
HAL Id: hal-01433078
https://hal.science/hal-01433078v1

Submitted on 10 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

JSON Patch for Turning a Pull REST API into a Push
Hanyang Cao, Jean-Rémy Falleri, Xavier Blanc, Li Zhang

To cite this version:
Hanyang Cao, Jean-Rémy Falleri, Xavier Blanc, Li Zhang. JSON Patch for Turning a Pull REST
API into a Push. International Conference on Service-Oriented Computing, 2016, BANFF, Canada.
�10.1007/978-3-319-46295-0_27�. �hal-01433078�

https://hal.science/hal-01433078v1
https://hal.archives-ouvertes.fr


JSON Patch for turning a pull REST API into a
push

Hanyang Cao1, Jean-Rémy Falleri1, Xavier Blanc1, Li Zhang2

1 University of Bordeaux, LaBRI, UMR 5800
F-33400, Talence, France

{cao.hanyang, falleri, xblanc}@labri.fr
2 Beihang University, Beijing, China

lily@buaa.edu.cn

Abstract. REST APIs together with JSON are commonly used by mod-
ern web applications to export their services. Such an architecture how-
ever makes the services reachable in a pull mode which is not suitable
for accessing data that periodically changes. Turning a service from a
pull mode to a push mode is therefore frequently asked by web develop-
ers that want to access changing data and to get notified of performed
changes. Converting a pull mode API into a push mode obviously re-
quires to make periodical calls to the API but also to create a patch
between each successive received versions of the data. The latter is the
most difficult part and this is where existing solutions have some imper-
fections. To face this issue, we present a new JSON patch algorithm that
is compliant with JSON Patch RFC, and that supports move and copy
change operations. We implement our algorithm in a JavaScript library
and evaluate its performance. Our evaluation done with real industrial
data shows that our library creates small patches compared with other
libraries, and creates them faster.

Keywords: REST, JSON, Diff, Patch, Web Application.

1 Introduction

Most of the web applications3 provide an access to their services thanks to a
REST API [9]. Their services are then directly reachable by HTTP requests,
where the exchange of data is commonly done in JSON, the JavaScript Object
Notation [7].

REST APIs have been however designed to be used in a pull mode request,
which is inadequate for services that provide access to data that periodically
change. For example, Twitter4 provides a REST API with a service that returns
a timeline of tweets. As any timeline changes quite frequently, the clients that
use this API have actually to periodically call the service to refresh their views.
Worst, if they just want to be aware of new tweets appearing in the timeline,

3 https://www.publicapis.com/
4 https://twitter.com

https://www.publicapis.com/
https://twitter.com


they also have to create the patch describing the differences between the data
they previously received and the new one just returned by the request, which can
be highly complex depending on the structure of the JSON documents contained
in the response of the request.

In opposite to the pull mode, the push mode is more adequate for accessing
changing data. Its principle is to send notification messages to the clients that
have registered, and only when the data have changed. Further the messages
contain the set of changes performed to the data rather than the new version of
the data, letting the client react to them if needed.

Turning a service from a pull mode to a push mode is therefore frequently
asked by web developers that want to access changing data and to get notified
of performed changes. Some companies already supports this need. For example,
our partner StreamData.io provides a proxy server that converts the pull mode
API of an existing web application into push mode one.5

Converting a pull mode API into a push mode one obviously requires to make
periodical calls to the API but also to create a patch between each successive
received versions of the data. The latter is the most difficult part and this is where
existing solutions have some imperfections. Indeed, creating a patch between
two documents is a well-known very complex problem [15,4], which has not been
studied yet for JSON documents. A JSON document is a labelled unordered tree
that contains arrays (ordered sequences). Creating a patch between two JSON
documents may therefore lead to a NP-hard problem depending both on the
change operations that are considered (add, remove, move, copy), and on the
quality of the created patch (in terms of size).

In this paper we propose a new patch algorithm that is tailored to JSON
documents, and that drastically improves the conversion of pull mode APIs into
push mode ones. Our algorithm returns a JSON Patch as specified by the JSON
Patch RFC [3]. It therefore handles any changes that can be done on JSON
documents, either on their basic properties or on their arrays, and supports
simple changes (add, remove) as well as complex ones (move, copy), which allows
clients to deeply understand changes that have been done.

