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Abstract
This paper investigates iterative PLDA adaptation for cross-
show speaker diarization applied to small collections of French
TV archives based on an i-vector framework. Using the target
collection itself for unsupervised adaptation, PLDA parameters
are iteratively tuned while score normalization is applied for
convergence. Performances are compared, using combinations
of target and external data for training and adaptation. The ex-
periments on two distinct target corpora show that the proposed
framework can gradually improve an existing system trained
on external annotated data. Such results indicate that perform-
ing speaker diarization on small collections of unlabeled audio
archives should only rely on the availability of a sufficient boot-
strap system, which can be incrementally adapted to every tar-
get collection. The proposed framework also widens the range
of acceptable speaker clustering thresholds for a given perfor-
mance objective.
Index Terms: speaker diarization, PLDA, unsupervised train-
ing, domain adaptation, iterative training

1. Introduction
The goal of speaker diarization is to segment and label speaker
utterances across one or more audio recordings without a pri-
ori knowledge of the speakers. The amount of multimedia data
produced every day, requiring automatic indexation, created a
need for an effective diarization framework.

Cross-show diarization consists in processing a dataset of
raw audio archives to extract the information about the speaker
occurences: ”who speaks when?”. In such a task, speakers are
to be identified by a same label across the dataset. Speaker di-
arization applied to collections is usually decomposed in two
steps: within-recording diarization, aiming at segmenting and
clustering speaker occurences within each recording, and cross-
recording speaker linking, which aims at regrouping the within-
recording clusters of a same speaker across the whole dataset.

Application domains of cross-show diarization include ra-
dio and TV [1, 2, 3, 4, 5], phone [6, 7, 8, 9] or meeting record-
ings [10]. The state-of-the-art systems based on i-vector/PLDA
framework require speaker annotated datasets including speaker
segments and identities. The training of those systems relies on
between-speaker variability estimation which requires several
utterances of a same speaker in various acoustic environments.

When a new collection is to be processed, the collection
itself would be the best corpus for this variability estimation.
Unfortunately, manual speaker labels are not available for ev-
ery targeted collection, leading to two different strategies: the
state-of-the-art, for which supervised training on external anno-
tated training data results in an acoustic conditions mismatch
between training and target data or our approach which uses
unsupervised training on the target dataset itself.

In our previous work [2, 11], it was shown that an unsuper-
vised diarization system, trained on a large multi-speaker un-
segmented dataset, performs as well as a supervised one, indi-
cating that annotations are not mandatory for training. How-
ever we noted that if a target dataset, used as training material,
is too small, an effective unsupervised PLDA system cannot be
trained. Only the adaptation of an existing system, trained on a
large amount of external annotated data, is possible.

In case of acoustic mismatch between train and target data,
different strategies of domain adaptation have been proposed in
the context of speaker verification [7][12][13]. In the context of
unsupervised PLDA training, the concept of iterative training
[14] has also been investigated and proved to be effective.

In this paper, we propose an iterative adaptation process to
overcome the target collections small size issue. We investigate
the use of data from the target collection itself to perform it-
erative adaptation of PLDA parameters for speaker diarization,
using manually annotated external data for bootstrap. The main
difference with the system proposed in [11] is the refined adap-
tation step, the focus on the iterative process and the fact that
only the cross-recording speaker linking is rerun through itera-
tions, instead of the whole process.

Subsequent sections are organized as follows: first, we de-
scribe the diarization framework and the perimeter of the it-
erative adaptation process. Then we present the data used for
the experiments and conclude with the performances of the pro-
posed system and the possible improvements.

2. Diarization Framework
Figure 1 describes the two-pass diarization process, detailed
below. It is composed of a within-recording diarization, per-
formed on each file of the collection, followed by a cross-
recording speaker linking step. This process, widely described
in [2], is based on an i-vector/PLDA system trained in a super-
vised way, then adapted in an unsupervised way.

2.1. Within-recording speaker diarization

The front-end is composed of a MFCC extraction and Viterbi-
based speech activity detection, followed by a standard BIC
segmentation and clustering and i-vector extraction. The BIC
penalty coefficient is chosen so that resulting clusters are pure
and represent a unique speaker. Each cluster is normalized with
zero mean and unit variance and an i-vector is extracted. Spheri-
cal Nuisance Normalization (SNN) [15] is applied on the whole
i-vector dataset.

