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Mathematical model of calcium exchange during hemodialysis

using a citrate containing dialysate

Julien Aniort∗, Laurent Chupin†, Nicolae Ĉındea‡

January 12, 2017

Abstract

In this paper we propose a mathematical model for the calcium exchange during hemodialysis.
This model combines a first part describing the flows of two fluids, blood and dialysate, in a dialyser
fiber to a second part which tackle the chemical reactions between several chemical species present
in these fluids. The model governing the fluid flows is obtained by asymptotic analysis and takes
into account the anisotropy of the fibers forming a dialyzer. We complete this partial differential
equations system by standard boundary conditions, the specificity of our study being that we optimize
the values of input and output pressures such that the blood and dialysate flow rates match the values
measured on clinical dialyzers. In order to to highlight the differences in the flow, several rheologies
for blood are proposed. The fluid velocity field drives the convective part in the reaction–diffusion
system, modelling the exchange of five chemical species present in blood and dialysate. Finally, several
numerical experiments illustrate this model emphasizing the calcium balance for citrate containing
dialysates.

1 Introduction

Renal replacement therapy with hemodialysis is used in patient with end stage renal disease to remove
uremic toxins and restore blood electrolytes composition [16]. End stage renal disease leads to mineral
metabolism changes, bone disorders and cardiovascular calcifications [13]. All are related with high mor-
tality rate in chronic hemodialysis patients. Balance between calcium intake and loss during hemodialysis
treatment affects these abnormalities. Therefore, it is essential to be able to predict calcium exchange
with hemodialysis. Heparin is the most routinely used anticoagulant for the prevention of extracorporeal
circulation clotting during hemodialysis sessions. However, heparin exposes the patient to the risk of
bleeding complications and heparin induced thrombocytopenia [6]. To avoid these complications, re-
gional anticoagulation of blood circuit can be realized using a citrate containing dialysate [20]. Citrate is
a potent calcium chelator and the anticoagulant properties of citrate dialysate are believed to be caused
by the decrease in free calcium concentration of the blood. However, this hypothesis has not yet been
confirmed since it is not possible to measure the free calcium concentration distribution into the dialyzer.
In the present study we propose to use a modeling of fluid and solutes transport to predict the amount of
calcium exchanged between blood and dialysate and the distribution of free calcium concentration into
the dialyzer.
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The one-dimensional theory of solute transport in dialyzer provides a simplified description of solute flows
in blood and dialysate channels, assuming that the average concentration of the solute in any cross-section
of the channel is equal to the concentration of the solute at the surface of the membrane. Transport in
membrane is modeled according to the Kedem and Katchalsky equation [18] with Villarroel correction [33]
used to account for convection-diffusion interaction. One-dimensional axially-dependent models based
on ordinary differential equations have provided much insight into the dynamics of fluid and solutes
within and around the hollow fibers. However, they have several limitations. Notably, the assumption
of homogeneous solute concentration in the cross-section of the channels does not allow computing the
distribution of concentration into the dialyser. Resolution of partial differential equations using finite
elements method eliminates the need for most of the simplifying assumptions and potentially generates
more accurate results. Few studies about calcium flux modeling into the dialyzer have been conducted.
Gotch et al [12] proposes to use the concept of dialysance in a way analogous to urea for calculating the
calcium flux through the dialyser. However, there is no evidence that calcium dialysance is independent
of the concentration of calcium and other solutes reacting with calcium. Moreover, calcium binding to
albumin and diffusible calcium complexes are not taken into account [12]. Thijssen et al [31] completed
Gotch’s model adding the calculation of the concentrations of complexes derived from calcium, citrate
and albumin at equilibrium. But it is only Huang et al [17] who considered the interactions between
diffusion, convection and chemical reaction within the dialyzer. Their model is based on one-dimensional
theory. A step of calculating concentrations after the equilibrium of reaction is reached was added to the
algorithm making it possible to calculate the concentrations within the dialyzer. However, this model
as other one-dimensional theory models does not give the concentration gradient of calcium within the
blood compartment.

In the present study we propose a modelling of flows and concentrations, notably of calcium ions, in a
dialyser using citrate containing dialysate. The blood is modelled as a Newtonian or, as a well, as a
non-Newtonian fluid, the dialysate fluid is described as a Newtonian fluid and the flow in the membrane
is governed by Darcy’s equation. The main novelty with respect to the existing literature [8, 7, 10] on the
flow models is in choice of the boundary conditions which drive the flow. We only impose the pressures
at the inlet and outlet of a hollow fiber for the blood and dialysate respectively. Since these pressures at
the level of a fiber are not generally available, in practice we compute the pressure boundary data using
an optimization algorithm providing a set of pressures such that the resulting solution fits the blood and
dialysate global flow rates at the level of the hemodialysis machine. This procedure allows us to consider
several different rheologies for the non-Newtonian fluid governing the blood flow and to obtain a velocity
field of the fluids in a dialyzer such that the blood flow rate and the dialysate flow rate available on every
standard hemodialysis machine are fitted by the model.

The velocity field computed by solving the fluid model enters in the convective part of the convection-
diffusion-reaction system describing the interaction of five different chemical species presented in blood
and in dialysate. Since the albumin, which is one of the considered species, exerts an oncotic pressure
in the blood, the model describing the evolution of the velocity of the fluids should take into account
this supplementary pressure. In this case the fluid model is strongly coupled to the convection-diffusion-
reaction system and that makes the whole system difficult to handle from both theoretical and numerical
point of view. In order to simplify the model, the assumption usually made in the literature [19, 21] is that
the oncotic pressure depends linearly to the longitudinal variable in a fiber and is radially invariant. This
is equivalent to assume that the concentration of albumin, or in general of proteins, is monotonic in one
hollow fiber with respect to the longitudinal variable. For the present study we adopt this hypothesis,
even if the numerical simulations show that for pressure data corresponding to clinical situations the
concentration of albumin is non-monotonic in both situations if the osmotic pressure is took into account
by the model or not. The study of the coupled model fluid-convection-reaction-diffusion will make the
object of a future study.

The plan of this paper is as follows. In Section 2 we schematically describe the geometry of a dialyzer
which allow us to introduce some notations. Section 3 is devoted to the study of the hydrodynamic flow
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in a fiber of the dialyzer and follows the ideas in [10]. The conservation equations are introduced in
the subsection 3.1 to describe the fluid velocity and the fluid pressure in the blood, in the membrane
and into the dialysate. Conditions at the interfaces are provided to couple all the unknowns. After a
step of nondimensionalization we simplify the model in the subsection 3.3 taking into account the low
ratio between the width and the length of a fiber. Several rheological models for the blood are described
in the subsection 3.4. The results obtained for different rheologies are compared in the subsection 3.5
after having described the variational formulation and the numerical scheme employed to approach the
solution of the system. In the Section 4, we describe the convection-reaction-diffusion equations used
to monitor the concentration of different products in the dialyzer. Again the model is reduced using a
nondimensionalization and asymptotic analysis. Section 5 illustrate the model introduced in the previous
section by numerical experiments and Section 6 gives some conclusions and perspectives for this work.

2 Simplified geometry of a dialyser

The aim of this section is to present the geometrical model which is considered in this paper in order to
propose a mathematical model for a dialyser.

A dialyser module consists of an array of a large number N of equispaced parallel hollow fibers. Each
fiber is composed of three parts: a central channel, a permeable membrane surrounding this channel, and
an outer channel delimited by an ideal no-flux boundary confining the permeate flow. The blood flow is
confined in the inner channel while the dialysate flows in the outer channel and in the opposite direction.
We may focus on studying the flow in a single cell whose geometry is equivalent to the geometry of a pipe
(see, for instance, [7, 8, 10] and the references therein). We assume that in each hollow fiber the flows
are radially symmetric and, hence, it is natural to work using the cylindrical coordinates. The problem
can be reduced to a two-dimensional one in a domain Ω defined by

Ω =
{

(x, r) ∈ R2 ; 0 < x < L and 0 < r < R
}
,

where L is the length of the fiber, and where R is its radius. This domain is naturally separated into
three sub-domains corresponding to the blood domain Ωb, the membrane domain Ωm and the dialysate
domain Ωd, whose sizes are described by the positive real numbers R1 and R2, respectively:

Ωb =
{

(x, r) ∈ Ω ; 0 < r < R1

}
,

Ωm =
{

(x, r) ∈ Ω ; R1 < r < R2

}
,

Ωd =
{

(x, r) ∈ Ω ; R2 < r < R
}
.

The interfaces between these domains are denoted Γbm and Γmd and are defined by

Γbm =
{

(x, r) ∈ Ω ; r = R1

}
,

Γmd =
{

(x, r) ∈ Ω ; r = R2

}
.