We implemented our algorithm in JavaScript as it is the most commonly
language used in web applications. We validate it by making a comparison with
other JavaScript libraries that support the JSON patch RFC. This validation
has been done by using real data provided by our partner StreamData.io.

As a main result, we provide:

– A new JSON patch algorithm that is fully complies with the JSON Patch
RFC.

– A JavaScript implementation of our algorithm that performs better than the
existing ones.

The structure of the paper is as follows. To start, the Section 2 gives a back-
ground about the JSON patch format as well as its computation, and further
presents the existing approaches that support patch creation. The Section 3

5 http://streamdata.io/

http://streamdata.io/


presents our algorithm (named JDR). The Section 4 then presents the evalu-
tation of our JavaScript framework implementing our algorithm. The Section 5
finally presents our conclusion.

2 JSON Patch background

2.1 JSON document and JSON patch

A JSON document is a very simple textual serialization of a JavaScript object.
More precisely, it is a tree composed of three kinds of nodes (literal, array or
object), where the root node cannot be a literal. A literal node can be either a
boolean, a number or a string. An array node is a sequence of nodes. An object
node has a set of child properties, each of them has a label6 unique within the
object, and a value that is a node. As an example, the Figure 1 presents two
simple JSON documents that contain literals, objects and arrays.

{
"isOk": true ,
"rm": "2",
"val": 3,
"mes1": {"who ":"me", "exp":0},
"res": [

"v1",
"v2",
"v3",
"v4",
"v5"

],
"inner" : {

"elts" : ["a","b"] ,
"sum" : "test is ok"

}
}

{
"rank": 6,
"isOk": false ,
"va": 3,
"mes1": {"who ":"me", "exp":0},
"mes2": {"who ":"me", "exp":0},
"res": [

"v6",
"v1",
"m2",
"v1",
"v5",
"v3"

],
"inner" : {

"in": {
"elts" : ["a","b","c"]

}
},
"sum" : "test is ok"

}

Fig. 1: A source (left) JSON document with several properties. A target (right)
JSON document that has been transformed from the source JSON document.

The JSON Patch RFC is an ongoing standard that specifies how to encode
a patch that can be performed on a JSON document to transform it into a new
one[3]. The RFC specifies that a patch is a sequence of change operations. It
then specifies the five following change operations (a sixth operation is defined
to perform tests):

– Add: this operation is performed to add a new node into the JSON document.
The new node can be added within an array or as a new property of an object.

6 A string or a JavaScript name.



– Remove: this operation is performed to remove an existing node of the JSON
document.

– Replace: this operation is performed to replace an existing node by another
one.

– Move: this operation is performed to move an existing node elsewhere in the
JSON document.

– Copy: this operation is performed to copy an existing node elsewhere in the
JSON document.

The RFC specifies a standard way to encode a patch into a JSON document.
More precisely a patch is an array of change operations where each change op-
eration is encoded by a single object with properties specifying the kind of op-
eration, the source and target nodes, and the new value if needed. For instance,
the Figure 2 presents a patch that can be applied to source JSON document
presented in the Figure 1, and that contains change operations (adding a new
literal node rank, removing a node of the array res, etc.). We use that example
in the following sections.

[
{ "op": "add", "path": "/rank", "value": 6 },
{ "op": "remove", "path": "/rm"},
{ "op": "replace", "path": "/isOk", "value": false},
{ "op": "move", "path": "/va", "from": "/val"},
{ "op": "copy", "path": "/mes2", "from": "/mes1"}
{ "op": "add", "path": "/res/0", "value ": "v6"},
{ "op": "replace", "path": "/res/2", "value ": "m2"},
{ "op": "remove", "path": "/res/4"},
{ "op": "copy", "path": "/res/3", "from": "/ result /1"},
{ "op": "move", "path": "/res/5", "from": "/ result /4"},
{ "op": "move", "path": "/inner/in/elts", "from": "/inner/elts"},
{ "op": "add", "path": "/inner/in/elts/2", "value": "c"},
{ "op": "move", "path": "/sum", "from": "/inner/sum"}

]

Fig. 2: A RFC JSON Patch that, if applied to source JSON document of the
Figure 1, would get the target JSON document.

