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Mathematical model of calcium exchange during hemodialysis

using a citrate containing dialysate

Julien Aniort∗, Laurent Chupin†, Nicolae Ĉındea‡

Abstract

Calcium has two important roles in hemodialysis. It participates in the activation of blood coag-
ulation and calcium intakes have a major impact on patient mineral and bone metabolism. The aim
of this paper is to propose a mathematical model for calcium ions concentration in a dialyzer during
hemodialysis using a citrate dialysate. The model is composed of two elements. The first describes
the flows of blood and dialysate in a dialyzer fiber. It was obtained by asymptotic analysis and takes
into account the anisotropy of the fibers forming a dialyzer. Newtonian and non Newtonian blood
rheologies were tested. The second part of the model predicts the evolution of the concentration of
five chemical species present in these fluids. The fluid velocity field drives the convective part of a
convection-reaction-diffusion system that models the exchange of free and complexed calcium. We
performed several numerical experiments to calculate the free calcium concentration in the blood in a
dialyzer using dialysates with or without citrate. The choice of blood rheology had little effect on the
fluid velocity field. Our model predicts that only a citrate based dialysate without calcium can decrease
free calcium concentration at the blood membrane interface low enough to inhibit blood coagulation.
Moreover for a given calcium dialysate concentration, adding citrate to the dialysate decreases total
calcium concentration in the blood at the dialyzer outlet. This decrease of the calcium concentration
can be compensated by infusing in the dialyzed blood a quantity of calcium computed from the model.

1 Introduction

Renal replacement therapy with hemodialysis is used in patients with end-stage renal disease to remove
uremic toxins and restore blood electrolyte composition [15]. End-stage renal disease leads to changes in
mineral metabolism, bone disorders and cardiovascular calcifications [12]. All are associated with high
mortality rates in chronic hemodialysis patients. The balance between calcium intake and loss during
hemodialysis treatment affects these abnormalities. It is therefore essential to be able to predict calcium
exchange during hemodialysis. Heparin is the most routinely used anticoagulant for the prevention of
extracorporeal circulation clotting during hemodialysis sessions. However, heparin exposes the patient to
the risk of bleeding complications and heparin-induced thrombocytopenia [6]. To avoid these complica-
tions, regional anticoagulation of the blood circuit can be performed with a citrate-containing dialysate
[20]. Citrate is a potent calcium chelator that can decrease free calcium concentration. Calcium ions
are required for the activation of coagulation factors. A calcium concentration of less than 0.4 mmol.l−1

inhibits blood coagulation [17]. The anticoagulant properties of citrate dialysate are believed to be caused
by a decrease in free calcium concentration of the blood. However, this hypothesis has yet to be confirmed
because it is not possible to measure the distribution of free calcium concentration in the dialyzer. In
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‡Université Clermont Auvergne, Laboratoire de Mathématiques Blaise Pascal CNRS-UMR 6620, Campus des Cézeaux,

F-63177 Aubière cedex, France (nicolae.cindea@uca.fr)

1



the present study we use a model of fluid and solute transport to predict calcium concentration in the
blood at the outlet of the dialyzer and dialysate and the distribution of free calcium concentration in the
dialyzer.

The one-dimensional theory of solute transport in a dialyzer provides a simplified description of solute
flows in blood and dialysate channels, assuming that the average concentration of the solute in any cross-
section of the channel is equal to the concentration of the solute at the surface of the membrane. Transport
in membrane channels was modeled according to the Kedem and Katchalsky equation [18] with Villarroel
correction [34] to account for convection-diffusion interaction. One-dimensional axially-dependent models
based on ordinary differential equations have provided much insight into the dynamics of fluid and solutes
within and around the hollow fibers. However, they have several limitations. Notably, the assumption
of homogeneous solute concentration in the cross-section of the channels does not allow the distribution
of concentration in the dialyzer to be computed. Resolution of partial differential equations by the finite
element method eliminates the need for most of the simplifying assumptions and potentially generates
more accurate results.

Few attempts have been made to model calcium flux in a dialyzer. Gotch et al [11] applied the concept
of dialysance to calculate calcium flux through the dialyzer in a similar approach to that used for urea.
However, there is no evidence that calcium dialysance is independent of the concentration of calcium
and other solutes reacting with calcium. In addition, calcium binding to albumin and diffusible calcium
complexes are not taken into account in their calculation [11]. Thijssen et al [32] supplemented the model
of Gotch by calculating the concentrations of complexes derived from calcium, citrate and albumin in
equilibrium. Only Huang et al [16] considered the interactions between diffusion, convection and chemical
reactions within the dialyzer. Their model is based on one-dimensional theory. They added to their
algorithm the calculation of concentrations after the equilibrium of reaction is reached, thereby making
it possible to calculate the concentrations within the dialyzer. However, this model, like other one-
dimensional models, does not give the concentration gradient of calcium within the blood compartment.

In the present study we propose a modeling of flows and concentrations, notably those of calcium ions,
in a dialyzer using citrate-containing dialysate. The blood is modeled as a Newtonian fluid and as a non-
Newtonian fluid. The dialysate fluid is described as a Newtonian fluid and the flow in the membrane is
governed by Darcy’s equation. The main novel feature of our model with respect to existing flow models
[8, 7, 9] is in the choice of the boundary conditions that drive the flow. We imposed pressure only at the
inlet and outlet of a hollow fiber for the blood and dialysate, respectively. Since these pressures are not
generally available at the level of a fiber, we computed the pressure boundary data by an optimization
algorithm that provided a set of pressures such that the resulting solution fitted the blood and dialysate
global flow rates at the level of the hemodialysis machine. This procedure allow us to study several
different rheologies for the non-Newtonian fluid that govern the blood flow and to obtain a velocity field
of the fluids in a dialyzer such that the blood flow rate and the dialysate flow rate available on every
standard hemodialysis machine are fitted by the model. The velocity field computed by solving the fluid
model enters the convective part of the convection-diffusion-reaction system that describes the interaction
of five different chemical species related to calcium present in the blood and in dialysate. Since albumin,
which is one of the species considered, exerts oncotic pressure in the blood, the model that describes the
evolution of the velocity of the fluids should take into account this supplementary pressure. In this case,
the fluid model is strongly coupled to the convection-diffusion-reaction system, which makes the whole
system difficult to handle from both theoretical and numerical points of view.

The assumption usually made [19, 21] is that oncotic pressure depends non-linearly on the concentration
of proteins in the blood. To simplify the model we assumed that the concentration of proteins in the
blood is radially invariant and varies linearly with respect to the longitudinal variable inside a dialyzer’s
hollow fiber. The coupled convection, reaction diffusion model, which does not make any assumptions
on the concentration of proteins in the blood, will be studied in a future work.

This paper is divided into the following sections. In Section 2 we schematically describe the geometry
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of a dialyzer, which allowed us to introduce the parameters of the model. Section 3 deals with the
hydrodynamic flow in a dialyzer’s hollow fiber as previously described by [9]. Conservation equations
are introduced in subsection 3.1 to compute fluid velocity and fluid pressure in the blood, the membrane
and dialysate. Conditions at the interfaces are provided to couple all the unknowns. After a non-
dimensionalization step we simplify the model in subsection 3.3, taking into account the low ratio between
the width and length of a fiber. Several rheological models for the blood are presented in subsection 3.4.
The results obtained for different rheologies are compared in subsection 3.5 after an explanation of the
variational formulation and the numerical scheme used to obtain a solution of the system.

In Section 4, we describe the convection-reaction-diffusion equations used to monitor the concentration
of five chemical species present in blood and dialysate fluid. Section 5 illustrates the model introduced in
section 4 by numerical experiments and Section 6 presents a few conclusions and proposes perspectives
for this work.

2 Simplified geometry of a dialyzer

The aim of this section is to present the geometrical model considered in this paper in order to propose
a mathematical model for the flows of blood and dialysate in a dialyzer fiber.

A dialyzer module consists of an array of a large number N of equispaced parallel hollow fibers. Each
fiber is composed of three parts: a central channel, a permeable membrane surrounding this channel, and
an outer channel delimited by an ideal no-flux boundary confining the permeate flow. The blood flow is
confined in the inner channel while the dialysate flows in the outer channel and in the opposite direction.
We may focus on studying the flow in a single cell whose geometry is equivalent to the geometry of a
pipe with periodic external boundary conditions (see, for instance, [7, 8, 9] and the references therein).
We assume that in each hollow fiber the flows are radially symmetric and, hence, it is natural to work
using the cylindrical coordinates. The problem can be reduced to a two-dimensional one in a domain Ω
defined by

Ω =
{

(x, r) ∈ R2 | 0 < x < L and 0 < r < R
}
,

where L is the length of the fiber, and R is its radius. This domain is naturally separated into three sub-
domains corresponding to the blood domain Ωb, the membrane domain Ωm and the dialysate domain Ωd,
whose dimensions are described by the positive real numbers R1 and R2, respectively:

Ωb =
{

(x, r) ∈ Ω | 0 < r < R1

}
,

Ωm =
{

(x, r) ∈ Ω | R1 < r < R2

}
,

Ωd =
{

(x, r) ∈ Ω | R2 < r < R
}
.