Finally, we describe the boundary of the domain as several natural sub-boundaries. Therefore, the left
side of the rectangle Ω is composed by the union of three segments: Γl,b, corresponding to the left side of
the blood channel, Γl,m, corresponding to the left boundary of the membrane, and Γl,d which corresponds
to the left side of the dialysate outlet, respectively. The right side of Ω is, symmetrically, formed by three
segments Γr,b, Γr,m and Γr,d. We recall that the blood flows from left to right and the dialysate flows in
the opposite direction. All these boundaries are illustrated in Figure 1 and precisely described by the
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following equations:

Γb =
{

(x, 0) ∈ R2 ; x ∈ (0, L)
}
, Γd =

{
(x,R) ∈ R2 ; x ∈ (0, L)

}
(1)

Γbm =
{

(x,R1) ∈ R2 ; x ∈ (0, L)
}
, Γmd =

{
(x,R2) ∈ R2 ; x ∈ (0, L)

}
, (2)

Γ`,b =
{

(0, r) ∈ R2 ; r ∈ (0, R1)
}
, Γr,b =

{
(L, r) ∈ R2 ; r ∈ (0, R1)

}
, (3)

Γ`,m =
{

(0, r) ∈ R2 ; r ∈ (R1, R2)
}
, Γr,m =

{
(L, r) ∈ R2 ; r ∈ (R1, R2)

}
, (4)

Γ`,d =
{

(0, r) ∈ R2 ; r ∈ (R2, R)
}
, Γr,d =

{
(L, r) ∈ R2 ; r ∈ (R2, R)

}
. (5)

Γb

Γd

Γr,b

Γr,m

Γr,d

Γℓ,b

Γℓ,m

Γℓ,d

Γbm

Γmd

Ωb

Ωm

Ωd

Figure 1: Geometry and boundaries of a fiber.

In fact, due to the large difference between the two lengths L and R (typically L = 23 cm and R =
0.23 mm), it will be interesting to work in a re-scaled domain. We will take into account this anisotropy
in Section 3. Finally, the schematic simplification of the geometry of the dialyser is described in Figure 2.

1

1
L

R

Figure 2: The reduction process of the initial problem on a complex physical geometry to a problem in a
square: first, considering only one fiber; second, using cylindrical coordinates; third, scaling the domain.

3 Modelling of flow in a fiber

3.1 Governing equations

The flow in a fiber is characterized by its velocity field and its pressure. The model described here is
based on the physical conservation of mass and momentum, and it is first introduced on each sub-domain
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corresponding to the blood domain, to the membrane and then to the dialysate domain, respectively.
The notations for each sub-domain are outlined in Table 1. Some interface conditions are next introduced
between these connected domains.

Domain Pressure Velocity Model

Blood: Ωb pb (vx, vr) Non-Newtonian fluid

Membrane: Ωm pm (ux, ur) Darcy’s equation

Dialysate: Ωd pd (wx, wr) Newtonian fluid

Table 1: Notation for pressure, velocity fields and the physical model corresponding to the three sub-
domains of domain Ω.

3.1.1 Blood flow

The blood is modelled either as a Newtonian fluid, either as a quasi-Newtonian fluid. The equations
satisfied by the velocity field (vx, vr) and the pressure pb correspond to the mass and the momentum
conservation laws. These equations are valid for (x, r) ∈ Ωb and for any time t > 0:

ρ
(
∂tvx + vx∂xvx +

1

r
vr∂r(rvx)

)
= −∂xpb + 2µ∂x

(
G(γ̇) ∂xvx

)
+
µ

r
∂r

(
r G(γ̇) (∂rvx + ∂xvr)

)
−∂xpo,

ρ
(
∂tvr + vx∂xvr +

1

r
vr∂r(rvr)

)
= −∂rpb + 2

µ

r
∂r

(
r G(γ̇) ∂rvr

)
+ µ∂x

(
G(γ̇) (∂rvx + ∂xvr)

)
−∂rpo,

∂xvx +
1

r
∂r(rvr) = 0.

The constant blood density is denoted by ρ = 103 kg.m−3. We will consider some different rheology
models for the blood. The viscosity of the blood will be given by µG(γ̇), where G is a function of the
shear rate:

γ̇ =

√
|∂xvx|2 + |∂rvr|2 +

∣∣∣vr
r

∣∣∣2 +
1

2
|∂rvx + ∂xvr|2.

Here and henceforth, µ denotes the reference viscosity and is equal to the viscosity of the water (µ =
10−3 Pa.s). Some examples of functions G will be given in subsection 3.4.

The oncotic pressure po depends on the concentration of suspended proteins in the blood. In this study
we assume that the oncotic pressure is constant with respect to the radial variable r and depends linearly
to the spatial variable x. This assumption reflects the fact that the suspension of proteins in blood
becomes more concentrated as it moves through the hollow fiber (see, for instance, [19, Chapter 20]) and
translates into the fact that ∂xpo is constant and ∂rpo = 0. The precise values of the oncotic pressure at
blood inlet and at the blood outlet, respectively, are computed as in [21, Equation (20)].

3.1.2 Membrane flow

In the porous membrane, the governing equations are the continuity equation (corresponding to the free-
divergence of the flux) coupled with Darcy’s law (corresponding to the fact that the flux is proportional
to the gradient of the pressure pm). For (x, r) ∈ Ωm, these two equations give:

∂2
xpm +

1

r
∂r(r∂rpm) = 0.
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The velocity field in the membrane is denoted (ux, ur) and is obtained from the following relations
ux = −K

µ
∂xpm,

ur = −K
µ
∂rpm,

the coefficient K corresponding to the permeability of the membrane.

3.1.3 Dialysate flow

The dialysate is supposed to be a Newtonian fluid with the same constant density as the blood, and with
a viscosity equal to the reference viscosity µ. Navier-Stokes equations on the velocity (wx, wr) and the
pressure pd read, for (x, r) ∈ Ωd and for any time t > 0:

ρ
(
∂twx + wx∂xwx +

1

r
wr∂r(rwx)

)
= −∂xpd + µ∂2

xwx +
µ

r
∂r(r∂rwx),

ρ
(
∂twr + wx∂xwr +

1

r
wr∂r(rwr)

)
= −∂rpd +

µ

r
∂r(r∂rwr) + µ∂2

xwr,

∂xwx +
1

r
∂r(rwr) = 0.

3.1.4 Interface blood-membrane

The conditions imposed at the interface blood/membrane Γbm correspond to the continuity of the flux,
Saffman’s condition (see for instance [10]) for the slip velocity, and the continuity of the pressure, respec-
tively. For every (x, r) ∈ Γbm these conditions write as follows:

vr = −K
µ
∂rpm,

− ∂rvx =
αBJ√
K
vx,

pm = pb,

where the coefficient αBJ is the Beavers-Joseph constant (measured slip coefficient only depends on porous
media properties) relative to the channel porous wall.

3.1.5 Interface membrane-dialysate

The conditions on the interface membrane/dialysate Γmd are similar to the conditions on the interface
blood/membrane, with the difference that the Beavers-Joseph constant appearing here is different to the
one appearing for Γbm. More precisely, for every (x, r) ∈ Γmd we have:

wr = −K
µ
∂rpm,

∂rwx =
βBJ√
K
wx,

pm = pd,

where the coefficient βBJ is another Beavers-Joseph constant relative to the channel porous wall.
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3.1.6 Boundary conditions for the flow

The boundary of the domain is composed of the lateral boundaries described by x = 0 and x = L, by the
”exterior” boundary r = R and by the symmetry axis r = 0. The physical conditions on these boundaries
are given by:

pb = pb,in on Γ`,b, pb = pb,out on Γr,b for the blood pressure;

pd = pd,in on Γr,d, pd = pd,out on Γ`,d for the dialysate pressure;

wr = 0 on Γd, ∂rwx = 0 on Γd top boundary;

∂rvx = 0 on Γb symmetry axis.

The first boundary conditions correspond to the imposed pressures both on the blood and on the dialysate.
An assumption usually made in the literature is that these pressures satisfy pb,in > pb,out > pd,in > pd,out

(see [8, 7] or [10, Table 3] for typical values of these pressures).

In order to have a well posed system, we complete these boundary conditions by considering some
homogeneous Neumann boundary conditions on the other parts of the boundary of Ω:

∂rpb = 0 on Γb,

∂rpd = 0 on Γd,

∂xvx = ∂xvr = 0 on Γ`,b ∪ Γr,b,

∂xwx = ∂xwr = 0 on Γ`,d ∪ Γr,d,

∂xpm = 0 on Γ`,m ∪ Γr,m.