Afterwards, PLDA is used to calculate log likelihood ratios
(LLR) for all pairs of i-vectors [16]. The opposite of the result-
ing LLR matrix is called PLDA score matrix in the following of
the paper. For each recording, a PLDA score matrix is computed
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Figure 1: Overview of the diarization framework for bootstrap
(plain blue lines) and adapted (dashed lines) training.

and a complete-linkage Hierarchical Agglomerative Clustering
(HAC) is performed to cluster the i-vectors.

The dimension of the feature vectors is 39: 13 MFCCs in-
cluding c0 coefficient supplemented with the first and second
order derivatives. The GMM is composed of 256 Gaussians
with diagonal covariance matrix, the dimension of the i-vectors
is 200 and PLDA eigenvoice matrix has a dimension of 100
with no eigenchannel matrix. I-vector and PLDA parameters
estimation are computed using the SIDEKIT toolkit [17].

2.2. Cross-Show Speaker linking

Once each recording has been separately processed, the whole
collection is considered as a global speaker linking problem and
the previous clustering framework is reapplied on newly formed
clusters. An i-vector is computed for each within-recording
output cluster (by computing the mean of the initial i-vectors
merged in that cluster), a new PLDA score matrix is computed
and HAC is used to form global clusters.

3. Iterative adaptation of PLDA parameters
In this paper, the target collections are too small to be solely
used for unsupervised estimation of PLDA parameters [11], the
use of a sufficient external labeled train corpus is mandatory to
estimate those parameters.

Figure 1 represents the overview of the diarization frame-
work, including the two possible strategies for the training pro-
cess: the bootstrap system (baseline) is represented with blue
plain lines while the blue dashed lines correspond to the pro-
posed adapted system. With the bootstrap system, a first step of
within- and cross recording diarization is performed. We pro-
pose then to adapt the system with the target data itself and re-
run the cross-recording speaker linking. We define an iterative
PLDA adaptation framework (blue dashed lines). Our aim is to
use the recurring speakers information, retrieved after an itera-

tion of cross-recording diarization, to enhance the system. The
within-recording process could also be rerun but for computa-
tional reasons, we decided to focus on the cross-recording part.

3.1. Unsupervised adaptation

Due to the mismatch between the train and target corpora and
the lack of target data for PLDA training, we propose to apply
the weighted likelihood domain adaptation technique, which is
described in [12]. Γ, the inter-speaker variability matrix, and Λ,
the intra-speaker variability matrix, are the PLDA parameters,
trained with the EM-algorithm to maximize the weighted log-
likelihood objective :

L(Γ,Λ) = αLtrain(Γ,Λ) + (1− α)Ltarget(Γ,Λ) (1)

With:

Lk(Γ,Λ) =
1
Nk

Sk∑

s=1

log(p(Ds|Γ,Λ)) (2)

Where Nk is the number of sessions and Sk the number of
speakers of corpus k, Ds being the collection of i-vectors rep-
resenting a speaker s. Speaker sessions from the target corpus
are extracted from the output clusters of an iteration of cross-
recording linking. We only consider the clusters (i.e. speakers)
with occurrences in at least three different recordings, with a
minimum amount of speech of 10s per recording.

The main parameter of the adaptation step is the weight α,
which balances the influence of the two corpora. With α = 0,
only the target data is used and the EM algorithm does not con-
verge, due to the dataset size. When α = 1, the PLDA parame-
ters obtained after adaptation are identical to the baseline.

3.2. Iterative training

Due to the improvement of diarization performance expected
with the adaptation procedure, we propose to iterate the process.
The main parameter of the cross-recording speaker linking pro-
cess is the clustering threshold λ. It is the key parameter of the
HAC applied on the score matrix. The optimal value usually
depends on the PLDA scores distribution. Through the adapta-
tion procedure, we observe that the distribution changes from
one iteration to another. Since we do not want to have to tune
the threshold after each iteration and keep the same as the base-
line, we propose to normalize PLDA scores according to the
baseline distribution, which is the distribution of PLDA scores
at the initial iteration (3).

x̂ijn =
xijn − µn

σn
σbaseline + µbaseline (3)

with xijn being the PLDA likelihood ratio between i-vector
i and j at iteration n. µbaseline, σbaseline, µn and σn are the
score distributions parameters.