The interfaces between these domains are denoted Γbm and Γmd and are defined by

Γbm =
{

(x, r) ∈ Ω | r = R1

}
,

Γmd =
{

(x, r) ∈ Ω | r = R2

}
.

Finally, we describe the boundary of the domain as several natural sub-boundaries. Therefore, the left
side of the rectangle Ω is composed by the union of three segments: Γl,b, corresponding to the left side of
the blood channel, Γl,m, corresponding to the left boundary of the membrane, and Γl,d which corresponds
to the left side of the dialysate outlet, respectively. The right side of Ω is, symmetrically, formed by three
segments Γr,b, Γr,m and Γr,d. We mention that the blood flows from left to right and the dialysate flows
in the opposite direction. All the boundaries are illustrated in Figure 1 (bottom – right) and precisely
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described by the following equations:

Γb =
{

(x, 0) ∈ R2 | x ∈ (0, L)
}
, Γd =

{
(x,R) ∈ R2 | x ∈ (0, L)

}
(1)

Γbm =
{

(x,R1) ∈ R2 | x ∈ (0, L)
}
, Γmd =

{
(x,R2) ∈ R2 | x ∈ (0, L)

}
, (2)

Γ`,b =
{

(0, r) ∈ R2 | r ∈ (0, R1)
}
, Γr,b =

{
(L, r) ∈ R2 | r ∈ (0, R1)

}
, (3)

Γ`,m =
{

(0, r) ∈ R2 | r ∈ (R1, R2)
}
, Γr,m =

{
(L, r) ∈ R2 | r ∈ (R1, R2)

}
, (4)

Γ`,d =
{

(0, r) ∈ R2 | r ∈ (R2, R)
}
, Γr,d =

{
(L, r) ∈ R2 | r ∈ (R2, R)

}
. (5)

Due to the large difference between the two lengths L and R (typically L = 23 cm and R = 0.23 mm), it
will be interesting to work in a re-scaled domain. This anisotropy is discussed in Section 3. Finally, the
schematic simplification of the geometry of the dialyzer is described in Figure 1.
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Figure 1: The reduction process of the initial problem in a complex physical geometry to a problem in
a square: firstly, considering only one fiber; secondly, using cylindrical coordinates; thirdly, scaling the
domain.

3 Modeling of flow in a fiber

This section proposes a model for the fluid flow inside a hollow fiber in a dialyzer.

3.1 Governing equations

The flow in a fiber is characterized by its velocity field and its pressure. The model described here is
based on the physical conservation of mass and momentum, and it is first introduced on each sub-domain
corresponding to the blood domain, to the membrane and to the dialysate domain, respectively. The
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notations and the physical model for each sub-domain are given in Table 1. Some interface conditions
are next introduced between these connected domains.

Domain Pressure Velocity Model

Blood: Ωb pb (vx, vr) non-Newtonian fluid

Membrane: Ωm pm (ux, ur) Darcy’s equation

Dialysate: Ωd pd (wx, wr) Newtonian fluid

Table 1: Notation for pressure, velocity fields and the physical model corresponding to the three sub-
domains of domain Ω.

3.1.1 Blood flow

The blood is modeled either as a Newtonian fluid, either as a quasi-Newtonian fluid. The equations
satisfied by the velocity field (vx, vr) and the pressure pb correspond to the mass and the momentum
conservation laws. These equations are valid for (x, r) ∈ Ωb and for any time t > 0:





ρ
(
∂tvx + vx∂xvx +

1

r
vr∂r(rvx)

)
= −∂xpb + 2µ∂x

(
G(γ̇) ∂xvx

)
+
µ

r
∂r

(
r G(γ̇) (∂rvx + ∂xvr)

)
,

ρ
(
∂tvr + vx∂xvr +

1

r
vr∂r(rvr)

)
= −∂rpb + 2

µ

r
∂r

(
r G(γ̇) ∂rvr

)
+ µ∂x

(
G(γ̇) (∂rvx + ∂xvr)

)
,

∂xvx +
1

r
∂r(rvr) = 0.

The constant blood density is denoted by ρ = 103 kg.m−3. We consider several different rheology models
for the blood. The viscosity of the blood is given by µG(γ̇), where G is a function depending on the
shear rate:

γ̇ =

√
|∂xvx|2 + |∂rvr|2 +

∣∣∣vr
r

∣∣∣
2

+
1

2
|∂rvx + ∂xvr|2.

Here and henceforth, µ denotes the reference viscosity and is equal to the viscosity of the water (µ =
10−3 Pa.s). Some examples of functions G are given in Subsection 3.4.

3.1.2 Membrane flow

In the porous membrane, the governing equations are the continuity equation (corresponding to the free-
divergence of the flux) coupled with Darcy’s law (corresponding to the fact that the flux is proportional
to the gradient of the pressure pm). For (x, r) ∈ Ωm, these two equations give:

∂2
xpm +

1

r
∂r(r∂rpm) = 0.

The velocity field in the membrane is denoted by (ux, ur) and is obtained from the following relations





ux = −K
µ
∂xpm,

ur = −K
µ
∂rpm,

the coefficient K corresponding to the permeability of the membrane.
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3.1.3 Dialysate flow

The dialysate is supposed to be a Newtonian fluid with the same constant density as the blood, and with
a viscosity equal to the reference viscosity µ. Navier-Stokes equations on the velocity (wx, wr) and the
pressure pd read, for (x, r) ∈ Ωd and for any time t > 0:





ρ
(
∂twx + wx∂xwx +

1

r
wr∂r(rwx)

)
= −∂xpd + µ∂2

xwx +
µ

r
∂r(r∂rwx),

ρ
(
∂twr + wx∂xwr +

1

r
wr∂r(rwr)

)
= −∂rpd +

µ

r
∂r(r∂rwr) + µ∂2

xwr,

∂xwx +
1

r
∂r(rwr) = 0.

3.1.4 Interface blood-membrane

The conditions imposed at the interface blood/membrane Γbm correspond to the continuity of the flux,
Saffman’s condition for the slip velocity (see for instance [9]), and the continuity of the pressure, respec-
tively. For every (x, r) ∈ Γbm, these conditions write as follows:





vr = −K
µ
∂rpm,

− ∂rvx =
αBJ√
K
vx,

pm = pb − po,

where the coefficient αBJ is the Beavers-Joseph constant (measured slip coefficient only depends on porous
media properties) relative to the porous wall.

The oncotic pressure po depends on the concentration of the suspended proteins in the blood. In what
follows, we assume that the oncotic pressure is constant with respect to the radial variable r and depends
non-linearly on the spatial variable x. More precisely, following [21, Equation (20)], the oncotic pressure
is given by

po(x) = 2.1× 10−1cp(x) + 1.6× 10−3cp(x)2 + 9× 10−6cp(x)3, (6)

where cp(x) is the concentration of proteins at (x, r) ∈ Ωb. Nevertheless, since the spatial distribution
of proteins in the blood inside a dialyzer fiber is a priori unknown, we assume that this concentration
varies linearly with respect to the longitudinal variable x.

3.1.5 Interface membrane-dialysate

The conditions on the interface membrane/dialysate Γmd are similar to the conditions on the interface
blood/membrane, with the difference that the Beavers-Joseph constant appearing here is different to the
one appearing for Γbm and there is no oncotic pressure acting on this interface. More precisely, for every
(x, r) ∈ Γmd we have: 




wr = −K
µ
∂rpm,

∂rwx =
βBJ√
K
wx,

pm = pd,

where the coefficient βBJ is another Beavers-Joseph constant relative to the porous membrane.

6



3.1.6 Boundary conditions for the flow

The boundary of the domain is composed of the lateral boundaries described by x = 0 and x = L, by the
“exterior” boundary r = R and by the symmetry axis r = 0. The physical conditions on these boundaries
are given by:

pb = pb,in on Γ`,b, pb = pb,out on Γr,b for the blood pressure;

pd = pd,in on Γr,d, pd = pd,out on Γ`,d for the dialysate pressure;

wr = 0 on Γd, ∂rwx = 0 on Γd, ∂rpd = 0 on Γd top boundary;

∂rvx = 0 on Γb vr = 0 on Γb, ∂rpb = 0 on Γb symmetry axis.

The first boundary conditions correspond to the imposed pressures on the blood and on the dialysate.
An assumption usually made in the literature is that these pressures satisfy pb,in > pb,out > pd,in > pd,out

(see [8, 7] or [9, Table 3] for typical values of these pressures). The conditions on the top boundary Γd
correspond to the radial periodicity of the dialyzer’s structure described in Figure 1 and the conditions
on Γb to the radial symmetry of the domain.

In order to have a well posed system, we complete these boundary conditions by considering homogeneous
Neumann boundary conditions on the other parts of the boundary of Ω:

∂xvx = ∂xvr = 0 on Γ`,b ∪ Γr,b,

∂xwx = ∂xwr = 0 on Γ`,d ∪ Γr,d,

∂xpm = 0 on Γ`,m ∪ Γr,m.