All these Neumann conditions appear naturally in the weaker variational formulation described in Ap-
pendix B and allow us to cancel some boundary integrals. From a physical point of view, the conditions
on Γb and Γd state that the pressures in the blood and in the dialysate, respectively, are constant radially
near the both boundaries. The conditions on the lateral boundaries impose the fact that the velocity and
the pressure are locally constant in the longitudinal direction at both extremities of the fiber.

3.2 Scaling procedure

In this section we replace the physical quantities appearing in the model by dimensionless quantities and
we rewrite in consequence the corresponding equations. Firstly, we setup the reference density ρ and the
reference viscosity µ to the density and viscosity of water:

ρ = 103 kg.m−3, µ = 10−3 Pa.s.

In Table 2 we gather two sets of parameters describing the geometry and the permeability of two typical
dialyzers. The first set of parameters describe the dialyzer machine in [8] and the second one lists
the product specifications of a universal dialyzer APS-18U R©. Table 3 list typical values of blood and
dialysate injection/output pressures in a hollow fiber [8, 10].

3.2.1 Reference quantities

Some characteristic sizes appear naturally in the formulation of the problem: two lengths L and R, and
four pressures: pb,in, pb,out, pd,in and pd,out. In practice, we will use the difference

P = pb,in − pb,out

as a reference pressure. Using this reference pressure, the reference viscosity µ and the two characteristic
lengths R and L, it is possible to define a reference velocity:

V =
PR2

µL
.
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In fact, it is also possible to introduce another reference pressure using the difference pd,in − pd,out. The
corresponding velocity, denoted W , is given by W = P1V where

P1 =
pd,in − pd,out

P
. (6)

We will also use another quantity to take into account all the pressures imposed on the boundaries of
the domain:

P2 =
pb,out − pd,in

P
. (7)

We note that the first velocity V will be used for the nondimensionalization of the blood velocity
whereas the second velocity W will be used in order to nondimensionalize the dialysate velocity. Finally,
we introduce the reference time by

T =
L

V
.

3.2.2 Dimensionless numbers

The following dimensionless numbers can be defined:

ε =
R

L
, Re =

ρRV

µ
, Da =

K

R2
, Bb =

αBJ√
Da

, Bd =
βBJ√
Da

.

These numbers will be used to write the complete system of partial differential equations in a dimen-
sionless form. The first parameter describes the ratio between the two lengths previously introduced. In
practice, the number ε is much smaller than 1 and the Reynolds number Re will be of order 1. The
number Da corresponds to the Darcy number and the quotient Da/ε2 is of order 1. It is more difficult
to evaluate the Beaver-Joseph coefficients αBJ and βBJ. These parameters depend on the properties of
the porous material as well as the material specific surface conditions. In [26] and more recently in [4],
the authors take βBJ = 1. We addopt this hypothesis for the present work. In this case, the product εBd
is of order 1, that corresponds to the Remark 3 in [10, page 1918]. Following [10] again, the boundary
condition on the interface blood-membrane must slip into play. They propose to use a coefficient αBJ

such that the parameter Bb is of order 1 with respect to ε (more precisely, we use the value given as
example in [10, Table 7]). This difference between the two Beavers-Joseph’s coefficients is related to the
fact that, contrary to dialysate, the blood do not adhere at the membrane surface.

Name Notation Set A Set B

Length L 2.3× 10−1 m 3.3× 10−1 m

Total radius R 2.3× 10−4 m 2.1× 10−4 m

Blood radius R1 10−4 m 10−4 m

Membrane radius R2 1.4× 10−4 m 1.45× 10−4 m

Permeability K 2.4× 10−18 m2 1.21× 10−17 m2

Number of fibers N 104 104

Table 2: Two set of values describing two different dialyzers

We list below an example of non-dimensional numbers corresponding to Set A of data in Table 2 (see [10,
Remark 3] for the typical values of Beavers-Joseph number Bd which is assumed to be large, typically of
order of 1/ε):

ε = 10−3, Re = 124.836, Da = 4.537× 10−11, Bb = 2.5, Bd = 7.3× 103.
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Name Notation Value

Blood injection pressure pb,in 16× 103 Pa

Blood output pressure pb,out 11× 103 Pa

Dialysate injection pressure pd,in 1× 103 Pa

Dialysate output pressure pd,out 0.1× 103 Pa

Table 3: Typical values for pressure data (see, for instance, [10, Table 3]) corresponding to a dialyzer
described by Set A in Table 2.

We use the following scaling for the different variables (the star notation ? corresponding to variables
without dimension):

x = Lx?, r = Rr?, t = T t?, pa = pb,out + P p?a, for a ∈ {b,m, d, o},
vx = V v?x, vr = εV v?r , ux = W u?x, ur = εW u?r wx = W w?x, wr = εW w?r .

Note that, since the pressure is defined up to an additive constant, we choose pb,out as a reference pressure.
It is then possible to rewrite all the equations describing the flow under a dimensionless form. For clarity,
these equations are postponed in the Appendix A. We only indicate here the domains in which the
equations hold since this notation will be re-used in the following sections.
Firstly, the domain Ω becomes, after the scaling, the unit square ω:

ω =
{

(x?, r?) ∈ R2 ; 0 < x? < 1 and 0 < r? < 1
}
.

Similarly to domain Ω, the rescaled domain ω is composed by three subdomains:

ωb =
{

(x?, r?) ∈ ω ; 0 < r? <
R1

R

}
,

ωm =
{

(x?, r?) ∈ ω ;
R1

R
< r? <

R2

R

}
,

ωd =
{

(x?, r?) ∈ ω ;
R2

R
< r? < 1

}
and its boundary is formed by the following segments:

γb =
{

(x?, 0) ∈ R2 ; x? ∈ (0, 1)
}
, γd =

{
(x?, 1) ∈ R2 ; x? ∈ (0, 1)

}
,

γbm =

{(
x?,

R1

R

)
∈ R2 ; x? ∈ (0, 1)

}
, γmd =

{(
x?,

R2

R

)
∈ R2 ; x? ∈ (0, 1)

}
,

γ`,b =

{
(0, r?) ∈ R2 ; r? ∈

(
0,
R1

R

)}
, γr,b =

{
(1, r?) ∈ R2 ; r? ∈

(
0,
R1

R

)}
,

γ`,m =

{
(0, r?) ∈ R2 ; r? ∈

(
R1

R
,
R2

R

)}
, γr,m =

{
(1, r?) ∈ R2 ; r? ∈

(
R1

R
,
R2

R

)}
,

γ`,d =

{
(0, r?) ∈ R2 ; r? ∈

(
R2

R
, 1

)}
, γr,d =

{
(1, r?) ∈ R2 ; r? ∈

(
R2

R
, 1

)}
.

To fix the notation, we graphically represent in Figure 3 the domain ω with its subdomains and their
boundaries.

3.3 Considerations on the geometric anisotropy of a fiber

During the scaling process, we have introduced a dimensionless number ε which is very small with respect
to 1. To get a simpler system we will keep only the main order terms with respect to ε, taking into account
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γb

γd

γr,b

γr,m

γr,d

γℓ,b

γℓ,m

γℓ,d

γbm

γmd

ωb

ωm

ωd

Figure 3: Domain ω, its subdomains and their boundaries.

that

D̃a =
Da
ε2

= O(1) and Bd = O
(1

ε

)
,

all the other parameters being of order 1.
Taking into account this anisotropy (ε� 1), we can formally simplify the set of equations describing the
flow. More precisely, the equations obtained in the Appendix A can be approximated by the equations
described below.
For every (x?, r?) ∈ ωb the simplified blood flow is governed by the following equation

0 = −∂x?p?b +
1

r?
∂r?
(
r? G̃(γ̇) ∂r?v

?
x

)
−∂x?p?o, (8a)

0 = −∂r?p?b , (8b)

∂x?v
?
x +

1

r?
∂r?(r?v?r ) = 0, (8c)

where the shear rate reduces to γ̇ =
1

ε
√

2
|∂r?v?x|, and the function G̃ is defined from the viscosity

function G as follows

G̃(X) = G
(ε2 P

µ
X
)
. (9)

The pressure and the velocities into the membrane domain ωm satisfy
∂r?(r?∂r?p

?
m) = 0, (10a)

u?x = 0, (10b)

u?r = −D̃a
P1

∂r?p
?
m, (10c)

and the dialysate flow is given by the solution of the following equation:
0 = −∂x?p?d +

P1

r?
∂r?(r?∂r?w

?
x), (11a)

0 = −∂r?p?d, (11b)

∂x?w
?
x +

1

r?
∂r?(r?w?r) = 0. (11c)