Since the set of i-vectors to be clustered is the same
whichever the iteration (only the cross-recording speaker link-
ing step is rerun), distribution parameters can consequently be
computed over different versions of PLDA scores between the
same i-vector subsets. Scores between i-vectors used for PLDA
adaptation at the previous iteration can be biased: some are
considered as belonging to the same speaker, but it might be
inaccurate. We decide to normalize according to the distribu-
tion of scores between i-vectors which are not used for PLDA
adaptation at the previous iteration, i.e. i-vectors representing
non-recurring speakers only.
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4. Experimental context
Contrastive models for diarization systems were trained on
manually annotated corpus. In this corpus the speakers are
identified by their first and last names, providing several ses-
sions for a large set of speakers. About 220 hours of French
broadcast news drawn from REPERE [18], ETAPE [19] and
ESTER[20] evaluation campaigns were used to build three cor-
pora. The shows were broadcast between 1998 and 2007, du-
ration of shows ranges from ten minutes to one hour. The cor-
pora also contain some broadcasts of Moroccan radio in French
language. For each show in the corpus, multiple episodes are
available. Speakers appearing in more than one recording of a
corpus are called recurring (R.) speakers, as opposed to one-
time (O.T.) speakers, who only speak in one episode.

4.1. Train corpus

The train corpus, used for bootstrapping, is composed of 317
audio files from train and development corpora of the ESTER
campaign, taken from radio broadcasts, for a total of 190 hours
of speech duration. To maximize the acoustic mismatch be-
tween the train and target data, only radio shows were selected
to build the train corpus, while both target corpora contain TV
shows only. The train corpus contains 3212 unique speakers.
Among those speakers, 372 meet our requirements for PLDA
training: they appear in at least three recordings, with a min-
imum speech time per recordings of 10s. Thus, this corpus is
well suited to train an i-vector/PLDA system.

4.2. Target corpora

We define two target corpora built from the REPERE and
ETAPE train and test corpora. The first one, named LCPtarget,
is the collection of all available episodes of the show LCP Info,
a French TV news broadcast show. The second target corpus,
named BFMtarget, is the collection of all available episodes
of the TV news talk-show BFM Story. Those two corpora have
been selected because they both contain a decent number of
episodes (more than 40), and there is a large amount of recur-
ring speakers, who speak for more than 50% of the total speech
duration of the collection. Numerical details about the two cor-
pora are presented in table 1. As opposed to [11], where the
same shows are selected to build the target corpora, we decided
to restrict our experiments to the annotated segments, in order
to accurately evaluate the unsupervised part of the framework.

Target Corpus LCP BFM

Episodes 45 42
Labeled speech duration 10h08m 19h57m
One-Time (O.T.) speakers 127 345
Recurring (R.) speakers (2+ occurrences) 93 77
R. speakers (3+ occurrences) 48 35
Total speakers 220 422
O.T. speakers speech proportion (s.p.) 20.12% 44,84%
R. speakers (2+ occurrences) s.p. 79.88% 55,16%
R. speakers (3+ occurrences) s.p. 67.06% 45.94%
Average speaker time per episode 1m08s 1m58s

Table 1: Composition of target corpora.

5. Experiments
The metric used to measure performance in speaker diarization
is the Diarization Error Rate (DER). DER was introduced by

the NIST as the fraction of speaking time not attributed to the
correct speaker, using the best match between references and
hypothesis speaker labels. The scoring tool [21] is employed for
within-recording and cross-recording speaker diarization, with
a collar of 250ms. The focus of this paper being the cross-show
speaker linking part of the diarization process, we only present
our results in terms of cross-recording DER.

5.1. Baseline and oracle

5.1.1. Definition

For both target corpora, the same baseline system is used, where
PLDA parameters, UBM and TV matrix are trained on the ex-
ternal corpus. We keep the same UBM and TV in all exper-
iments in order to focus on the variability induced by PLDA
adaptation. This baseline is the bootstrap of our iterative adap-
tation framework (see 3).

Using the annotations available with the two target corpora,
we decided to train an oracle system for each. The oracle sys-
tem is obtained with an iteration of adaptation between the base-
line and the recurring speakers of the target corpora, according
to the corpus labels. This is the best achievable system, since
it is using the ground truth about the target corpora for PLDA
adaptation. The target corpora being too small, the oracle can-
not be trained without the external bootstrap.

5.1.2. Comments

Results are presented as a function of three parameters: the
adaptation parameter, α (see eq. 1), the clustering threshold,
λ and the iteration number, i, ranging from 1 to 6. For a single
experiment, α and λ are fixed and 6 iterations are performed.
Figures 2 and 3 show results for both corpora, as a function
of α and λ respectively, the other parameter not varying. The
DER at each iteration is shown with a histogram bar. After the
last iteration, we note the best achievable DER, which could be
obtained with optimal threshold (iter6-best, last histogram bar).

According to figure 3, we see that the best baseline DER for
BFMtarget is 19.5, while it is 18.0 for LCPtarget. In figure 2,
the best oracle DER on the BFM corpus is of 12.2, while for the
LCP corpus, it is of 11.2. This shows that when the recurring
speakers of the target corpus are perfectly known, the adaptation
process can greatly improve the baseline DER.