These conditions, acting on the lateral boundaries, impose the fact that the velocity and the pressure
are locally constant in the longitudinal direction at both extremities of the fiber. All these homogeneous
Neumann boundary conditions appear naturally in the variational formulation described in Appendix B.

3.2 Scaling procedure

In this section we replace the physical quantities appearing in the model by their corresponding dimen-
sionless quantities and we rewrite in consequence the equations. First, we set the reference density ρ and
the reference viscosity µ to the density and the viscosity of water:

ρ = 103 kg.m−3, µ = 10−3 Pa.s.

In Table 2 we gather two sets of parameters describing the geometry and the permeability of two typical
dialyzers. The first set of parameters describe the dialyzer machine in [8] and the second one lists the
product specifications of a universal dialyzer APS-18U R©. Typical values for blood injection/output
pressures (pb,in and pb,out) and dialysate injection/output pressures (pd,in and pd,out) are given in (7) (see
also [8, 9]):

pb,in = 16× 103 Pa, pb,out = 11× 103 Pa, pd,in = 103 Pa, pd,out = 0.1× 103 Pa. (7)

3.2.1 Reference quantities

Some characteristic sizes appear naturally in the formulation of the problem: two lengths L and R, and
four pressures: pb,in, pb,out, pd,in and pd,out. In practice, we use the difference

P = pb,in − pb,out
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as a reference pressure. Using this reference pressure, the reference viscosity µ and the two characteristic
lengths R and L, it is possible to define a reference velocity:

V =
PR2

µL
.

It is also possible to introduce another reference pressure using the difference pd,in − pd,out. The corre-
sponding velocity, denoted W , is given by W = P1V where

P1 =
pd,in − pd,out

P
. (8)

In order to take into account all the pressures imposed on the boundaries of the domain, we define a new
dimensionless number

P2 =
pb,out − pd,in

P
. (9)

We note that the first velocity V is used for the nondimensionalization of the blood velocity whereas
the second velocity W is employed to nondimensionalize the dialysate velocity. Finally, we introduce the
reference time

T =
L

V
.

3.2.2 Dimensionless numbers

The following dimensionless numbers can be defined:

ε =
R

L
, Re =

ρRV

µ
, Da =

K

R2
, Bb =

αBJ√
Da

, Bd =
βBJ√
Da

.

These numbers are used to write the complete system of partial differential equations in a dimensionless
form. The first parameter describes the ratio between the two lengths previously introduced. In practice,
the number ε is much smaller than 1 and the Reynolds number Re will be of order 1. The number Da
corresponds to the Darcy number and the quotient Da/ε2 is of order 1. It is more difficult to evaluate
the Beaver-Joseph coefficients αBJ and βBJ. These parameters depend on the properties of the porous
material as well as the material’s specific surface conditions. In [26] and more recently in [4], the authors
take βBJ = 1. We adopt this hypothesis for the present work. In this case, the product εBd is of order 1,
and this corresponds to the Remark 3 in [9, page 1918]. Following [9] again, the boundary condition
on the interface blood-membrane must come into play. They propose to use a coefficient αBJ such that
the parameter Bb is of order 1 with respect to ε and we use the value given as example in [9, Table 7].
This difference between the two Beavers-Joseph’s coefficients is related to the fact that, contrary to the
dialysate, the blood does not adhere at the membrane surface.

We list below an example of non-dimensional numbers corresponding to Set A of data in Table 2 (see [9,
Remark 3] for the typical values of Beavers-Joseph number Bd which is assumed to be large, typically of
order of 1/ε):

ε = 10−3, Re = 124.836, Da = 4.537× 10−11, Bb = 2.5, Bd = 7.3× 103.

We use the following scaling for the different variables (the star notation ? corresponding to variables
without dimension):

x = Lx?, r = Rr?, t = T t?, pa = pb,out + P p?a, for a ∈ {b,m, d, o},
vx = V v?x, vr = εV v?r , ux = W u?x, ur = εW u?r wx = W w?x, wr = εW w?r .

Note that, since the pressure is defined up to an additive constant, we choose pb,out as a reference pressure.
It is then possible to rewrite all the equations describing the flow under a dimensionless form. For clarity,
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Name Notation Set A Set B

Length L 2.3× 10−1 m 3.3× 10−1 m

Total radius R 2.3× 10−4 m 2.1× 10−4 m

Blood radius R1 10−4 m 10−4 m

Membrane radius R2 1.4× 10−4 m 1.45× 10−4 m

Permeability K 2.4× 10−18 m2 1.21× 10−17 m2

Number of fibers N 104 104

Table 2: Two set of values describing two different dialyzers

these equations are postponed in the Appendix A. We only indicate here the domains in which the
equations hold since this notation will be reused in the following sections.

Firstly, the domain Ω becomes, after the scaling, the unit square ω:

ω =
{

(x?, r?) ∈ R2 ; 0 < x? < 1 and 0 < r? < 1
}
.

Similarly to domain Ω, the rescaled domain ω is composed of three subdomains:

ωb =
{

(x?, r?) ∈ ω ; 0 < r? <
R1

R

}
,

ωm =
{

(x?, r?) ∈ ω ;
R1

R
< r? <

R2

R

}
,

ωd =
{

(x?, r?) ∈ ω ;
R2

R
< r? < 1

}
,

and its boundary is formed by the following segments:

γb =
{

(x?, 0) ∈ R2 ; x? ∈ (0, 1)
}
, γd =

{
(x?, 1) ∈ R2 ; x? ∈ (0, 1)

}
,

γbm =

{(
x?,

R1

R

)
∈ R2 ; x? ∈ (0, 1)

}
, γmd =

{(
x?,

R2

R

)
∈ R2 ; x? ∈ (0, 1)

}
,

γ`,b =

{
(0, r?) ∈ R2 ; r? ∈

(
0,
R1

R

)}
, γr,b =

{
(1, r?) ∈ R2 ; r? ∈

(
0,
R1

R

)}
,

γ`,m =

{
(0, r?) ∈ R2 ; r? ∈

(
R1

R
,
R2

R

)}
, γr,m =

{
(1, r?) ∈ R2 ; r? ∈

(
R1

R
,
R2

R

)}
,

γ`,d =

{
(0, r?) ∈ R2 ; r? ∈

(
R2

R
, 1

)}
, γr,d =

{
(1, r?) ∈ R2 ; r? ∈

(
R2

R
, 1

)}
.

3.3 Considerations on the geometric anisotropy of a fiber

During the scaling process, we introduced a dimensionless number ε which is very small with respect
to 1. To obtain a simpler system, we will keep only the main order terms with respect to ε, taking into
account that

D̃a =
Da
ε2

= O(1) and Bd = O
(1

ε

)
,

all the other parameters being of order 1. Considering this anisotropy (ε� 1), we can formally simplify
the set of equations describing the flow. More precisely, the equations obtained in Appendix A can be
approximated by the equations described below.
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For every (x?, r?) ∈ ωb the simplified blood flow is governed by the following system





0 = −∂x?p?b +
1

r?
∂r?
(
r? G̃(γ̇) ∂r?v

?
x

)
− ∂x?p?o, (10a)

0 = −∂r?p?b , (10b)

∂x?v
?
x +

1

r?
∂r?(r?v?r ) = 0, (10c)

where the shear rate reduces to γ̇ =
1

ε
√

2
|∂r?v?x|, and the function G̃ is defined from the viscosity

function G as follows

G̃(X) = G
(ε2 P

µ
X
)
. (11)

The pressure and the velocities into the membrane domain ωm satisfy





∂r?(r?∂r?p
?
m) = 0, (12a)

u?x = 0, (12b)

u?r = −D̃aP1
∂r?p

?
m, (12c)

and the dialysate flow is given by the solution of the following equation:





0 = −∂x?p?d +
P1

r?
∂r?(r?∂r?w

?
x), (13a)

0 = −∂r?p?d, (13b)

∂x?w
?
x +

1

r?
∂r?(r?w?r) = 0. (13c)

Finally, the simplified conditions at the interfaces blood/membrane, membrane/dialysate and at the
exterior boundaries become:

• interface blood/membrane (on γbm):





v?r = −D̃a ∂r?p?m, (14a)

−∂r?v?x = Bbv
?
x, (14b)

p?m = p?b − p?0. (14c)

• interface membrane/dialysate (on γmd):





w?r = −D̃aP1
∂r?p

?
m, (15a)

w?x = 0, (15b)

p?m = p?d. (15c)

• exterior boundary conditions:





p?b |γ`,b = 1, p?b |γr,b = 0, (16a)

p?d|γr,d = −P2, p?d|γ`,d = −P2 − P1, (16b)

w?r |γd = ∂r?w
?
x|γd = 0, (16c)

∂r?v
?
x|γb = 0. (16d)
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Remark 3.1 It is not difficult to determine the membrane pressure p?m. This pressure satisfies the
ordinary differential equation (12a) within the two boundary Dirichlet conditions (14c) and (15c). We
deduce the following expression of p?m with respect to the pressures p?b and p?d: for (x?, r?) ∈ ωm,

p?m(x?, r?) =
1

ln(R2/R1)

(
(p?d(x

?)− p?b(x?) + p?o(x
?)) ln(Rr?) + (p?b(x

?)− p?o(x?)) lnR2 − p?d(x?) lnR1

)
.

