• Source side sentence representation vec-
tors: We used the method described in (Le
and Mikolov, 2014) to compute continuous
space representation vector for each source
(i.e. English) sentence that will be provided
to the second CSLM as auxiliary feature. The
idea behind this is to condition our target lan-
guage model on the source side as additional
context.

The two other scores used for n-best reranking
are the log probability computed by our NMT sys-
tem that will be described in the following sec-
tion and the score obtained by a Recurrent Neural
Network Language Model (RNNLM) (Mikolov et
al., 2010). The weights of the original moses fea-
tures and our additional features were optimized
to maximize the BLEU score on the validation set.

2.2 Neural MT System

The fundamental model that we experimented2

is an attention based encoder-decoder approach
(Bahdanau et al., 2014) except some notable
changes in the recurrent decoder called Condi-
tional GRU.

1github.com/hschwenk/cslm-toolkit
2github.com/nyu-dl/dl4mt-tutorial

We define by X and Y , a source sentence of
length N and a target sentence of length M re-
spectively. Each source and target word is rep-
resented with an embedding vector of dimension
EX and EY respectively:

X = (x1, x2, ..., xN ), xi ∈ REX (1)

Y = (y1, y2, ..., yM ), yj ∈ REY (2)

A bidirectional recurrent encoder reads an input
sequenceX in forwards and backwards to produce
two sets of hidden states based on the current in-
put and the previous hidden state. An annotation
vector hi for each position i is then obtained by
concatenating the produced hidden states.

An attention mechanism, implemented as a sim-
ple fully-connected feed-forward neural network,
accepts the hidden state ht of the decoder’s recur-
rent layer and one input annotation at a time, to
produce the attention coefficients. A softmax acti-
vation is applied on those attention coefficients to
obtain the attention weights used to generate the
weighted annotation vector for time t. The initial
hidden state h0 of the decoder is determined by a
feed-forward layer receiving the mean annotation
vector.

We use Gated Recurrent Unit (GRU) (Chung et
al., 2014) activation function for both recurrent en-
coders and decoders.

2.2.1 Training
We picked the following hyperparameters for all
NMT systems both for Task 1 and Task 2. All
embedding and recurrent layers have a dimen-
sionality of 620 and 1000 respectively. We used
Adam as the stochastic optimizer with a mini-
batch size of 32, Xavier weight initialization (Glo-
rot and Bengio, 2010) and L2 regularization with
λ = 0.0001 except the monomodal Task 1 sys-
tem for which the choices were Adadelta, sam-
pling from N (0, 0.01) and L2 regularization with
λ = 0.0005 respectively.

The performance of the network is evaluated on
the validation split using BLEU after each 1000
minibatch updates and the training is stopped if
BLEU does not improve for 20 evaluation periods.
The training times were 16 and 26 hours respec-
tively for monomodal and multimodal systems on
a Tesla K40 GPU.

Finally, we used a classical left to right beam-
search with a beam size of 12 for sentence gener-
ation during test time.



2.3 Data

Phrase-based and NMT systems for Task 1 are
trained using the dataset provided by the organiz-
ers and described in Table 1. This dataset con-
sists of 29K parallel sentences (direct translations
of image descriptions from English to German) for
training, 1014 for validation and finally 1000 for
the test set. We preprocessed the dataset using the
punctuation normalization, tokenization and low-
ercasing scripts from Moses. In order to general-
ize better over the compound structs in German,
we trained and applied a compound splitter3 (Sen-
nrich and Haddow, 2015) over the German vocab-
ulary of training and validation sets. This reduces
the target vocabulary from 18670 to 15820 unique
tokens. During translation generation, the splitted
compounds are stitched back together.

Side Vocabulary Words

English 10211 377K
German 15820 369K

Table 1: Training Data for Task 1.

2.4 Results and Analysis

The results of our phrase-based baseline and the
four submitted systems are presented in Table 2.
The BL+4Features system is the rescoring of the
baseline 1000-best output using all the features de-
scribed in 2.1 while BL+3Features is the same but
excluding FC7 image features. Overall, we were
able to improve test set scores by around 0.4 and
0.8 on METEOR and BLEU respectively over a
strong phrase-based baseline using auxiliary fea-
tures.

Regarding the NMT systems, the monomodal
NMT achieved a comparative BLEU score of
32.50 on the test set compared to 33.45 of the
phrase-based baseline. The multimodal NMT sys-
tem that will be described in section 3.2, obtained
relatively lower scores when trained using Task 1’s
data.

3 Multimodal Image Description
Generation

The objective of Task 2 is to produce German de-
scriptions of images given the image itself and one
or more English descriptions as input.