Finally, the simplified conditions at the interfaces blood/membrane, membrane/dialysate and at the
exterior boundaries became:

10



X interface blood/membrane (on γbm): 
v?r = −D̃a ∂r?p?m, (12a)

−∂r?v?x = Bbv
?
x, (12b)

p?m = p?b . (12c)

X interface membrane/dialysate (on γmd):
w?r = −D̃a

P1
∂r?p

?
m, (13a)

w?x = 0, (13b)

p?m = p?d. (13c)

X exterior boundary conditions:
p?b |γ`,b = 1, p?b |γr,b = 0, (14a)

p?d|γr,d = −P2, p?d|γ`,d = −P2 − P1, (14b)

w?r |γd = ∂r?w
?
x|γd = 0, (14c)

∂r?v
?
x|γb = 0. (14d)

Remark 3.1 From this system, it is not difficult to determine the membrane pressure p?m. This pressure
satisfies the ordinary differential equation (10a) within the two boundary Dirichlet conditions (12c) and
(13c). We deduce the following expression of p?m with respect to the pressures p?b and p?d: for (x?, r?) ∈ ωm,

p?m(x?, r?) =
1

ln(R2/R1)

(
(p?d(x

?)− p?b(x?)) ln(Rr?) + p?b(x
?) lnR2 − p?d(x?) lnR1

)
.

Moreover, the derivative of p?m with respect to r? (which appears in the other equations) reads

∂r?p
?
m(x?, r?) =

p?d(x
?)− p?b(x?)

r? ln(R2/R1)
.

In particular, we can express the fluid velocity in the membrane:

u?x(x?, r?) = 0 and u?r(x
?, r?) = −D̃a

P1

p?d(x
?)− p?b(x?)

r? ln(R2/R1)
.

Remark 3.2 In the case where the blood is considered as a Newtonian fluid an analytical expression of
the simplified system (8a)-(14d) can be obtained (see [10] for details).

Remark 3.3 By ignoring the terms of order ε, the simplified system does not depend any more of the
time. In other words, among other simplifications, we are searching for a stationary solution of the
system considered in Appendix A.

3.4 Different rheological models for blood

As indicated above, the blood is generally considered as a Newtonian fluid, or as well as a quasi-Newtonian
fluid. Its viscosity is assumed to be variable and is described by a function G, or, equivalently, by its
corresponding dimensionless version G̃. More precisely, we recall that we have the following relation
between the viscosity and the function G:

viscosity = µG(γ̇),

11



where µ is the reference viscosity and where γ̇ corresponds to the shear rate. In particular, when the
blood is modeled as a Newtonian fluid its viscosity is constant and is given by

µ∞ = 3.45× 10−3Pa.s. (15)

Recalling from Table 2 that the reference viscosity is µ = 10−3Pa.s, it follows that G̃(X) = 3.45 for this
Newtonian model.

In Table 4, different widely used non-Newtonian constitutive relationships for the blood viscosity model
against the shear rate are summarized. For more details concerning these non-Newtonian blood viscosity
models we refer to [24].

Model Description

Power-law model

G̃(X) = m

(
ε2P

µ

)n−1

Xn−1

m = 4.25

n = 0.7755

Carreau model

G̃(X) =
1

µ

(
µ∞ +

(
µ0 − µ∞

)(
1 + (λ?X)2

)n−1
2

)
µ0 = 0.056 Pa.s

λ? =
ε2P

µ
λ, with λ = 3.131 s

n = 0.3568

Quemada model

G(X) =
µp
µ

(
1− 1

2

k0 + k∞
√
X/γ?

1 +
√
X/γ?

φ
)−2

µp = 1.2× 10−3 Pa.s

φ = 0.4

k0 = 4.65, k∞ = 1.84

γ? = γc
µ

ε2P
, with γc = 2.23 s−1

Cross model

G̃(X) =
1

µ

(
µ∞ + (µ0 − µ∞)

(
1 +

(
X

γ?

)n)−1 )
µ0 = 0.0364

γ? = γc
µ

ε2P
, with γc = 2.63 s−1

n = 1.45

Table 4: Some non-Newtonian blood viscosity models.

In order to compare these rheological models, we numerical computed the minimal and the maximal
values of the shear rate γ̇ appearing along the iterations in the fixed point algorithm used to tackle
the non-linearity given by G̃ (for models listed in this section). We obtained that the values γ̇ are
mainly distributed in the interval [10−4, 102]. As illustrated in Figure 4, all the considered models, at
the exception of Power-low model, are similar to the Newtonian one for values of X close to 102, having
slightly different behaviors when X goes to zero.
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Figure 4: Dimensionless viscosity functions G̃ for different models (the quantity X corresponding to the
dimensionless shear stress).

3.5 Numerical simulations of the flows within a fiber

To numerically approach a solution to the previous systems, we first introduce their weak formulations.
For the interested reader, this is postponed in the Appendix B. In order to solve this weak formulation
we use the finite element method combined to a fixed point strategy employed for taking into account the
non-linearity given by G̃. We use P1-bubble finite elements to represent the velocities (w?x, w

?
r , v

?
x and v?r )

and P1 finite elements for the pressures (p?b and p?d). For the numerical implementation FreeFem++ [15]
is employed.

3.5.1 Effective computations of the flows - the case of pressure data

In the simplest case we assume that all data on Tables 2 and 3 are known, as well as the non-linearity G̃.
For the results in this subsection the geometry of the dialyzer is the one described by the Set A in Table 2.
We then compute the non-dimensional numbers, Da, Bb, P1 and P2 in order to numerically approach
the solution of the variational formulations introduced in Appendix B.

The velocity in the entire domain ω is denoted (U?x , U
?
r ) and is linked to the velocities in the blood, in

the membrane and in the dialysate as follows

(U?x , U
?
r ) =


(v?x, v

?
r ) in ωb,

(u?x, u
?
r) in ωm,

(w?x, w
?
r) in ωd.

We denote (Ux, Ur) the physical velocity and, hence, defined on the real entire physical domain Ω.

Using the boundary values for pressures pb and pd prescribed in Table 3, the effects of rheological models
proposed in Section 3.4 on the velocity of fluids appearing in our model are illustrated in Figure 5.
We remark that the choice of the rheology governing the blood flow has an influence on the horizontal
velocity profile in the domain Ωb and almost no influence on the radial blood flow and on both flows in
domains Ωm and Ωd.

As a title of example, we choose to illustrate only the Newtonian model and the Power-law model for the
rheology of the blood. The pressure and the velocity in the three domains Ωb, Ωm and Ωd, obtained again
for the boundary values of pressure pb and pd listed in Table 3, are displayed in Figure 6 and Figure 7
respectively. We remark that the pressure profiles are very similar for both models and the velocity in
Ωb shows a more important dependence to the rheology model of the blood.
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(a) (b)

Figure 5: Velocity profiles on the line x =
L

2
corresponding to geometry parameters in Table 2 (Set

A) and pressure boundary data in Table 3. (a) Values (in m.s−1) of the horizontal component of the
velocity Ux(L2 , r) for r ∈ (0, R). (b) Values (in m.s−1) of the radial component of the velocity Ur(

L
2 , r)

for r ∈ (0, R).

4075

8050

12025

1.000e+02

1.600e+04
Pressure (Pa)

(a) (b)

Figure 6: Pressure (in Pa) corresponding to Power-law model, geometric parameters in Table 2 and
boundary values in Table 3. (a) Spatial distribution in domain Ω. (b) Longitudinal profile of pressure in
blood and dialysate.

We mention that we obtained very similar flow rates for the blood and dialysate as the ones previously
obtained in [8] for the same choice of pressure data, the same geometry and a similar blood rheology.

3.5.2 Effective computations of the flows - the case of flow rates data

In a more complex case from a numerical point of view, but a more natural one from an experimental point
of view, the pressures at the entrance and at the exit of domains Ωb and Ωd (~P = (pb,in, pb,out, pd,in, pd,out))

are not available, but we only dispose of the fluxes ~Q at the entrance and at the exit of dialyser. Since
the number of fibers composing the dialyser and their geometry are known, we can easily deduce from
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(a) (b)

Figure 7: Velocity magnitude of fluids in Ω corresponding to Newtonian model (a) and Power-law model
(b), geometric parameters in Table 2 Set A and pressure boundary data listed in Table 3.

the fluxes ~Q = (Qb,in, Qb,out, Qd,in, Qd,out) the fluxes at the entrance and exit of domains Ωb and Ωd. An
example of such fluxes is given in Table 5. These flow rates are directly defined from the velocity field.