Moreover, the derivative of p?m with respect to r? (appearing in the other equations) reads

∂r?p
?
m(x?, r?) =

p?d(x
?)− p?b(x?)p?o(x?)
r? ln(R2/R1)

.

In particular, we can express the fluid velocity in the membrane as:

u?x(x?, r?) = 0 and u?r(x
?, r?) = −D̃aP1

p?d(x
?)− p?b(x?) + p?o(x

?)

r? ln(R2/R1)
.

Remark 3.2 When the blood is considered as a Newtonian fluid, an analytical expression of the simplified
system (10a)-(16d) can be obtained (see [9] for details).

Remark 3.3 By ignoring the terms of order ε, the simplified system will not depend on the time any
more. In other words, among other simplifications, we are searching for a stationary solution of the
system considered in Appendix A.

3.4 Different rheological models for blood

As indicated above, the blood is generally considered as a Newtonian fluid, or as a quasi-Newtonian
fluid. Its viscosity is assumed to be variable and is described by a function G, or, equivalently, by its
corresponding dimensionless version G̃. More precisely, we recall that we have the following relation
between the viscosity and the function G:

viscosity = µG(γ̇),

where µ is the reference viscosity and γ̇ corresponds to the shear rate. In particular, when the blood is
modeled as a Newtonian fluid, its viscosity is constant and is given by

µ∞ = 3.45× 10−3 Pa.s. (17)

Recalling from Table 2 that the reference viscosity is µ = 10−3 Pa.s, it follows that G̃(X) = 3.45 for this
Newtonian model.

In Table 3, we summarize different widely used non-Newtonian constitutive relationships for the blood
viscosity model against the shear rate. For more details concerning these non-Newtonian blood viscosity
models we refer the reader to [24].

In order to compare the rheology models mentioned in this section, we numerical computed the minimal
and the maximal values of the shear rate γ̇ appearing along the iterations in the fixed point algorithm
used to tackle the non-linearity given by G̃. We obtained that the values γ̇ are mainly distributed in the
interval [10−4, 102]. Plotting the function G̃(X) on this interval, we easily observe that all the considered
models, at the exception of the power-law model, are similar to the Newtonian one for values of X close
to 102, having slightly different behaviors when X goes to zero.
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Model Description

Power-law model

G̃(X) = m

(
ε2P

µ

)n−1

Xn−1

m = 4.25

n = 0.7755

Carreau model

G̃(X) =
1

µ

(
µ∞ +

(
µ0 − µ∞

)(
1 + (λ?X)2

)n−1
2

)

µ0 = 0.056 Pa.s

λ? =
ε2P

µ
λ, with λ = 3.131 s

n = 0.3568

Quemada model

G̃(X) =
µp
µ

(
1− 1

2

k0 + k∞
√
X/γ?

1 +
√
X/γ?

φ
)−2

µp = 1.2× 10−3 Pa.s

φ = 0.4

k0 = 4.65, k∞ = 1.84

γ? = γc
µ

ε2P
, with γc = 2.23 s−1

Cross model

G̃(X) =
1

µ

(
µ∞ + (µ0 − µ∞)

(
1 +

(
X

γ?

)n)−1 )

µ0 = 0.0364

γ? = γc
µ

ε2P
, with γc = 2.63 s−1

n = 1.45

Table 3: Non-Newtonian blood viscosity models.

3.5 Numerical simulations of the flows within a fiber

To numerically approach a solution of the previous systems, we first consider their weak formulations.
For the interested reader, these weak formulations are given Appendix B. In order to solve the weak
formulations we use the finite element method combined with a fixed point strategy employed for taking
into account the non-linearity given by G̃. We use P1-bubble finite elements to represent the velocities
(w?x, w

?
r , v

?
x and v?r ) and P1 finite elements for the pressures (p?b and p?d). For the numerical implemen-

tation, FreeFem++ [14] is employed.

3.5.1 Effective computations of the flows - the case of pressure data

In the simplest case we assume that all the data in Tables 2 and the pressures (7) are known, as well as
the non-linearity G̃. For the results in this subsection, the geometry of the dialyzer is the one described
by Set A in Table 2. We then compute the non-dimensional numbers, Da, Bb, P1 and P2 in order to
numerically approach the solution of the variational formulations given in Appendix B.

The velocity in the entire domain ω is denoted (U?x , U
?
r ) and is linked to the velocities in the blood, in

12



the membrane and in the dialysate as follows:

(U?x , U
?
r ) =





(v?x, v
?
r ) in ωb,

(u?x, u
?
r) in ωm,

(w?x, w
?
r) in ωd.

We denote (Ux, Ur) the physical velocity which is thus defined on the physical domain Ω.

Using the boundary values for pressures pb and pd prescribed in (7), the influence of the rheologies
proposed in Section 3.4 on the velocity field is illustrated in Figure 2. We remark that the choice of the
rheology governing the blood flow has an influence on the horizontal velocity profile in the domain Ωb

and almost no influence on the radial blood flow or on both flows in domains Ωm and Ωd.
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(a) (b)

Figure 2: Velocity profiles on the line x =
L

2
corresponding to the geometry parameters in Table 2 (Set

A) and the pressure boundary data (7). (a) Values (in m.s−1) of the longitudinal component of the
velocity Ux(L2 , r) for r ∈ (0, R). (b) Values (in m.s−1) of the radial component of the velocity Ur(

L
2 , r)

for r ∈ (0, R).

As an example, we choose to illustrate only the Newtonian model and the power-law model for the
rheology of the blood. The pressure and the velocity in domains Ωb, Ωm and Ωd, obtained again for the
boundary values for the pressure given by (7), are displayed in Figure 3 and Figure 4, respectively. We
remark that the pressure profiles are very similar for both models and, as expected, the dependence of
the velocity on the rheology of the blood is most important in Ωb.
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blood - power-law

dialysate - power-law

(a) (b)

Figure 3: Pressure (in Pa) corresponding to the power-law model, the geometric parameters in Table 2
and the boundary values given by (7). (a) Spatial distribution in domain Ω. (b) Longitudinal profile of
pressure in blood and dialysate.
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We mention that we obtained very similar flow rates for the blood and the dialysate as the ones previously
obtained in [8] for the same choice of pressure data, the same geometry and a similar blood rheology.

(a) (b)

Figure 4: Velocity magnitude of fluids in Ω corresponding to Newtonian model (a) and power-law model
(b), geometric parameters in Table 2 Set A and pressure boundary data 7.

3.5.2 Effective computations of the flows - the case of flow rates data

We consider now a case which, on one hand, is more complex from the numerical point of view, and on
the other hand, more natural from an experimental point of view, the pressures on boundaries Γ`,b, Γr,b
and Γ`,d, Γr,d (~P = (pb,in, pb,out, pd,in, pd,out)) are not available, and we only dispose of the fluxes ~Q at
the entrance and at the exit of dialyzer. Since the number of fibers composing the dialyzer and their
geometry are known, we can easily deduce from the fluxes ~Q = (Qb,in, Qb,out, Qd,in, Qd,out) the fluxes at
the entrance and exit of domains Ωb and Ωd. An example of such fluxes is given in Table 4. These flow

Name Notation EX1 (ml.min−1) EX2 (ml.min−1)

Blood injection flux Qb,in 300 400

Blood output flux Qb,out 290 390

Dialysate injection flux Qd,in 500 500

Dialysate output flux Qd,out 510 510

Table 4: Typical values for the fluxes for clinical dialysis

rates are directly determined given the velocity field. For instance, the blood flux at the entrance of the
domain Ωb is related to the blood injection flux by the following relation:

Qb,in = 2πN

∫ R1

0
vx(0, r)r dr,

where N is the number of hollow fibers composing the dialyzer. It is therefore relatively easy to determine
the fluxes ~Q from the pressures ~P using the procedure proposed above; we denote by Φ the application
associating to a given pressure vector ~P the corresponding fluxes vector ~Q. The reverse is much less
obvious. We propose an optimization algorithm to determine a set of pressures from the fluxes. Given
the flow rates ~Q, we will minimize the following function:

J (~P ) =
1

2
‖Φ(~P )− ~Q‖2, (18)
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where ‖·‖ is the usual euclidean norm on R4. To this purpose, we implemented a gradient-type algorithm
described in Appendix 1 (in practice, this algorithm is used with the following numerical parameters:
h = ε1 = 1, and α0 = 103). Remark that the pressure data minimizing J may not be unique.