3github.com/rsennrich/wmt2014-scripts

3.1 Visual Data Representation

To describe the image content we make use
of Convolutional Neural Networks (CNN). In a
breakthrough work, Krizhevsky et al. (Krizhevsky
et al., 2012) convincingly show that CNNs yield
a far superior image representation compared
to previously used hand-crafted image features.
Based on this success an intensified research ef-
fort started to further improve the representations
based on CNNs. The work of Simonyan and
Zisserman (Simonyan and Zisserman, 2014) im-
proved the network by breaking up large convolu-
tional features into multiple layers of small con-
volutional features, which allowed to train a much
deeper network. The organizers provide these fea-
tures to all participants. More precisely they pro-
vide the features from the fifth convolutional layer,
and the features from the second fully connected
layer of VGG-19. Recently, Residual Networks
(ResNet) have been proposed (He et al., 2015).
These networks learn residual functions which are
constructed by adding skip layers (or projection
layers) to the network. These skip layers pre-
vent the vanishing gradient problem, and allow for
much deeper networks (over hundred layers) to be
trained.

To select the optimal layer for image representa-
tion we performed an image classification task on
a subsection of images from SUN scenes (Xiao et
al., 2010). We extract the features from the various
layers of ResNet-50 and evaluate the classifica-
tion performance (Figure 1). The results increase
during the first layers but stabilize from Block-4
on. Based on these results and considering that a
higher spatial resolution is better, we have selected
layer ’res4f relu’ (end of Block-4, after ReLU) for
the experiments on multimodal MT. We also com-
pared the features from different networks on the
task of image description generation with the sys-
tem of Xu et al. (Xu et al., 2015). The results
for generating English descriptions (Table 3) show
a clear performance improvement from VGG-19
to ResNet-50, but comparable results are obtained
when going to ResNet-152. Therefore, given the
increase in computational cost, we have decided to
use ResNet-50 features for our submission.

3.2 Multimodal NMT System

The multimodal NMT system is an extension of
(Xu et al., 2015) and the monomodal NMT system
described in Section 2.2.



System Description
Validation Set Test Set

METEOR (norm) BLEU METEOR (norm) BLEU

Phrase-based Baseline (BL) 53.71 (58.43) 35.61 52.83 (57.37) 33.45

BL+3Features 54.29 (58.99) 36.52 53.19 (57.76) 34.31
BL+4Features 54.40 (59.08) 36.63 53.18 (57.76) 34.28
Monomodal NMT 51.07 (54.87) 35.93 49.20 (53.10) 32.50
Multimodal NMT 44.55 (47.97) 28.06 45.04 (48.52) 27.82

Table 2: BLEU and METEOR scores on detokenized outputs of baseline and submitted Task 1 systems.
The METEOR scores in parenthesis are computed with -norm parameter.
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Figure 1: Classification accuracy on a subset of
SUN scenes (Xiao et al., 2010) for ResNet-50:
The colored groups represent the building blocks
while the bars inside are the stacked blocks (He et
al., 2015).

Network BLEU-1 BLEU-2 BLEU-3 BLEU-4
VGG-19 58.2 31.4 18.5 11.3

ResNet-50 68.4 45.2 30.9 21.1
ResNet-152 68.3 44.9 30.7 21.1

Table 3: BLEU scores for various deep features
on the image description generation task using the
system of Xu et al. (Xu et al., 2015).

The model involves two GRU layers and an at-
tention mechanism. The first GRU layer computes
an intermediate representation s

′
j as follows:

s
′
j = (1− z′

j)� s
′
j + z

′
j � sj−1 (3)

s
′
j = tanh(W

′
E[yj−1] + r

′
j � (U

′
sj−1)) (4)

r
′
j = σ(W

′
rE[yj−1] + U

′
rsj−1) (5)

z
′
j = σ(W

′
zE[yj−1] + U

′
zsj−1) (6)

where E is the target word embedding, s
′
j is the

hidden state, r
′
j and z

′
j are the reset and update

gate activations. W
′
, U

′
r, W

′
r , U

′
r, W

′
z and U

′
z are

the parameters to be learned.
A shared attention layer similar to (Firat et

al., 2016) that consists of a fully-connected feed-
forward network is used to compute a set of
modality specific attention coefficients emod

ij at

each timestep j:

emod
ij = Uatt tanh(Wcatth

mod
i +Watts

′
j) (7)

The attention weight between source modality
context i and target word j is computed by apply-
ing a softmax on emod

ij :

αij =
exp(etxtij )∑N
k=1 exp(etxtkj )

(8)

βij =
exp(eimg

ij )∑196
k=1 exp(eimg

kj )
(9)

The final multimodal context vector cj is obtained
as follows:

cj = tanh(
N∑
i=1

αij h
txt
i +

196∑
i=1

βij h
img
i ) (10)

The second GRU generates sj from the interme-
diate representation s

′
j and the context vector cj as

follows:

sj = (1− zj)� sj + zj � s
′
j (11)

sj = tanh(Wcj + rj � (Us
′
j)) (12)

rj = σ(Wrcj + Urs
′
j) (13)

zj = σ(Wzcj + Uzs
′
j) (14)

where s
′
j is the hidden state, rj and zj are the reset

and update gate activations. W , Ur, Wr, Ur, Wz

and Uz are the parameters to be learned.
Finally, in order to compute the target word, the

following formulations are applied:

oj = Lo tanh(E[yj−1] + Lssj + Lccj) (15)

P (yj |yj−1, sj , cj) = Softmax(oj) (16)

where Lo, Ls and Lc are trained parameters.
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Figure 2: The architecture of the multimodal NMT system. The boxes with ∗ refers to a linear trans-
formation while Φ(Σ) means a tanh applied over the sum of the inputs. The figure depicts a running
instance of the network over a single example.