Name Notation EX1 (ml.min−1) EX2 (ml.min−1)

Blood injection flux Qb,in 300 400

Blood output flux Qb,out 290 390

Dialysate injection flux Qd,in 500 500

Dialysate output flux Qd,out 510 510

Table 5: Typical values for the fluxes for clinical dialysis

For instance, the blood flux at the entrance of the domain Ωb is related to the blood injection flux by the
following relation:

Qb,in = 2πN

∫ R1

0
vx(0, r)r dr,

where N is the number of hollow fibers composing the dialyser. It is therefore relatively easy to determine
the fluxes ~Q from the pressures ~P using the procedure proposed above; we denote Φ the application
associating to a given pressure vector ~P the corresponding fluxes vector ~Q. The reverse is much less
obvious. We propose an optimization algorithm to determine the pressures from the fluxes. Given the
flow rates ~Q we will minimize the following function:

J (~P ) =
1

2
‖Φ(~P )− ~Q‖2, (16)

where ‖ ·‖ is the usual euclidean norm on R4. In this purpose, we implemented a gradient-type algorithm
described in Appendix C (in practice, this algorithm is used with the following numerical parameters:
h = ε1 = 1, and α0 = 103).

With the flux data instead of the pressure data (that is using Table 5 instead of Table 3), we compute
the velocity of the fluids for the rheological models proposed in Section 3.4. The vertical and horizontal
velocity profiles obtained for different blood rheologies and for pressures data (EX1) are illustrated in
Figure 8. The results in this subsection correspond to a dialyzer described by the Set B in Table 2.
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Remark 3.4 Contrarily to the results illustrated in Figure 5 (a), we observe that the longitudinal veloc-
ities displayed in Figure 8 (a) present much less variation with respect to the choice of the model. This
is a consequence of the fact that for the simulations in Figure 8, for each one of the rheologies considered
in this paper, the values of the blood and dialysate input and output pressures were chosen such that the
blood and dialysate flow rates match the values listed in Table 5. Therefore, the influence of the rheology
is much less visible than in the case considered for Figure 5 where the pressure data was the same for
each rheology.

(a) (b)

Figure 8: Velocity profiles on the line x =
L

2
corresponding to geometry parameters in Table 2 (Set B)

and pressures boundary data optimized to match the flows in Table 5 (EX1). (a) Values (in m.s−1) of
the horizontal component of the velocity Ux(L2 , r) for r ∈ (0, R). (b) Values (in m.s−1) of the radial
component of the velocity Ur(

L
2 , r) for r ∈ (0, R).

The longitudinal profiles of pressure in blood and in dialysate corresponding to a Newtonian model and
for boundary pressure data optimized in order to minimize the functional J given by (16) are displayed
in Figure 9. We observe that these profiles are qualitatively different to the ones in Figure 6 (b) which
correspond to pressure boundary data in Table 3. More exactly, the pressure pb,out of the blood at the
exit of the dialyzer is smaller than the pressure pd,in of the dialysate at the entrance of the dialyzer.
This is surprinsing with respect to previous literature (see, for instance, [8, 7, 10]) were is often assumed
that pb,out > pd,in and in the same time is in complete agreement with the pressure values observed for a
standard hemodialysis session and listed in Table 10.

4 Evolution of chemicals in blood and dialysate during dialysis

In this section we describe a model for the evolution of concentrations of several chemical components of
blood and dialysate during a dialysis process. Since we are interested in the study of the calcium balance
during hemodialysis using a citrate containing dialysate, we propose to use a transport–diffusion–reaction
equation for a number of five chemical species described in subsection 4.3. A similar model was employed
for the study of the dynamic exchange of bicarbonate and the exchange of sodium during dialysis,
respectively, [1, 2] and [32].
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(EX1) (EX2)

Figure 9: Longitudinal profile of pressure in blood and dialysate corresponding to geometry parameters
in Table 2 (Set B) and pressures boundary data optimized to match the flows in 5 (EX1) and (EX2).

4.1 Transport diffusion process

The solute concentration mechanism which is coupled to the velocity field (Ux, Ur) is modeled by a
convection–diffusion–reaction equation. More precisely, for any species (whose the concentration is de-
noted ci, i = 1, ..., 5), we have for every (x, r) ∈ Ω and t > 0

∂tci︸︷︷︸
transient

+Si(Ux∂xci + Ur∂rci)︸ ︷︷ ︸
transport

− 1

r
∂r(rDi∂rci)− ∂x(Di∂xci)︸ ︷︷ ︸

diffusion

= Fi(c1, ..., c5)︸ ︷︷ ︸
reaction

. (17)

The quantities Di represent the diffusion coefficients (m2.s−1) and they depend on the species i. The
coefficients Si are the so called sieving coefficients. A sieving coefficient equal to 1 corresponds to
unhindered solute transport: it is naturally the case in blood or in dialysate domains. In the membrane,
in order to take into account the size of the molecules, we impose that the sieving coefficients are equal to
zero for large proteins like Albumin (see [7]). The reaction source terms Fi model the interaction between
different species. They will be precised later (see subsection 4.3).

4.2 Boundary conditions for the concentrations

In order to complete the system (17) we should impose some boundary conditions on the concentrations
(ci)1≤i≤5. Therefore, we assume known each concentration ci in the blood and in the dialysate fluid at
the entrance of the dialyzer. Indeed, since the dialysate composition is provided by its producer and the
concentrations in the blood can be obtained by a priori measurements, this assumption is reasonable and
translates into the following Dirichlet boundary conditions:

ci = ci,` on Γ`,b and ci = ci,r on Γr,d. (18)

On the remaining part of the boundary of Ω the concentrations are unknown. A natural assumption is
that the concentrations are constant in a neighborhood of the boundary and in a direction perpendicular
to the boundary. This hypothesis translates into the following Neumann boundary conditions:{

∂xci = 0 on Γ`,d ∪ Γ`,m ∪ Γr,m ∪ Γr,b,

∂rci = 0 on Γb ∪ Γd.
(19)
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Remark 4.1 For system (17) domain Ω is considered without the two interior boundaries Γbm and Γmd
separating the flow domains. That is possible because all the quantities appearing in (17) are defined over
the entire domain Ω. Indeed, the velocity field (Ux, Ur) even it has been modelled using different equations
for different flow domains, in the end is defined everywhere. The diffusion coefficients Di and the sieving
coefficients Si have different values for the blood, for the membrane and for the dialysate, but, even if
these coefficients are discontinuous, the variational formulation associated to (17) is well posed on the
whole domain Ω.

4.3 Biochemical reactions

In this paper, we are interested on the complex formed by the Calcium, the Albumin and the Citrate.
The equilibrium reactions for these species can produce the Calcium–Albumin as follows:

Calcium + Albumin
k1−−⇀↽−−
k2

Calcium–Albumin,

where the reaction rate constants are denoted k1 and k2. We also note that Albumin has 12 binding sites
for Calcium. The equilibrium reactions can also produce the Calcium–Citrate as follows:

Calcium + Citrate
k3−−⇀↽−−
k4

Calcium–Citrate,

where the reaction rate constants are denoted k3 and k4. Equilibrium constants were retrieved from
literature data [27, 29, 22, 14]. Reaction rate constants ki are more difficult to measure and fewer data
are available. In this case we assume that the studied chemical reactions follow a first order kinetics.
The first rate constant is fixed arbitrarily (its magnitude is chosen according to the data available with
similar reactions), the other constants being calculated such that their ratio is equal to the equilibrium
constant. The values of the reaction constants used in this paper are given by:

k1 = 1 mol.m3.s−1, k2 = 10 s−1,

k3 = 0.28 mol.m3.s−1, k4 = 0.15 s−1.

Consequently, we consider five species those concentrations ci are listed in Table 6.

c1 concentration of free Calcium

c2 concentration of free Albumin binding sites for Calcium

c3 concentration of occupied Albumin binding sites for Calcium

c4 concentration of Citrate

c5 concentration of Calcium–Citrate

Table 6: Chemical species considered in the convection–diffusion–reaction process.

Since molecules of Albumin do not traverse the membrane, their corresponding sieving coefficients are
given by

Si(x) =

 1 if x ∈ Ωb ∪ Ωd

0 if x ∈ Ωm,
for i ∈ {2, 3}

and all other sieving coefficients S1, S4 and S5 are identically equal to one in Ω. Diffusion coefficients
in blood and dialysate domains were assumed to be equal to diffusion coefficient in free water. Diffusion
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coefficients in free water were retrieved from literature data [28, 30, 34]. When diffusion coefficients
in water at the temperature 310K were not available they were calculated according to the Einstein
relation. Diffusion coefficients in membrane were assumed to be five times smaller than in water as they
can be measured for other solutes (see, for instance [8]). The values of the diffusion coefficients Di at the
temperature 310K are gathered in Table 7.