With the flux data instead of the pressure data (that is, using Table 4 instead of the values in (7)),
we compute the velocity of the fluids for the rheological models proposed in Section 3.4. The vertical
and horizontal velocity profiles obtained for different blood rheologies and for pressures data (EX1) are
illustrated in Figure 5. The results in this subsection correspond to a dialyzer described by Set B in
Table 2.

Remark 3.4 Unlike the results illustrated in Figure 2 (a), we observe that the longitudinal velocities
displayed in Figure 5 (a) present much less variation with respect to the choice of the model. This is
a consequence of the fact that for the simulations in Figure 5, for each one of the rheologies considered
in this paper, the values of the blood and the dialysate input and output pressures were chosen such that
the blood and the dialysate flow rates match the values listed in Table 4. Therefore, the influence of the
rheology is much less visible than in the case considered for Figure 2 where the pressure data was the
same for each rheology.
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Figure 5: Velocity profiles on the line x =
L

2
corresponding to the geometry parameters in Table 2 (Set

B) and the pressure boundary data optimized to match the flows in Table 4 (EX1). (a) Values (in m.s−1)
of the longitudinal component of the velocity Ux(L2 , r) for r ∈ (0, R). (b) Values (in m.s−1) of the radial
component of the velocity Ur(

L
2 , r) for r ∈ (0, R).

The longitudinal profiles of pressure in the blood and in the dialysate corresponding to a Newtonian
model and for boundary pressure data optimized in order to minimize the functional J given by (18),
are displayed in Figure 6. We observe that these profiles are qualitatively different to the ones in Figure
3 (b) which correspond to pressure boundary data (7). More exactly, the pressure pb,out of the blood at
the exit of the dialyzer is smaller than the pressure pd,in of the dialysate at the entrance of the dialyzer.
This is surprising with respect to previous literature (see, for instance, [8, 7, 9]) were it is often assumed
that pb,out > pd,in but, in the same time, is in complete agreement with the pressure values observed for
a standard hemodialysis session and listed in Table 7.

4 Evolution of chemicals in blood and dialysate during dialysis

In this section we describe a model for the evolution of concentrations of several chemical components of
blood and dialysate during a dialysis process. Since we are interested in the study of the calcium balance
during hemodialysis using a citrate containing dialysate, we propose to use a transport–diffusion–reaction
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Figure 6: Longitudinal profile of pressure in the blood and the dialysate corresponding to the geometry
parameters in Table 2 (Set B) and the pressure boundary data optimized to match the flows in Table 4
(EX1) and (EX2).

equation for a number of five chemical species described in subsection 4.3. A similar model was employed
for the study of the dynamic exchange of bicarbonate and the exchange of sodium during dialysis in [1, 2]
and in [33], respectively.

4.1 Transport–diffusion process

The solute concentration mechanism is coupled to the velocity field (Ux, Ur) is modeled by a convection–
diffusion–reaction equation. More precisely, for any species (whose concentration is denoted by ci, i =
1, ..., 5), we have, for every (x, r) ∈ Ω and t > 0,

∂tci︸︷︷︸
transient

+Si(Ux∂xci + Ur∂rci)︸ ︷︷ ︸
transport

− 1

r
∂r(rDi∂rci)− ∂x(Di∂xci)
︸ ︷︷ ︸

diffusion

= Fi(c1, ..., c5)︸ ︷︷ ︸
reaction

. (19)

The quantities Di represent the diffusion coefficients (m2.s−1) and depend on each species i. The coeffi-
cients Si are the so called sieving coefficients. A sieving coefficient equal to 1 corresponds to unhindered
solute transport: it is naturally the case in blood or in dialysate domains. In the membrane, in order
to take into account the size of the molecules, we impose that the sieving coefficients are equal to zero
for large proteins like albumin (see [7]). The reaction source terms Fi model the interaction between
different species. These terms will be precised later on in Subsection 4.3.

4.2 Boundary conditions for the concentrations

In order to complete the system (19) we need to impose some boundary conditions on the concentrations
(ci)1≤i≤5. Therefore, we assume that each concentration ci in the blood and in the dialysate at the
entrance of the dialyzer is known. Indeed, since the dialysate composition is provided by its producer
and the concentrations in the blood can be obtained by a priori measurements, this assumption is
reasonable and translates into the following Dirichlet boundary conditions:

ci = ci,` on Γ`,b and ci = ci,r on Γr,d. (20)

On the remaining part of the boundary of Ω, the concentrations are unknown. A natural assumption is
that the concentrations are constant in a neighborhood of the boundary and in a direction perpendicular
to the boundary. This hypothesis translates into the following Neumann boundary conditions:

{
∂xci = 0 on Γ`,d ∪ Γ`,m ∪ Γr,m ∪ Γr,b,

∂rci = 0 on Γb ∪ Γd.
(21)
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Remark 4.1 For the system (19), the domain Ω is considered without the two interior boundaries Γbm
and Γmd separating the flow domains. This is possible because all the quantities appearing in (19) are
defined over the entire domain Ω. Indeed, the velocity field (Ux, Ur) is defined everywhere even if it had
been modeled initially using different equations for different flow domains. The diffusion coefficients Di

and the sieving coefficients Si have different values for the blood, for the membrane and for the dialysate,
but, even if these coefficients are discontinuous, the variational formulation associated to (19) is well-
posed on the whole domain Ω.

4.3 Biochemical reactions

As mentioned before, we are interested in the complex formed by calcium, albumin and citrate. The
equilibrium reactions for these species can produce the calcium–albumin as follows:

calcium + albumin
k1−−⇀↽−−
k2

calcium–albumin,

where the reaction rate constants are denoted by k1 and k2. We also note that albumin has 12 binding
sites for calcium. The equilibrium reactions can also produce the calcium–citrate as follows:

calcium + citrate
k3−−⇀↽−−
k4

calcium–citrate,

where the reaction rate constants are denoted by k3 and k4. Equilibrium constants were retrieved from
literature data [27, 30, 22, 13]. Reaction rate constants ki are more difficult to measure and fewer data
are available. In this case, we assume that the studied chemical reactions follow a first order kinetics.
The first rate constant is fixed arbitrarily (its magnitude is chosen according to the data available with
similar reactions), the other constants being calculated such that their ratio is equal to the equilibrium
constant. The values of the reaction constants used in this paper are given by:

k1 = 1 mol.m3.s−1, k2 = 10 s−1, k3 = 0.28 mol.m3.s−1, k4 = 0.15 s−1.

Consequently, we consider five species whose concentrations ci are listed below:

• c1: concentration of calcium

• c2: concentration of free albumin binding sites for calcium

• c3: concentration of occupied albumin binding sites for calcium

• c4: concentration of citrate

• c5: concentration of calcium–citrate.

Since albumin molecules do not traverse the membrane, their corresponding sieving coefficients are given
by

Si(x) =





1 if x ∈ Ωb ∪ Ωd

0 if x ∈ Ωm,
for i ∈ {2, 3},

and all other sieving coefficients S1, S4 and S5 are identically equal to one in Ω. Diffusion coefficients
in the blood and the dialysate domains were assumed to be equal to diffusion coefficients in free water.
Diffusion coefficients in free water were retrieved from literature data [28, 31, 35]. When the diffusion
coefficients in water at the temperature 310K were not available, they were calculated according to the
Einstein relation. The diffusion coefficients in the membrane were assumed to be five times smaller than
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Name Notation Value (m2.s−1)

reference diffusion D 10−10

calcium diffusion D1 16.6× 10−10

albumin diffusion D2 and D3 0.877× 10−10

citrate and calcium-citrate diffusion D4 and D5 7.6× 10−10

Table 5: Typical values for the diffusion coefficients.

in water, as they can be measured for other solutes (see, for instance [8]). The values of the diffusion
coefficients Di at the temperature 310K are gathered in Table 5.

Typical values for the concentrations in blood of the five chemical species in which we are interested
are calculated according to the mass action law from data in the literature [27, 5, 3] and are listed in
the Table 6 (second column). We denote these concentration (ci,`)1≤i≤5. We consider four dialysates
having different concentrations of calcium and citrate. Their chemical compositions are listed in Table 6.
Dialysate D0 is a classic dialysate, D1, D2 and D3 are citrate based dialysates with calcium concentrations
of 1.5 mol.m−3, 1.65 mol.m−3 and 0 mol.m−3, respectively. These concentrations, denoted (ci,r)1≤i≤5,
appear as boundary conditions in (21).

Name Blood Dialysate D0 Dialysate D1 Dialysate D2 Dialysate D3

calcium (c1) 1.2 1.5 0.981 1.11 0

free albumin sites (c2) 6.53 0 0 0 0

calcium–albumin sites (c3) 0.783 0 0 0 0

citrate (c4) 0.0307 0 0.281 0.26 0.8

calcium–citrate (c5) 0.0693 0 0.519 0.54 0

Table 6: Typical values (in mol.m−3) for the concentrations of the five considered chemical species in
blood at the inlet of the hallow fiber (on Γ`,b and the concentrations for four dialysate fluids (on Γr,d).