Applying a patch to a JSON document is quite easy. It consists in applying
all the editing operations of the patch in their defined order. Creating a patch
that, given two versions of a JSON document, expresses how to transform the
first version into the second one is however much more complex, especially when
the goal is to create small patches and to create them as fast as possible.

2.2 Related works

JSON documents are mainly labelled unordered trees (object nodes and their
properties), where some nodes are arrays, hence ordered. The theory states that
when just the add, remove and replace operations are considered, the problem



of finding a minimal patch is O(n3) for ordered trees and NP-hard for unordered
trees [16,2,14,10]. When the move operation is also considered, the problem is
NP-hard for both kind of trees [2]. That is why several algorithms from the
document engineering research field use practical heuristics. One of the most
famous is the algorithm of Chawathe et al. [5] that computes patches (containing
move actions) on trees representing LaTeX files. Several algorithms have also
been designed specifically for XML documents [6,1]. One of them [13] is even
capable of detecting copy operations.

Several existing approaches support the creation of JSON Patches.7 By ana-
lyzing all of them, it appears that they all take one or two of these simplifications
to make the problem tractable (see Table 1):

– They choose not to support the move and copy operations that are yet spec-
ified in the RFC, and therefore provide non-optimal patches. As an example
in the Figure 2, an optimal patch uses move operation to handle the prop-
erty label renaming from val to va. Without such a move operation, the
patch then uses a remove property val and a add property va. Moreover,
an optimal patch uses a copy operation for the property mes2 and its value
copied from mes1. The Table 1 shows that only one existing approach does
support these operations.

– They choose not to support array node, or to support them poorly. In princi-
ple all the editing operations of the JSON RFC apply to array nodes as well
as object nodes. A patch can then express changes done within an array. For
instance in Figure 2, an optimal patch uses the move operation to put v3
to the end of the array. Moreover, it uses the copy operation for copying the
existing node v1. Regarding the support of array, the Table 1 shows that half
of the approaches do not support array at all, and consider them as simple
node (with nothing inside). The other half simply considers that an array is
a stack, and therefore supports change operation that can apply to a stack
(push and pop).

The table 1 clearly shows that there is no approach that fully complies with
the RFC in terms of change operation coverage. By compliance we mean that
it can handle all editing operations that are defined by the RFC including the
move and copy ones (the test one is not an editing operation). However there is
no formal process that truly checks the RFC compliance. There is only JSON
test8 that just checks if the given patches can be applied. As we describe it in
the next section, our algorithm goes beyond and does support all the changes
operations both on objects and on arrays, which is fully complies with JSON
Patch RFC. However as there is no silver bullet, as a simplification it considers
that changes made to JSON documents always target complete sub-trees rather
than internal nodes, and therefore create patches that reflect this kind of change.

7 http://jsonpatch.com/
8 https://github.com/json-patch/json-patch-tests

http://jsonpatch.com/
https://github.com/json-patch/json-patch-tests


Table 1: Comparison of existing approaches.

Libraries

Category Scenario move and copy Arraynode

JavaScript

jiff No Stack
Fast-JSON-Patch No No
JSON8 Patch No No
rfc6902 No Stack

Python python-json-patch No Stack

PHP json-patch-php No No

Java json-patch Yes No

3 JDR: a JSON patch algorithm

By running several APIs we observed that changes performed to JSON docu-
ments commonly target a complete sub-tree, but never target several internal
nodes. More precisely, a change either adds, removes, replaces, moves or copies
a complete sub-trees but never changes the topology of a sub-tree by inserting,
removing, or moving some nodes inside the sub-tree. The same is true for ar-
rays, changes made to arrays always target one array but they never target two
or more different arrays. These observations have then driven the design of our
algorithm that aims to identify large sub-trees or arrays, which are targets of
changes.

Based on this consideration, our algorithm inputs two versions of a JSON
document (the old and the new versions) and proceeds the three following steps:

– First it builds a large common sub-tree that is shared between the old and
the new versions. This sub-tree contains the root node of both the old and
new versions, and all the object and literal nodes that both exist in the old
and new versions, in the same locations, with the same labels (values can be
different). The array nodes are considered in the following steps. The center
part of the Figure 3 presents the common sub-tree for our example. Once
the common sub-tree has been created, for each of its label leaf node, if the
value is not the same in the old and new version, a replace operation with
the value of the new version is put into the patch . With our example, the
isOk node corresponds to such a case.