Name Notation Value (m2.s−1)

Reference diffusion D 10−10

Calcium diffusion D1 16.6× 10−10

Albumin diffusion D2 and D3 0.877× 10−10

Citrate and Calcium-Citrate diffusion D4 and D5 7.6× 10−10

Table 7: Typical values for the diffusion coefficients.

Typical values for the concentrations in which we are interested for are calculated according to the mass
action law from data in the literature [27, 5, 3] and are listed in the Table 8. We consider three dialysates
having different concentrations of calcium and citrate. The concentrations provided by the manufacturer
(Citrasate R©) are listed in Table 9. These values appear as boundary conditions in (19).)

Name Notation Value (mol.m−3)

Reference concentration C 1

Free Calcium c1,` 1.2

Free Albumin sites c2,` 6.53

Calcium–Albumin sites c3,` 0.783

Citrate c4,` 3.07× 10−2

Calcium–Citrate c5,` 6.93× 10−2

Table 8: Typical values for the concentration data in blood at the inlet of the hallow fiber (on Γ`,b).

Name Notation Dialysate D0 Dialysate D1 Dialysate D2

Calcium c1,r 1.5 9.81× 10−1 1.11

Free Albumin sites c2,r 0 0 0

Calcium–Albumin sites c3,r 0 0 0

Citrate concentration c4,r 0 2.81× 10−1 2.6× 10−1

Calcium–Citrate c5,r 0 5.19× 10−1 5.4× 10−1

Table 9: Concentrations (in mol.m−3) for three dialysate fluids (on Γr,d).
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Within this notation, the reaction source terms Fi are then described by the following relations:

F (c1, ..., c5) =



k2c3 + k4c5 − k1c1c2 − k3c1c4

k2c3 − k1c1c2

−k2c3 + k1c1c2

k4c5 − k3c1c4

−k4c5 + k3c1c4


.

4.4 Scaling procedure

Since the reference velocity in the blood (V ) and the reference velocity in the membrane/dialysate (W )
are different, we must choose a common reference velocity for the dialyser. In practice, the complete
velocity field (Ux, Ur) is written using the characteristic velocity V . More precisely, we introduce the
non-dimensional velocity (U?x , U

?
r ) such that

Ux = V U?x and Ur = εV U?r .

Moreover, we need to introduce characteristic sizes for the concentrations ci, for the diffusion coeffi-
cients Di and for the source terms Fi (we choose k2 as reference rate constant):

ci = C c?i , Di = DD?
i , Fi = k2C F

?
i .

In the rescaled domain, and, therefore, for every (x?, r?) ∈ ω and t? > 0, the equation becomes:

∂t?c
?
i + Si (U?x∂x?c

?
i + U?r ∂r?c

?
i )−

1

Pe
1

r?
∂r?(r?Di∂r?c

?
i )−

ε2

Pe
∂x?(Di∂x?c

?
i ) =

1

Fd
F ?i (c?1, ..., c

?
5), (20)

and the reaction source term is given by

F ?(c?1, ..., c
?
5) =



c?3 + δ2c
?
5 − δ1c

?
1c
?
2 − δ3c

?
1c
?
4

c?3 − δ1c
?
1c
?
2

−c?3 + δ1c
?
1c
?
2

δ2c
?
5 − δ3c

?
1c
?
4

−δ2c
?
5 + δ3c

?
1c
?
4


.

Note that we have introduced five supplementary non-dimensional numbers:

Pe =
R2 V

LD
, Fd =

V

Lk2
, δ1 =

k1C

k2
, δ2 =

k4

k2
and δ3 =

k3C

k2
.

Using the parameters given in Table 2 Set B, Table 7, Table 8 and input pressures optimized in order to
match the flow rates in Table 5 EX1, the following values are obtained for the model parameters:

Pe ≈ 588, Fd ≈ 0.133, δ1 = 10−1, δ2 = 1.5× 10−2 and δ3 = 2.8× 10−2.

Even if the Péclet’s number Pe is of order of 1/ε we prefer to keep the term
1

Pe
1

r?
∂r?(r?Di∂r?c

?
i ) in (20).

In fact, this term has a regularizing effect for the solutions (ci)1≤i≤5 and that is important particularly
for discontinuous initial concentrations.
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Finally, the boundary conditions become
∂x?c

?
i = 0 on γ`,d ∪ γ`,m ∪ γr,m ∪ γr,b,

∂r?c
?
i = 0 on γb ∪ γd,

c?i = ci,`/C on γ`,b,

c?i = ci,r/C on γr,d.

We complete this system by the following initial condition:

c?i (x
?, 0) = c0,?

i (x?) =

 ci,`/C if x? ∈ ωb,

ci,r/C if x? ∈ ωm ∪ ωd,

for i ∈ {1, 2, 3, 4, 5}.

4.5 Variational formulation and numerical approach

In a first step, we consider the variational formulation of (20) detailed at the end of Appendix B.

We use an implicit one step discretization scheme in time and the finite elements method for the space
discretization. Moreover, in order to obtain a faster numerical solver, we compute one concentration c?i at
a time, replacing the unavailable concentrations at the current time step by their values at the previous
time step. For a given time t? > 0 concentrations c?i (t

?, x?, r?) are represented using P1 finite elements
and FreeFem++ is used for the numerical implementation.

For every time t? > 0, we denote E(t?) the following quantity associated to the evolution in time of
concentrations c?i (t

?, ·, ·) and defined by

E(t?) =

(
5∑
i=1

∫∫
ω
r? |c?i (t?, x?, r?)|

2 dx?dr?

) 1
2

for every t? > 0. (21)

Let E′(t?) be the derivative with respect to the time t? of the function E. It is easy to remark that
when concentrations (c?i (t

?))1≤i≤5 approach to a stationary solution E′(t?) is close to zero. For all the
simulations in Section 5 we choose a time interval (0, T ?), on which we compute the concentrations c?i ,
such that E′(T ?) ≤ 10−4.

5 Numerical experiments

Pressure measurements were effectuated on an APS18 dialyser for a dialysate input flux of 500 ml.min−1

and an ultra-filtration flux equal to 10 ml.min−1. Pressure values were recorded, using pressure sensors
situated at the level of the input and exit of blood and dialysate tubes respectively. The values for two
different input blood fluxes are listed in Table 10. The pressures at the level of hollow fiber (our compu-
tation domain) were numerically computed by the optimization method proposed in the subsection 3.5.2
such that the corresponding flows are the one indicated in Table 5.

The APS18 dialyzer has a diameter of 4.2 cm and it is composed of a number of N = 104 fibers with a
inner channel having a radius of 10−4 m and a wall thickness of hollow fibers of 0.45×10−4 m. The length
of such a dialyser is 33 cm. Remark that these values are exactly the same as those listed in Table 2 Set B.

5.1 Concentrations for blood modelled as a Newtonian fluid

The spatial concentrations for all considered species at a (no-dimensional) time T ? such that E′(T ?) <
10−4 obtained for the flows given by (EX1) are displayed in Figure 10. More precisely, for all the numerical
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Input blood flux
Blood input

pressure
Blood output

pressure
Dialysate input

pressure
Dialysate

output pressure

(EX1) 300 ml.min−1 200 110 200 95

(EX2) 400 ml.min−1 276 164 262 58

Table 10: Values of input and output pressures (in mmHg) for a dialysate flux of 500 ml.min−1 and an
ultrafiltration flux of 10 ml.min−1.

experiments we choose T ? = 300T which corresponds to a real time of 300s and verifies the condition
E′(T ?) < 10−4. This value of T ? is a good compromise between the computational cost and the reach of
the equilibrium in the chemical reactions.
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Figure 10: Concentrations ci (in mol.m−3 or, equivalently, in mmol.l−1) in domain ω at a non-dimensional
time T ∗ corresponding to approximately 300s of real time and for (EX1) and dialysate D0. a) Calcium.
b) Free Albumin binding sites for Calcium. c) Calcium-Albumin sites. d) Citrate. e) Calcium-Citrate.

In Figure 10 we remark that the concentrations computed by the model are smooth enough and that the
imposed boundary conditions are well satisfied. We also remark an increase of the Calcium concentrations
in the blood at the exit of the dialyzer.

In order to analyze the evolution of concentration for different molecules considered here we define the
mean concentrations in the output blood ci(t) at the time t by

ci(t) =
2R2

R2
1

∫ R1
R

0
r ci(t, 1, r) dr.