With this notation, the reaction source terms Fi are described by the following relations:

F (c1, ..., c5) =




k2c3 + k4c5 − k1c1c2 − k3c1c4

k2c3 − k1c1c2

−k2c3 + k1c1c2

k4c5 − k3c1c4

−k4c5 + k3c1c4




.

4.4 Scaling procedure

Since the reference velocity in the blood (V ) and the reference velocity in the membrane/dialysate (W )
are different, we must choose a common reference velocity for the dialyzer. In practice, the complete
velocity field (Ux, Ur) is written using the characteristic velocity V . More precisely, we introduce the
non-dimensional velocity (U?x , U

?
r ) such that

Ux = V U?x and Ur = εV U?r .

18



Moreover, we need to introduce characteristic sizes for the concentrations ci, for the diffusion coeffi-
cients Di and for the reaction terms Fi (we choose k2 as the reference reaction rate constant):

ci = C c?i , Di = DD?
i , Fi = k2C F

?
i .

In the rescaled domain, and, therefore, for every (x?, r?) ∈ ω and t? > 0, the equation (19) becomes:

∂t?c
?
i + Si (U?x∂x?c

?
i + U?r ∂r?c

?
i )−

1

Pe
1

r?
∂r?(r?Di∂r?c

?
i )−

ε2

Pe∂x?(Di∂x?c
?
i ) =

1

FdF
?
i (c?1, ..., c

?
5), (22)

and the reaction source term is given by

F ?(c?1, ..., c
?
5) =




c?3 + δ2c
?
5 − δ1c

?
1c
?
2 − δ3c

?
1c
?
4

c?3 − δ1c
?
1c
?
2

−c?3 + δ1c
?
1c
?
2

δ2c
?
5 − δ3c

?
1c
?
4

−δ2c
?
5 + δ3c

?
1c
?
4




.

Note that we have introduced five supplementary non-dimensional numbers:

Pe =
R2 V

LD
, Fd =

V

Lk2
, δ1 =

k1C

k2
, δ2 =

k4

k2
and δ3 =

k3C

k2
.

Using the parameters given in Table 2 Set B, Table 5, Table 6 and input pressures optimized in order to
match the flow rates in Table 4 EX1, the following values are obtained for the model parameters:

Pe ≈ 588, Fd ≈ 0.133, δ1 = 10−1, δ2 = 1.5× 10−2 and δ3 = 2.8× 10−2.

Even if the Péclet’s number Pe is of order of 1/ε we prefer to keep the term
1

Pe
1

r?
∂r?(r?Di∂r?c

?
i ) in (22).

In fact, this term has a regularizing effect for the solutions (ci)1≤i≤5 and this is important particularly
for discontinuous initial concentrations.

Finally, the boundary conditions become





∂x?c
?
i = 0 on γ`,d ∪ γ`,m ∪ γr,m ∪ γr,b,

∂r?c
?
i = 0 on γb ∪ γd,

c?i = ci,`/C on γ`,b,

c?i = ci,r/C on γr,d.

We complete this system with the following initial conditions:

c?i (x
?, 0) = c0,?

i (x?) =





ci,`/C if x? ∈ ωb,
ci,r/C if x? ∈ ωm ∪ ωd,

for i ∈ {1, 2, 3, 4, 5}.

4.5 Variational formulation and numerical approach

In order to numerically solve (22), we consider its variational formulation detailed at the end of Appendix
B. We use an implicit one step discretization scheme in time and the finite elements method for the space
discretization. Moreover, in order to obtain a faster numerical solver, we compute one concentration c?i at
a time, replacing the unavailable concentrations at the current time step by their values at the previous
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time step. For a given time t? > 0, concentrations c?i (t
?, x?, r?) are represented using P1 finite elements

and FreeFem++ is used for the numerical implementation.

For every time t? > 0, we denote E(t?) the following quantity associated to the evolution in time of
concentrations c?i (t

?, ·, ·) and defined by

E(t?) =

(
5∑

i=1

∫∫

ω
r? |c?i (t?, x?, r?)|2 dx?dr?

) 1
2

for every t? > 0. (23)

Let E′(t?) be the derivative with respect to the time t? of the function E. It is easy to remark that
when concentrations (c?i (t

?))1≤i≤5 approach a stationary solution, E′(t?) will be close to zero. For all the
simulations in Section 5, we choose a time interval (0, T ?) where we compute the concentrations c?i , such
that E′(T ?) ≤ 10−4.

5 Numerical experiments

Pressure measurements were effectuated on an APS18 dialyzer for a dialysate input flux of 500 ml.min−1

and an ultra-filtration flux equal to 10 ml.min−1. Pressure values were recorded, using pressure sensors
situated at the level of the input and of the exit of the blood and of the dialysate tubes respectively. The
values for two different input blood fluxes are listed in Table 7. The pressures at the level of the hollow
fiber (our computation domain) were numerically computed by the optimization method proposed in the
subsection 3.5.2, such that the corresponding flows are the ones indicated in Table 4.

The APS18 dialyzer has a diameter of 4.2 cm and it is composed of a number of N = 104 fibers, with
an inner channel having a radius of 10−4 m and a wall thickness of hollow fibers of 0.45 × 10−4 m. The
length of such a dialyzer is 33 cm. These values are exactly the same as those listed in Table 2 Set B.

Input blood flux
Blood input

pressure
Blood output

pressure
Dialysate input

pressure
Dialysate

output pressure

(EX1) 300 ml.min−1 200 110 200 95

(EX2) 400 ml.min−1 276 164 262 58

Table 7: Values of input and output pressures (in mmHg) for a dialysate flux of 500 ml.min−1 and an
ultrafiltration flux of 10 ml.min−1.

5.1 Concentrations for blood modeled as a Newtonian fluid

The spatial concentrations for all considered species at a (no-dimensional) time T ? such that E′(T ?) <
10−4, that were obtained for the flows given by (EX1), are displayed in Figure 7. More precisely, for all
the numerical experiments, we choose T ? = 300T , which corresponds to a real time of 300 s and verifies
the condition E′(T ?) < 10−4. This value of T ? is a good compromise between the computational cost
and the reach of the equilibrium in the chemical reactions.

In Figure 7 we remark that the concentrations computed by the model are smooth enough and that
the imposed boundary conditions are well satisfied. We also remark an increase of the concentration of
calcium and of calcium–albumin sites in the blood at the exit of the dialyzer. Consequently, the amount
of calcium in the dialysate fluid is smaller in the rejected fluid than it was at the dialyzer input. In the
same time, a part of the citrate and of the calcium-citrate passes from the blood into the dialysate.
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a) b) c)

d) e)

Figure 7: Concentrations ci (in mol.m−3 or, equivalently, in mmol.l−1) in the domain ω at a non-
dimensional time T ∗ corresponding to approximately 300 s, for (EX1) and dialysate D0: a) calcium. b)
free albumin binding sites for calcium. c) calcium-albumin sites. d) citrate. e) calcium-citrate.

In order to analyze the evolution of the concentration for the five chemical species considered here, we
define the mean concentrations in the output blood ci(t) at the time t by

ci(t) =
2R2

R2
1

∫ R1
R

0
r ci(t, 1, r) dr.

In Figure 8 we can follow the evolution in time of the concentration c1(t) of free calcium in the blood
at the dialyzer’s outlet for a velocity field computed in order to fulfill the flow rates in Table 4 (EX1)
and two different blood rheologies: Newtonian fluid and a non-Newtonian fluid (the power-low model).
The blood composition at the dialyzer’s inlet and the four dialysates D0, D1, D2 and D3 are described in
Table 6. Remark that, at T ? = 300T , the value E′(T ?) is relatively small and the mean concentrations
of free calcium in the blood at the exit of dialyzer reached their stationary values. A similar behavior
was observed for all the other chemical species considered by the model.

The results illustrated in Figure 8 are in complete agreement with what is expected from a chemical point
of view, the concentration of total calcium in the blood tending to a concentration situated between the
initial concentrations in the blood and the dialysate. Moreover, for citrate containing dialysates we
observe an increase of 10−1mmol.l−1 of the total calcium in the blood for dialysate D2 with respect to
dialysate D1.

The spatial distribution of the concentration of calcium corresponding to the final time associated to
the simulations illustrated in Figure 8, are displayed in Figure 9. More precisely, we display the spa-
tial distribution of the calcium concentration c1 associated to the flow-rates (EX1) and the boundary
concentrations in Tables 6 at the time T ∗ corresponding to a real time equal to 300 s.

In all four graphics depicted in Figure 9 we observe that the radial variation of the calcium concentration
in the blood and the dialysate is less important than in the membrane. Therefore, the concentration of
calcium at the interface blood/membrane is close to the mean concentration of calcium in the blood for
every longitudinal position x.