– Second, for each object or literal node of the old version that does not belong
to the common sub-tree but whose direct parent belongs to it, put a remove
operation in the patch and mark the node as a removed one, unless there is a
marked added node with the same value. In that case, put a move operation
in the patch and mark the node as a moved one. The left part of the Figure
3 presents these nodes. The rm node is a removed node. The val and sum
nodes are moved nodes. Symmetrically, for each node of the new version that
does not belong to the common sub-tree but whose direct parent belongs to



it, put an add operation in the patch and mark the node as an added one,
unless there is a marked removed node or a node in the common sub-tree
with the same value. In case of a removed node, put a move operation in the
patch and mark the node as a moved one. In case of a node in the common
sub-tree, put a copy operation in the patch and mark the node as a copied
node. The right part of the Figure 3 presents these nodes for our example.
The rank and in nodes are added nodes. The val and sum nodes are moved
nodes. The mes2 node is a copied node.

– Third, for each array node in the old version whose direct parent belongs
to the common sub-tree, check if there is an array node in the new version,
child of the same parent and with the same label. If so compare the two
arrays (see the following array algorithm). If not, put a remove operation
in the patch. For each array node in the new version whose direct parent
belongs to the common sub-tree, put an add operation in the patch. The
Figure 3 presents these nodes. The res nodes are then compared. The elts
node is removed.

root

isOk mes1

who expinner

rm

val

res

elts

res

sum sum

in

mes2

va

rank

Common sub-treeold version new version

replace

copy

move

move

remove add

Fig. 3: The two versions of our example as a tree with object and label node
presented with circles and array nodes with square. The central part represents
the common sub-tree. The left part presents nodes direct children of the common
tree and that belong to the old version. The right part presents nodes direct
children of the common tree and that belong to the new version.



As just described, our algorithm only creates a patch for two versions of a
same array if and only if the array is in the exact same location in the two versions
of the JSON document. Further as the change operations defined by the RFC
can only target cells one by one (it is not possible to remove or move several cells
with one operation), there is then no need to compute a LCS (Longest Common
Subsequence [11]). Comparing pairs of cells is therefore sufficient for creating a
patch.

The creation of the patch is then done by comparing the cells of the array
with the intent to identify the common ones, the ones that have been removed
and the ones that have been added. More precisely, our algorithm first sorts the
cells of the two versions of the array by computing a similarity hash 9 of their
value. Secondly, thanks to the similarity hash order, it iterates through the cells
in the two versions of the array and creates a temporary array patch by applying
the following rules. If an old cell has a corresponding new cell (with the same
value), a move operation is put into a temporary patch. If an old cell has no
corresponding new cell, a remove operation is put into the patch. If a new cell
has no corresponding old cell, an add operation is put into the patch. Thirdly,
it transforms the temporary array patch into a final patch by taking care of the
indexes of the changed cells because the execution of a change operation may
have an impact on the indexes of the following ones. This transforming index
method is inspired by the classical Operational Transformation (OT) technology,
which aims to solve concurrency control of collaborative editing in distributed
systems [8,12]. To that extent, it sorts the operations of the temporary patch
according to the indexes of the changed cells and to the type of change (move <
remove < add), iterates through them and recompute the indexes. Further, if a
move operation moves a cell to the same operation (the target index is equal to
the source index), it is removed from the patch. This step is not so complex and
this why we do not explain it in details. The whole pseudo code of our algorithm
JDR is available on GitHub10.

The Figure 4 finally presents the patch created by our approach. The main
difference with an optimal patch is that nodes that are not direct children of the
common sub-tree are not target of any change. With our example, the sub-tree
with the node in as a root is therefore fully created by the patch, and its child
node elts is created from scratch whereas it should have been moved.

4 Efficiency evaluation

Our patch algorithm has been developed in JavaScript and is available as an
Open Source library.11 We present in this section its efficiency evaluation in
comparison with all other existing JavaScript libraries that support the JSON
Patch RFC (see Table 1).