In Figure 11 we can follow the evolution in time of the concentration c1(t) of free Calcium in the blood
at the dialyser’s outlet for a velocity field computed in order to fulfill the flow rates in Table 5 (EX1) and
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two different blood rheologies: for the first the blood is modelled as a Newtonian fluid and the second
one consider the blood a non-Newtonian fluid. More exactly, we used the Power-low model. The blood
composition at the dialyzer’s inlet is described in Table 7 and the three dialysates D0, D1 and D2 are
described in Table 8. Remark that, since at T ? = 300T the value E′(T ?) is relatively small, the mean
concentrations of free Calcium in the blood at the exit of dialyser reached their stationary values. A
similar comportment was observed for all other chemical species considered by the model.

(a) (b) (c)

Figure 11: Evolution of the concentration c1(t) (in mol.m−3 or, equivalently, in mmol.l−1) of free Calcium
in blood at the exit of dialyser for dialysate fluids described in Table 9. (a) Dialysate D0. (b) Dialysate D1.
(c) Dialysate D2.

The spatial distribution of the Calcium concentration corresponding to the final time associated to the
simulations illustrated in Figure 11 are displayed in Figure 12. More precisely, in this figure we display
the spatial distribution of the Calcium concentration c1 associated to flow-rates (EX1) and boundary
concentrations in Tables 7 and 8 at the time T ∗ corresponding to a real time equal to 300s. In order to
compare the results obtained for both flows (EX1) and (EX2), the longitudinal profiles of the Calcium
concentration at the end of the simulation for all three dialysates in Table 8 are represented in Figure 13.
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Figure 12: Spatial distribution of the concentration c1 (in mol.m−3 or, equivalently, in mmol.l−1) of free
Calcium at the time 300 s for dialysate fluids described in Table 9. (a) Dialysate D0. (b) Dialysate D1.
(c) Dialysate D2.

A quantity of clinical interest is the concentration of total Calcium in the blood at the dialyzer’s outlet.
In Figure 14 we display the evolution of the concentration of total Calcium c(t) = c1(t) + c3(t) + c5(t)
in the blood at the exit of the dialyzer. We observe that when using a citrate dialysate, the transfer of
calcium from the dialysate to the blood is decreased. For the same calcium concentration in the blood
at the inlet of the dialyzer, the total calcium concentration in the blood at the outlet is lesser when the
dialysate contains citrate.
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(a) (b) (c)

Figure 13: Longitudinal distribution of the concentration c1(t) (in mol.m−3 or, equivalently, in mmol.l−1)
of free Calcium in blood at the blood/membrane interface at time 300s for dialysate fluids described in
Table 9. (a) Dialysate D0. (b) Dialysate D1. (c) Dialysate D2.

(EX1) (EX2)

Figure 14: Evolution of the concentration of total Calcium in blood at the exit of the dialyzer for flow
data in Table 9 and dialysates D0, D1 and D2.

5.2 Concentrations for blood modelled as a Non-Newtonian fluid

In this section the velocity field (Ux, Ur) is computed using a non-Newtonian model for the blood. Since
we are interested on the influence of the blood’s rheology on the evolution of the concentrations for
chemical species listed in Table 6, we only considered here the Power-law model which seems to provide
the results less similar to the Newtonian case.

As in the Newtonian case we stop the numerical experiments at the time T ? = 300T for which the values
E′(T ?) is acceptably small. We recall that this time corresponds to 300 s.

In order to compare the evolution of concentrations for the Newtonian and Non-Newtonian blood flows,
Figure 15 displays the evolution of the concentration of free Calcium in blood at the exit of the dialyser
for the first five minutes of the dialysis. Small differences can be observed for small values of the time t,
the concentration c1 arriving at the same stationary solution for both types of flows. These differences
are due to the different values of the reference velocity V for each rheology, and, hence, are due to the
dependence of the reference time T to the rheology. Nevertheless, for large values of the time T we remark
a very small influence of blood’s rheology on the concentrations for different chemical species considered
by the model.
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(EX1) (EX2)

Figure 15: Mean concentration of free Calcium c1 (in mol.m−3 or, equivalently, in mmol.l−1) in blood at
the exit of the dialyser for Newtonian and Non-Newtonian (Power-law) blood flows for (EX1) and (EX2).

6 Conclusion and perspectives

This modeling provides two interesting results for clinical practice. First, the decrease in free calcium
concentration in blood is insufficient to explain the anticoagulant effect of citrate containing dialysate.
With a citrate-free dialysate, the free calcium concentration of the blood increases between the inlet and
the outlet of the dialyzer. Conversely, with a citrate containing dialysate, the free calcium concentration
decreases (see Figure 13). However, on contact with the membrane the free calcium concentration
remains higher than the concentrations inhibiting coagulation which are below 0.4 mmol.l−1 [9]. The
modest anticoagulant effect of citrate containing dialysate could be related with its inhibitory effect on
complement system and this effect could be increased by using a calcium-free and citrate containing
dialysate and injecting a calcium solution into the blood after it leaves the dialyzer. [17].

Secondly, when using a citrate dialysate, the transfer of calcium from the dialysate to the blood is
decreased. For the same calcium concentration in the blood at the inlet of the dialyzer, the total calcium
concentration in the blood at the outlet is lesser when the dialysate contains citrate (see Figure 14). This
is due to a calcium-citrate diffusivity that is smaller than free calcium. The decrease in calcium intake
can explain the increased risk of secondary hyperparathyroidism in patients with citrate dialysate [23].
This modeling predicts that a citrate dialysate containing 1.65 mmol.l−1 of calcium provides a calcium
transfer to the patient equivalent to that obtained with a citrate-free dialysate containing 1.5 mmol.l−1

of calcium. In order to maintain the same calcium intake the dialysate calcium concentration must be
increased by 0.15 mmol.l−1 when using a citrate dialysate. This is an important issue to be considered
in clinical practice. Indeed, calcium balance acts directly on bone and mineral disorders in hemodialysis
patients.

Concerning the mathematical model, we observed that the choice of blood rheology has a small influence
on the evolution of the mean concentrations at the dialyzer outlet or on the concentrations at the level
of the membrane. An explanation for that is that we apply an optimization algorithm in order to choose
the boundary conditions on the blood and dialysate pressures at the inlet and outlet of a hollow fiber
such that the corresponding flow rates match the flow rates measured on the dialyzer. This methodology
allow us to consider some very standard boundary conditions for the fluid model. Therefore, once the
boundary data on the pressure are computed, the blood can be assumed to be a Newtonian fluid and
velocity fields can be computed numerically or even explicitly [10]. The velocity field obtained by solving
the fluid model by a finite elements method acts as an input for the convective part in the convection-
diffusion-reaction system modelling the evolution of five chemical species presented in blood and in the
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dialysate fluid. Since, from a clinical point of view, is interesting to know to concentration of calcium
ions at the level of the interface blood/membrane, we considered only the five chemical species in the
complex formed by calcium, albumin and citrate. The model can be easily enriched in order to take into
account a larger number of chemical species and this will be the subject of a future work.

Our study has several limitations. First, the rate constants of the chemical reactions used to model the
interaction between calcium, citrate and albumin do not take into account the changes due to possible
variations in the pH of the dialysate and the blood. However, at least for the citrate and calcium reaction,
it appears that the change in pH has no influence on the equilibrium constants. Chemical equilibrium is
reached much more quickly than other physical phenomena involved. Thus, the exact value of the rate
constants has little significance provided that their ratio (equilibrium constant) is right [25]. Also, we
have not taken into account the electrical migration phenomenon. The different ion diffusion rates lead
to the appearance of an electric field. However this mechanism plays a minor role in the solute flux in
the dialyzer notably with the new polysulfone membranes [35]. Finally, this model does not take into
account that the oncotic pressure depends on the concentrations of solutes and it is supposed to variate
linearly with respect to the longitudinal variable. In order to take into account the dependence of the
oncotic pressure to the solute concentration in blood we should consider a model with a stronger coupling
between the equation describing the fluid flows and the ones modelling the transport of solutes. This will
be the subject of further work.

Knowledge of calcium ions flows and concentrations in the dialyser is necessary for an optimal manage-
ment of hemodialysis patients. Modelling offers the opportunity to know these data that are not easily
measurable. The partial differential equations model and the finite elements method used in our work
offer the possibility to describe diffusion and convection but also the chemical reactions between several
solutes. Similarly, to calcium ions, it could be adapted to describe and optimize the purification of uremic
toxins bound to albumin.

A Dimensionless equations

The goal of this first appendix is to present the non-dimensional form of the equations describing the
hydrodynamic flow (see Section 3.1). More precisely, we rewrite all the equations introduced in this
section using the changes of variable given page 9. Consequently, all quantities should be marked with
an asterisk but for the sake of clarity, in this appendix, we drop asterisks.