In order to check whether the free calcium concentration was sufficiently decreased in the dialyzer to have
an anticoagulant effect, we computed the longitudinal profiles of the concentration of free calcium at the
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Figure 8: Evolution of the concentration c1(t) (in mol.m−3 or, equivalently, in mmol.l−1) of the free
calcium in the blood at the exit of the dialyzer for dialysate fluids described in Table 6. (a) Dialysate D0.
(b) Dialysate D1. (c) Dialysate D2. (d) Dialysate D3.

interface blood/membrane. Calculation were made for both flows (EX1) and (EX2). Results are shown
in Figure 10. While the concentration of free calcium increases with the dialysate D0, it decreases with
the dialysates D1 and D2. However, it remains greater than 1 mmol.l−1 throughout the dialyzer. With
dialysate D3 the decrease of calcium concentration is more marked, passing below 0.5 mmol.l−1 along the
distal third of the dialyzer.

A quantity of clinical interest is the concentration of total calcium in the blood at the dialyzer’s outlet.
Indeed, being given the total calcium at the inlet of the dialyzer, the blood and the ultrafiltration flows,
it is possible to calculate the transfer of calcium between the blood of the patient and the dialysate [29].
In Figure 11 we display the evolution of the concentration of total calcium c(t) = c1(t) + c3(t) + c5(t)
in the blood at the exit of the dialyzer. We observe that when using a citrate dialysate, the transfer of
calcium from the dialysate to the blood is less important. For the same calcium concentration in the
dialysate at the inlet of the dialyzer, the total calcium concentration in the blood at the outlet is lesser
when the dialysate contains citrate (dyalysate D1 with respect to dialysate D0). Finally, for the dialysate
D3, which contains the same amount of citrate as D1 and D2 and no calcium, the total concentration of
calcium in the blood at the dialyzer’s outlet drops under 0.8 mmol.l−1. Thus, given the blood flow Qb,out,
we can easily compute the quantity of calcium ci to be infused in the blood at the dialyzer’s outlet, such
that the total concentration of calcium in the dialyzed blood will be equal to ctarget :

ci = Qb,out

(
ctarget − c(T ∗)

)
.
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(a) (b)

(c) (d)

Figure 9: Spatial distribution of the concentration c1 (in mol.m−3 or, equivalently, in mmol.l−1) of the free
calcium at the time 300 s for the dialysate fluids described in Table 6. (a) Dialysate D0. (b) Dialysate D1.
(c) Dialysate D2. (d) Dialysate D3.
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Figure 10: Longitudinal distribution of the concentration c1(t) (in mol.m−3 or, equivalently, in mmol.l−1)
of free calcium in the blood at the blood/membrane interface at time 300 s for dialysate fluids described
in Table 6. (a) Dialysate D0. (b) Dialysate D1. (c) Dialysate D2. (d) Dialysate D3.
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Figure 11: Evolution of the concentration of the total calcium in the blood at the exit of the dialyzer for
flow data in Table 6 and dialysates D0, D1, D2 and D3.
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5.2 Concentrations for blood modeled as a non-Newtonian fluid

In this section the velocity field (Ux, Ur) driving the convective part in (19) is computed using a non-
Newtonian model for the blood. Since we are interested in the influence of the blood’s rheology on the
evolution of the concentrations for the five chemical species listed at the begining of this section, we
only consider here the power-law model which seems to provide results which are the least similar to the
Newtonian case.

As in the Newtonian case, we stop the numerical experiments at the time T ? = 300T for which the value
E′(T ?) is acceptably small. We recall that this time corresponds to 300 s.

In order to compare the evolution of concentrations for the Newtonian and non-Newtonian blood flows,
Figure 12 displays the evolution of the concentration of free calcium in blood at the exit of the dialyzer
for the first five minutes of the dialysis. Small differences can be observed for small values of the time t,
the concentration c1 arriving at the same stationary solution for both types of flows. These differences
are due to the different values of the reference velocity V for each rheology, and, hence, are due to the
dependence of the reference time T on the rheology. Nevertheless, for large values of the time T we
remark a very small influence of the blood’s rheology on the concentrations of the five chemical species
considered by the model.

(EX1) (EX2)
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Figure 12: Mean concentration of free calcium c1 (in mol.m−3 or, equivalently, in mmol.l−1) in blood at
the exit of the dialyzer for Newtonian and non-Newtonian (power-law) blood flows for (EX1) and (EX2).

In conclusion, since the fluid system is easier to solve in the linear case and since the rheology seems to
have only a small influence on the evolution of the concentrations of the chemical species in the blood
and in the dialysate considered here, we propose to use the Newtonian model for the blood in a future
studies of the evolution of chemical species during dialysis.

6 Conclusion and perspectives

The modeling yielded two interesting results for clinical practice.

First, the decrease in free calcium concentration in the blood is insufficient to explain the anticoagulant
effect of citrate-containing dialysate. With a citrate-free dialysate, the free calcium concentration of the
blood increases between the inlet and the outlet of the dialyzer. Conversely, with a citrate-containing
dialysate, the free calcium concentration decreases (see Figure 10).

However, on contact with the membrane the free calcium concentration remains higher than 0.4 mmol.l−1.
Only a citrate based dialysate without calcium can decrease free calcium concentration at the blood
membrane interface low enough to inhibit blood coagulation in the distal third of the dialyzer. This
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segment is the most at risk of blood clotting due to hemoconcentration. The modest anticoagulant effect
of calcium and citrate containing dialysate could be related to its inhibitory effect on the complement
system [16].

Second, for a given calcium concentration in the blood at the inlet of the dialyzer, the total calcium
concentration in the blood at the outlet is lower when the dialysate contains citrate (see Figure 11). The
decrease in calcium returning to the patient could explain the increased risk of secondary hyperparathy-
roidism in patients with citrate dialysate [23]. When the quantity of calcium is augmented in a citrate
containing dialysate we can hope to have the same concentration of calcium in the blood at the dialyzer’s
inlet and dialyzer’s outlet. This is almost the case for dialysate D2. The precise concentration of calcium
in the dialysate needed to achieve a desired concentration of calcium in the blood at the dialyzer’s out-
let could be computed using an optimization strategy and will make the object of a future work. Our
modeling predicts that a citrate dialysate containing 1.65 mmol.l−1 of calcium provides a calcium concen-
tration in the blood at the outlet of the dialyzer equivalent to that obtained with a citrate-free dialysate
containing 1.5 mmol.l−1 of calcium. This is an important issue to be considered in clinical practice since
calcium balance acts directly on bone and mineral disorders in hemodialysis patients. Moreover in the
case of a calcium free citrate containing dialysate, to avoid undesirable events due to the re-injection of
a calcium-poor blood into the patient our model makes it possible to calculate the amount of calcium to
be injected into the blood at the exit of the dialyzer.

Concerning the mathematical model, we observed that the choice of blood rheology had little effect on
the evolution of the mean concentrations at the dialyzer outlet or on the concentrations at the level
of the membrane. A possible explanation is that we applied an optimization algorithm to choose the
boundary conditions of the blood and dialysate pressures at the inlet and outlet of a hollow fiber such
that the corresponding flow rates match the flow rates measured on the dialyzer. This method allowed us
to choose standard boundary conditions for the fluid model. Hence, once the boundary data on pressure
are computed, the blood can be assumed to be a Newtonian fluid and velocity fields can be computed
numerically or even explicitly [9]. The velocity field obtained by solving the fluid model by a finite
element method acts as an input for the convective part in the convection–diffusion–reaction system
that models the evolution of five chemical species present in the blood and in the dialysate fluid. Our
work was focused on the concentration of calcium ions and so, we considered only five chemical species
corresponding to the complex formed by calcium, albumin and citrate. But, the model can be easily
enriched to take into account a larger number of chemical species and this will be the subject of a future
work.

Our study has several limitations. First, the rate constants of the chemical reactions used to model the
interaction between calcium, citrate and albumin do not take into account the changes caused by possible
variations in the pH of the dialysate and the blood. However, at least for the citrate and calcium reaction,
it appears that the change in pH has no influence on the equilibrium constants. Chemical equilibrium
is reached much more quickly than other physical phenomena involved. Thus, the exact value of the
rate constants has little significance provided that their ratio (equilibrium constant) is right [25]. Also,
we did not take into account the phenomenon of electrical migration. The different ion diffusion rates
lead to the appearance of an electric field. However, this mechanism plays a minor role in the solute
flux in the dialyzer, particularly with the new polysulfone membranes [36]. Finally, our model does
not take into account that oncotic pressure depends on the concentrations of solutes and is assumed to
variate non-linearly with respect to the longitudinal variable. To take into account the dependence of the
oncotic pressure on blood solute concentration we should have to devise a model with a stronger coupling
between the equation describing the fluid flows and those modeling the transport of solutes. This will be
the subject of a future work.

A greater knowledge of calcium ion concentrations in the dialyzer would help improve the management
of hemodialysis patients. Modeling offers the opportunity to predict these data, which are not easily
measurable. The partial differential equation model and the finite element method used in our work
offer the possibility to predict diffusion and convection and also the chemical reactions between several
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solutes. This method could be adapted to predict and optimize the purification of uremic toxins bound
to albumin.