Figure 2: Cross-recording DER for both target corpora, for iter-
ations 0 (baseline) to 6, as a function of α (λ = −4).
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5.2. Iterative PLDA Adaptation

On figure 2, with the proposed framework, we see that a single
iteration of PLDA adaptation (iter1) greatly improves the base-
line DER for all values of α (for example, decrease from 19.5
to 14.0 and from 18.6 to 15.9 respectively, for α = 0.7). This
is coherent with the results presented in [12], where the adap-
tation process improved the baseline results too. If the major
DER decrease is obtained after a single iteration, we note that
in some configurations, two or three iterations are necessary to
reach some kind of plateau. Sometimes, extra iterations can
even give an small extra improvement.

We can also see that optimal values for α are found in a
range between 0.5 and 0.7, this is coherent with the oracle re-
sults. When α is too small, the DER quickly reaches a plateau
and the system stops improving after one iteration. This was
observed in [11], where adaptation was performed with con-
catenation of train and target data. This is equivalent to setting
α as the ratio between the two dataset, in this case, close to
0.1. Whatever the value of α, the cross-recording DER after 6
iterations iter6 is always better than the baseline.

Figure 3: Cross-recording DER for both target corpora, for iter-
ations 0 (baseline) to 6, as a function of λ (α = 0.5).

5.3. Clustering threshold

In figure 3, α is set to 0.5 and the results depend on λ. Whatever
the choice of λ, the DER after 6 iterations (iter6) is lower than
the baseline, with a decrease after each iteration. This means
that the range of acceptable thresholds, if we want to keep the
DER below a certain value, is wider when iterative adaptation is
performed. Iterative adaptation shows that after each iteration,
the gathered information about recurring speakers of the target
corpus enhances the PLDA parameters estimation.

For BFMtarget, the best final DER is obtained for λ =
−16, with a final DER value of 13.2, very close to the oracle
(12.2), the baseline being 19.9. For LCPtarget, the best final
DER value of 15.9 is obtained for λ = −4, the oracle being
11.3 and the baseline being 18.6. We see that for both corpora,
the threshold value corresponding to the best final DER (iter6)
is not necessarily the optimal value for the baseline, but is very
close. We also note that for optimal values of λ, the final DER
(iter6) is really close to the best achievable DER (iter6-best).

From our observations, we note that for high values of λ
(merges of clusters from different speakers), the iterative adap-
tation process can stagnate or even diverge. If stagnation is

noticeable for the last experiment of figure 3, divergence only
appears for λ values far from the baseline optimal, and a de-
cently calibrated threshold should be sufficient to obtain DER
gain with the proposed framework.

Figure 4: Effect of score normalization on distributions and
DER for a single iteration on LCPtarget

5.4. Score normalization

If the optimal α parameter seems to be easy to calibrate, the
main difficulty in the speaker linking step is the clustering
threshold setting (λ). In our framework, for a single experi-
ment, it set once and applied for the baseline and adapted di-
arization. Early experiments with the framework showed that
without any score normalization technique, the distribution of
PLDA scores changes a lot from one iteration to another and
the system under-performs, due to the inability to modify λ ac-
cordingly. This phenomenon is presented in figure 4, for a sin-
gle adaptation iteration. When studying closely the distribution
of scores, we also noticed that the combination of adaptation
and score normalization tends to spread the scores in the re-
gion of the optimal threshold, allowing to improve the resolu-
tion around (not visible in the figure).

6. Conclusion
In this paper we proposed a cross-show diarization framework
based on an auto-improving i-vector/PLDA system, in order
to process small collections of multi-speaker unsegmented TV
archives. While previous work showed that unsupervised train-
ing on such data could be achieved, the small size of target cor-
pora is a problem. The use of an external bootstrap is required.

Using unlabeled and unsegmented data from the target col-
lection itself, we successfully applied the weighted likelihood
domain adaptation technique, which proved to be effective for
supervised speaker verification on mono-speaker data, to im-
prove the baseline diarization system. After multiple iterations
and using score normalization for better convergence, results
showed a decrease in terms of cross-recording DER for both
target corpora, for a wide range of speaker linking thresholds.

Further work will be dedicated to the study of the mini-
mal requirements concerning target corpora and bootstrap for
the adaptation process, in the context of incrementally growing
archive collections. We will also consider training a fully unsu-
pervised auto-improving diarization system, the main problem
being the question of bootstrapping without any labeled data.
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