3.2.1 Generation
Since we are provided 5 source descriptions for
each image in order to generate a single German
description, we let the NMT generate a German
description for each source and pick the one with
the highest probability and preferably without an
UNK token.

3.3 Data

The organizers provided an extended version of
the Flickr30K Entities dataset (Elliott et al., 2016)
which contains 5 independently crowd-sourced
German descriptions for each image in addition to
the 5 English descriptions originally found in the
dataset. It is possible to use this dataset either by
considering the cross product of 5 source and 5 tar-
get descriptions (a total of 25 description pairs for
each image) or by only taking the 5 pairwise de-
scriptions leading to 725K and 145K training pairs
respectively. We decided to use the smaller subset
of 145K sentences.

Side Vocabulary Words

English 16802 1.5M
German 10000 1.3M

Table 4: Training Data for Task 2.

The preprocessing is exactly the same as Task 1
except that we only kept sentence pairs with sen-
tence lengths ∈ [3, 50] and with a ratio of at most
3. This results in a final training dataset of 131K

sentences (Table 4). We picked the most frequent
10K German words and replaced the rest with an
UNK token for the target side. Note that com-
pound splitting was not done for this task.

3.4 Results and Analysis

System
Validation Test

METEOR BLEU METEOR BLEU

Monomodal 36.3 24.0 35.1 23.8
Multimodal 34.4 19.3 32.3 19.2

Table 5: BLEU and METEOR scores of our NMT
based submissions for Task 2.

As we can see in Table 5, the multimodal system
does not surpass monomodal NMT system. Sev-
eral explanations can clarify this behavior. First,
the architecture is not well suited for integrating
image and text representations. This is possible
as we did not explore all the possibilities to bene-
fit from both modalities. Another explanation is
that the image context contain too much irrele-
vant information which cannot be discriminated
by the lone attention mechanism. This would need
a deeper analysis of the attention weights in order
to be answered.

4 Human multimodal description

To evaluate the importance of the different modal-
ities for the image description generation task, we
have performed an experiment where we replace



Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR
Image + sentences 54.30 35.95 23.28 15.06 39.16

Image only 51.26 34.74 22.63 15.01 38.06
Sentence only 39.37 23.27 13.73 8.40 32.98

Our system 60.61 44.35 31.65 21.95 33.59

Table 6: BLEU and METEOR scores for human
description generation experiments.

the computer algorithm with human participants.
The two modalities are the five English description
sentences, and the image. The output is a single
description sentence in German. The experiment
asks the participants for the following tasks:

• Given both the image and the English de-
scriptions: ’Describe the image in one sen-
tence in German. You can get help from the
English sentences provided.’
• Given only the image: ’Describe the image

in one sentence in German.’
• Given only one English sentence: ’Translate

the English sentence into German.’

The experiment was performed by 16 native Ger-
man speakers proficient in English with age rang-
ing from 23 to 54 (coming from Austria, Germany
and Switzerland, of which 10 are female and 6
male). The experiment is performed on the first 80
sentences of the validation set. Participants per-
formed 10 repetitions for each task, and not re-
peating the same image across tasks. The results
of the experiments are presented in Table 6. For
humans, the English description sentences help to
obtain better performance. Removing the image
altogether and providing only a single English de-
scription sentence results in a significant drop. We
were surprised to observe such a drop, whereas we
expected good translations to obtain competitive
results. In addition, we have provided the results
of our submission on the same subset of images;
humans clearly obtain better performance using
METEOR metrics, but our approach is clearly out-
performing on the BLEU metrics. The participants
were not trained on the train set before performing
the tasks, which could be one of the reasons for
the difference. Furthermore, given the lower per-
formance of only translating one of the English de-
scription sentences on both metrics, it could pos-
sibly be caused by existing biases in the data set.

5 Conclusion and Discussion

We have presented the systems developed by
LIUM and CVC for the WMT16 Multimodal Ma-

chine Translation challenge. Results show that in-
tegrating image features into a multimodal neural
MT system with shared attention mechanism does
not yet surpass the performance obtained with a
monomodal system using only text input. How-
ever, our multimodal systems do improve upon an
image captioning system (which was expected).
The phrase-based system can benefit from rescor-
ing with multimodal neural language model as
well as rescoring with a neural MT system.

We have also presented the results of a human
evaluation performing the same tasks as proposed
in the challenge. The results are rather clear: im-
age captioning can benefit from multimodality.
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