A Dimensionless equations

The goal of this first appendix is to present the non-dimensional form of the equations describing the
hydrodynamic flow (see Section 3.1). More precisely, we rewrite all the equations introduced in this
section using the changes of variable given in subsection 3.2.2. Consequently, all quantities should be
marked with an asterisk but here we drop the asterisks for the sake of clarity.

For every t > 0 and (x, r) ∈ ωb, the dimensionless equations governing the blood flow read as follows (see
subsection 3.1.1 for the dimensional form of these equations):





εRe
(
∂tvx + vx∂xvx +

1

r
vr∂r(rvx)

)
= −∂xpb + 2ε2∂x

(
G̃(γ̇) ∂xvx

)
+

1

r
∂r

(
r G̃(γ̇) (∂rvx + ε2∂xvr)

)
− ∂xpo,

ε3Re
(
∂tvr + vx∂xvr +

1

r
vr∂r(rvr)

)
= −∂rpb + 2

ε2

r
∂r

(
r G̃(γ̇) ∂rvr

)
+ ε2∂x

(
G̃(γ̇) (∂rvx + ε2∂xvr)

)
,

∂xvx +
1

r
∂r(rvr) = 0,

where the dimensionless expression of the shear rate γ̇ is given by

γ̇ =

√
|∂xvx|2 + |∂rvr|2 +

∣∣∣vr
r

∣∣∣
2

+
1

2

∣∣∣1
ε
∂rvx + ε∂xvr

∣∣∣
2
.

We note that the function G̃ appearing in the above equations is related to G by G̃(γ̇) = G

(
Pε2

µ
γ̇

)
.

The dimensionless version of Darcy’s low governing the flow in the membrane has the following form (see
subsection 3.1.2 for the dimensional form of these equations):





ε2∂2
xpm +

1

r
∂r(r∂rpm) = 0,

ux = −DaP1
∂xpm,

ur = − Da
ε2 P1

∂rpm,

for every (x, r) ∈ ωm. Similarly to the blood flow, for every (x, r) ∈ ωd and t > 0, the dimensionless
dialysate flow is governed by the following system (see subsection 3.1.3 for the dimensional form of these
equations):





εReP1

(
∂twx + wx∂xwx +

1

r
wr∂r(rwx)

)
= −∂xpd + ε2P1∂

2
xwx +

P1

r
∂r(r∂rwx),

ε3ReP1

(
∂twr + wx∂xwr +

1

r
wr∂r(rwr)

)
= −∂rpd +

ε2P1

r
∂r(r∂rwr) + ε4P1∂

2
xwr,

∂xwx +
1

r
∂r(rwr) = 0.

In order to complete the system, we add the dimensionless versions of the conditions on the interface
blood/membrane (see subsection 3.1.4 for the dimensional form of these equations):





vr = −Da
ε2
∂rpm,

− ∂rvx = Bbvx,

pm = pb,

for every (x, r) ∈ γbm, t > 0,
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and on the interface membrane/dialysate, respectively (see subsection 3.1.5 for the dimensional form of
these equations): 




wr = − Da
ε2P1

∂rpm,

∂rwx = Bdwx,

pm = pd − po,

for every (x, r) ∈ γmd, t > 0.

Finally, we have the following boundary conditions, for every t > 0 (see subsection 3.1.6 for the dimen-
sional form of these equations):





pb|γ`,b = 1, pb|γr,b = 0,

pd|γr,d = −P2, pd|γ`,d = −P2 − P1,

wr|γd = wx|γd = 0, ∂rvx|γb = 0

where P1 and P2 are respectively given by (8) and (9).

B Variational formulation

In order to numerically approximate the simplified system obtained in subsection 3.3, we consider a weak
formulation of the system. Since in subsection 3.3 we obtained an explicit solution for the pressure pm
inside the membrane (domain ωm), we write here the weak formulations only in the domains ωb and ωd.

• Blood flow (in ωb):





−
[∫ R1

R

0
rpbϕ

b
1 dr

]x=1

x=0

+

∫∫

ωb

pbr∂xϕ
b
1 dx dr −

∫

γbm

r G̃(γ̇)Bbvxϕ
b
1 dx

−
∫∫

ωb

r G̃(γ̇) ∂rvx∂rϕ
b
1 dx dr =

∫∫

ωb

r∂xpoϕ
b
1 dx dr,

∫

γbm

pbrϕ
b
2 dx−

∫∫

ωb

pb(ϕ
b
2 + r∂rϕ

b
2) dx dr = 0,

∫∫

ωb

∂xvxϕ
b
3 dx dr +

∫∫

ωb

1

r
∂r(rvr)ϕ

b
3 dx dr = 0,

for every ϕbi ∈ V b
i and i ∈ {1, 2, 3}. These variational formulations are standard and V b

i are Sobolev spaces
endowed with the boundary conditions mentioned in Section 3.3. For more details on the variational
formulations of equations used in modeling of fluid flows see, for instance, the monograph [10].

In order to take into account the boundary condition for vr on γbm, it is convenient to make the following
change of variable:

Vr = vr + rK̃b(pd − pb + po), where K̃b =
D̃aR2

R2
1 ln(R2/R1)

.

Using this change of variable, the last equation describing the blood flow becomes

∫∫

ωb

∂xvxϕ
b
3 dx dr +

∫∫

ωb

1

r
∂r(rVr)ϕ

b
3 dx dr −

∫∫

ωb

2K̃b(pd − pb + po)ϕ
b
3 dx dr = 0,

for every ϕb3 ∈ V b
3 and, therefore, Vr verifies Vr = 0 on γbm.
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• Dialysate flow (in ωd):





−
[∫ 1

R2
R

rpdϕ
d
1 dr

]x=1

x=0

+

∫∫

ωd

pdr∂xϕ
d
1 dx dr −

∫

γmd

P1r∂rwxϕ
d
1 dx−

∫∫

ωd

P1r∂rwx∂rϕ
d
1 dx dr = 0,

[∫ 1

0
pdrϕ

d
2 dx

]r=1

r=
R2
R

−
∫∫

ωd

pd(ϕ
d
2 + r∂rϕ

d
2) dx dr = 0,

∫∫

ωd

∂xwxϕ
d
3 dx dr +

∫∫

ωd

∂r
1

r
(rwr)ϕ

d
3 dx dr = 0,

for every ϕdi ∈ V d
i , where V d

i are standard Sobolev spaces endowed with the corresponding boundary
conditions.

As in the case of the blood flow, in order to take into account the boundary condition for wr on γmd, the
following change of variable is made:

Wr = wr + (1− r)K̃d(pd − pb + po), where K̃d =
D̃aR2

P1R2(R−R2) ln(R2/R1)
.

Therefore, the last equation describing the dialysate flow reads as:

∫∫

ωd

∂xwxϕ
d
3 dx dr +

∫∫

ωd

1

r
∂r(rWr)ϕ

d
3 dx dr −

∫∫

ωd

1− 2r

r
K̃d(pd − pb + po)ϕ

d
3 dx dr = 0,

for every ϕd3 ∈ V d
3 . Hence, the new variable Wr satisfies Wr = 0 on γmd.

In the remaining part of this appendix we give the variational formulation corresponding to the rescaled
system (22) modeling the evolution in time of the concentrations ci.

• Biochemical concentrations (in ω):

The system (22) has the following variational formulation: find ci ∈ Ci such that

∫∫

ω
∂tcirϕi dx dr +

∫∫

ω
Si (Ux∂xci + Ur∂rci) rϕi dx dr +

1

Pe

∫∫

ω
rDi∂rci∂rϕi dx dr − ε2

Pe

∫

γr,d

rDi∂xciϕi dr

+
ε2

Pe

∫

γ`,b

rDi∂xciϕi dr +
ε2

Pe

∫∫

ω
rDi∂xci∂xϕi dx dr =

1

Fd

∫∫

ω
rFi(c1, . . . , c5)ϕi dx dr,

for every ϕi ∈ Ci, where Ci are Sobolev spaces taking into account the boundary conditions.

C The gradient-type algorithm used for the minimization of the func-
tion J .

In this appendix, we explicit an optimization algorithm employed to determine the pressure boundary
data from the flow rate data. Given the flow rates ~Q ∈ R4, we will minimize the function J : R4 7−→ R+

defined by J (~P ) = 1
2‖Φ(~P ) − ~Q‖2, the function Φ mapping a given pressure vector ~P ∈ R4 onto the

corresponding fluxes vector ~Q ∈ R4 (this operation is carried out in subsection 3.5.1 by directly solving
the weak formulation which is well-posed for given pressure data). The gradient-type algorithm that we
use for the minimization of the function J is described in Algorithm 1.
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given ~P , ε1, h, α0

α← α0

while
(
α > ε1

)
do

~S ←
4∑

j=1

J (~P + h~ei)− J (~P )

h
~ei

do
~P ? ← ~P − α ~S
α← α/10

until
(
J (~P ?) ≤ J (~P ) or α ≤ ε1

)

if α > ε1 then
~P ← ~P ?

α← α0

end

Algorithm 1: A gradient-type algorithm used for the minimization of the function J .
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