For every t > 0 and (x, r) ∈ ωb, the dimensionless equations governing the blood flow read as follows (see
the subsection 3.1.1 for the dimensional form of these equations):
εRe

(
∂tvx + vx∂xvx +

1

r
vr∂r(rvx)

)
= −∂xpb + 2ε2∂x

(
G̃(γ̇) ∂xvx

)
+

1

r
∂r

(
r G̃(γ̇) (∂rvx + ε2∂xvr)

)
−∂xpo,

ε3Re
(
∂tvr + vx∂xvr +

1

r
vr∂r(rvr)

)
= −∂rpb + 2

ε2

r
∂r

(
r G̃(γ̇) ∂rvr

)
+ ε2∂x

(
G̃(γ̇) (∂rvx + ε2∂xvr)

)
,

∂xvx +
1

r
∂r(rvr) = 0,

where the dimensionless expression of the shear rate γ̇ is given by

γ̇ =

√
|∂xvx|2 + |∂rvr|2 +

∣∣∣vr
r

∣∣∣2 +
1

2

∣∣∣1
ε
∂rvx + ε∂xvr

∣∣∣2.
We note that the function G̃ appearing in the above equations is related to G by G̃(γ̇) = G

(
Pε2

µ
γ̇

)
.

The dimensionless version of Darcy’s low governing the flow in the membrane has the following form (see
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the subsection 3.1.2 for the dimensional form of these equations):

ε2∂2
xpm +

1

r
∂r(r∂rpm) = 0,

ux = −Da
P1

∂xpm,

ur = − Da
ε2 P1

∂rpm,

for every (x, r) ∈ ωm. Similarly to the blood flow, for every (x, r) ∈ ωd and t > 0 the dimensionless
dialysate flow is governed by the following system (see the subsection 3.1.3 for the dimensional form of
these equations):

εReP1

(
∂twx + wx∂xwx +

1

r
wr∂r(rwx)

)
= −∂xpd + ε2P1∂

2
xwx +

P1

r
∂r(r∂rwx),

ε3ReP1

(
∂twr + wx∂xwr +

1

r
wr∂r(rwr)

)
= −∂rpd +

ε2P1

r
∂r(r∂rwr) + ε4P1∂

2
xwr,

∂xwx +
1

r
∂r(rwr) = 0.

In order to complete the system, we add the dimensionless versions of the conditions on the interface
blood/membrane (see the subsection 3.1.4 for the dimensional form of these equations):

vr = −Da
ε2
∂rpm,

− ∂rvx = Bbvx,

pm = pb,

for every (x, r) ∈ γbm, t > 0,

and on the interface membrane/dialysate, respectively (see the subsection 3.1.5 for the dimensional form
of these equations): 

wr = − Da
ε2P1

∂rpm,

∂rwx = Bdwx,

pm = pd,

for every (x, r) ∈ γmd, t > 0.

Finally, we have the following boundary conditions, for every t > 0 (see the subsection 3.1.6 for the
dimensional form of these equations):

pb|γ`,b = 1, pb|γr,b = 0,

pd|γr,d = −P2, pd|γ`,d = −P2 − P1,

wr|γd = wx|γd = 0,

∂rvx|γb = 0,

where P1 and P2 are respectively given by (6) and (7).

B Variational formulation

In order to numerical approximate the simplified system obtained in the subsection 3.3, we consider a
weak formulation of the system. Since in the previous section we obtained an explicit solution for the
pressure pm inside the membrane (domain ωm), we write here only the weak formulations in domains ωb
and ωd.
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X Blood flow (in ωb):

−

[∫ R1
R

0
rpbϕ

b
1 dr

]x=1

x=0

+

∫∫
ωb

pbr∂xϕ
b
1 dx dr −

∫
γbm

r G̃(γ̇)Bbvxϕ
b
1 dx

−
∫∫

ωb

r G̃(γ̇) ∂rvx∂rϕ
b
1 dx dr =

∫∫
ωb

r∂xpoϕ
b
1 dx dr,∫

γbm

pbrϕ
b
2 dx−

∫∫
ωb

pb(ϕ
b
2 + r∂rϕ

b
2) dx dr = 0,∫∫

ωb

∂xvxϕ
b
3 dx dr +

∫∫
ωb

1

r
∂r(rvr)ϕ

b
3 dx dr = 0,

for every ϕbi ∈ V b
i and i ∈ {1, 2, 3}. These variational formulations are standard and V b

i are Sobolev spaces
endowed with the boundary conditions mentioned in Section 3.3. For more details on the variational
formulations of equations arriving in modeling of fluid flows see, for instance, the monograph [11].

In order to take into account the boundary condition for vr on γbm, it is convenient to make the following
change of variable:

Vr = vr + rK̃b(pd − pb), where K̃b =
D̃aR2

R2
1 ln(R2/R1)

.

Using this change of variable, the last equation describing the blood flow becomes∫∫
ωb

∂xvxϕ
b
3 dx dr +

∫∫
ωb

1

r
∂r(rVr)ϕ

b
3 dx dr −

∫∫
ωb

2K̃b(pd − pb)ϕb3 dx dr = 0,

for every ϕb3 ∈ V b
3 and, therefore, Vr verifies Vr = 0 on γbm.

X Dialysate flow (in ωd):

−

[∫ 1

R2
R

rpdϕ
d
1 dr

]x=1

x=0

+

∫∫
ωd

pdr∂xϕ
d
1 dx dr −

∫
γmd

P1r∂rwxϕ
d
1 dx−

∫∫
ωd

P1r∂rwx∂rϕ
d
1 dx dr = 0,

[∫ 1

0
pdrϕ

d
2 dx

]r=1

r=
R2
R

−
∫∫

ωd

pd(ϕ
d
2 + r∂rϕ

d
2) dx dr = 0,∫∫

ωd

∂xwxϕ
d
3 dx dr +

∫∫
ωd

∂r
1

r
(rwr)ϕ

d
3 dx dr = 0,

for every ϕdi ∈ V d
i , where V d

i are standard Sobolev spaces endowed with the corresponding boundary
conditions.

As in the case of the blood flow, in order to take into account the boundary condition for wr on γmd, the
following change of variable is made:

Wr = wr + (1− r)K̃d(pd − pb), where K̃d =
D̃aR2

P1R2(R−R2) ln(R2/R1)
.

Therefore, the last equation describing the dialysate flow reads as:∫∫
ωd

∂xwxϕ
d
3 dx dr +

∫∫
ωd

1

r
∂r(rWr)ϕ

d
3 dx dr −

∫∫
ωd

1− 2r

r
K̃d(pd − pb)ϕd3 dx dr = 0,

for every ϕd3 ∈ V d
3 . Hence, the new variable Wr satisfies Wr = 0 on γmd.

In the remaining part of this appendix we give the variational formulation corresponding to the rescaled
system (20) modelling the evolution in time of the concentrations ci.
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X Biochemical concentrations (in ω):

The system (20) has the following variational formulation: find ci ∈ Ci such that∫∫
ω
∂tcirϕi dx dr +

∫∫
ω
Si (Ux∂xci + Ur∂rci) rϕi dx dr +

1

Pe

∫∫
ω
rDi∂rci∂rϕi dx dr − ε2

Pe

∫
γr,d

rDi∂xciϕi dr

+
ε2

Pe

∫
γ`,b

rDi∂xciϕi dr +
ε2

Pe

∫∫
ω
rDi∂xci∂xϕi dx dr =

1

Fd

∫∫
ω
rFi(c1, . . . , c5)ϕi dx dr,

for every ϕi ∈ Ci, where Ci are Sobolev spaces taking into account the boundary conditions.

C The gradient-type algorithm used for the minimization of the func-
tion J .

In this appendix, we explicit an optimization algorithm employed to determine the pressure boundary
data from the flow rate data. Given the flow rates ~Q ∈ R4 we will minimize the function J : R4 7−→ R+

defined by

J (~P ) =
1

2
‖Φ(~P )− ~Q‖2,

the function Φ mapping a given pressure vector ~P ∈ R4 onto the corresponding fluxes vector ~Q ∈ R4

(this operation is carried out in the subsection 3.5.1, by directly solving the weak formulation which is
well-posed for given pressure data). The gradient-type algorithm that we use is the following

given ~P , ε1, h, α0

α← α0

while
(
α > ε1

)
do

~S ←
4∑
j=1

J (~P + h~ei)− J (~P )

h
~ei

do
~P ? ← ~P − α ~S
α← α/10

until
(
J (~P ?) ≤ J (~P ) or α ≤ ε1

)
if α > ε1 then

~P ← ~P ?

α← α0

end
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