9 https://github.com/darkskyapp/string-hash
10 https://github.com/caohanyang/json_diff_rfc6902/blob/master/Algorithm.

pdf
11 https://github.com/caohanyang/json_diff_rfc6902

https://github.com/darkskyapp/string-hash
https://github.com/caohanyang/json_diff_rfc6902/blob/master/Algorithm.pdf
https://github.com/caohanyang/json_diff_rfc6902/blob/master/Algorithm.pdf
https://github.com/caohanyang/json_diff_rfc6902


[
{ "op": "add", "path": "/rank", "value": 6 },
{ "op": "remove", "path": "/rm"},
{ "op": "replace", "path": "/isOk", "value": false},
{ "op": "move", "path": "/va", "from": "/val"},
{ "op": "copy", "path": "/mes2", "from": "/mes1"}
{ "op": "add", "path": "/res/0", "value ": "v5"},
{ "op": "replace", "path": "/res/2", "value ": "m2"},
{ "op": "remove", "path": "/res/4"},
{ "op": "copy", "path": "/res/3", "from": "/ result /1"},
{ "op": "move", "path": "/res/5", "from": "/ result /4"},
{ "op": "remove", "path": "/inner/in/elts"},
{ "op": "add", "path": "/inner/in", "value": {"elts ":["a", "b", "c"]}},
{ "op": "move", "path": "/sum", "from": "/inner/sum"}

]

Fig. 4: A RFC JSON Patch generated by our approach that, if applied to source
JSON document of the Figure 1, would get the target JSON document.

Our evaluation consists in asking all the libraries to create JSON patches.
We then compare them according to two quantitative factors: the time required
to create the patch, and the size of the patch. Our claim is that a library is
considered to be efficient if the patches it creates are small and if it creates them
quickly.

Our evaluation is fully automated. It inputs a given REST service that pro-
vides access to a changing data, and periodically calls it 61 times to get 61
different versions of the changing data. Then, for each of the 60 consecutive
versions it asks to all the existing libraries to generate the corresponding patch,
and compares the time they take as well as the size of their returned patch. We
repeat the generation of the patch 100 times to get an average value for both
time and size. Our evaluation then returns 60 average values for both time and
size for each library and for any given REST service. The evaluation has been
executed on a desktop computer Intel Core i7-4770 CPU @3.40GHz8, 16GB of
RAM, and Ubuntu 14.04.2 LTS x86 64.

The choice of the called REST service has obviously an impact on the results
obtained by our evaluation. We therefore choose to include into our dataset only
real services provided by well-known web applications. Further, as the existing
libraries mainly differ by their support of changes (see Table 1), we choose to
include into our dataset three kinds of services: the one where changes are only
made to objects’ properties, the one where changes are only made to arrays,
and the one where changes are made to both. Our industrial partner Stream-
data.io then provides us one service for each such kinds. Our dataset, available
on GitHub12, includes the Xignite GetRealTimeRate, Stackoverflow Answers
and Twitter Timeline services.

12 https://github.com/caohanyang/json_diff_rfc6902/tree/master/dataset

https://github.com/caohanyang/json_diff_rfc6902/tree/master/dataset


The Xignite GetRealTimeRate13 service provides real-time currencies in the
global financial market. The service returns a JSON document that contains
one node object for each of the selected currencies (i.e. EURUSD, USDGBP).
Changes between two successive versions are then only made to the properties
of these objects. It should be note that a period of 15 seconds has been advised
by our industrial partner between two consecutive versions.

The Stackoverflow Answers14 service provides a list of Stackoverflow’s an-
swers . The service returns a JSON document that contains an array with the
latest 20 answers. Changes between two successive versions are then only made
to the array (new answers are added, last ones are deleted).

The Twitter Timeline15 service provides the home timeline of a specific ac-
count with up-to-date Tweets. The service returns a collection of the most recent
20 Tweets of the authenticated user. Changes between two successive versions
can be made to the array or to the objects themselves when tweets’ properties
change.

The Figure 5 shows an extract of successive versions that have been obtained
by calling the services of our dataset. It clearly shows that changes performed
to the data can be done either on objects’ properties with the Xignite service,
or on the array with Stackoverflow, or on both with Twitter.

The Figure 6, 7, 8 then present the results of our evaluation for each service.
Each figure presents one figure for the time and one figure for the size where
the black dots present the 60 average values, and the bold red dot presents the
median of these average values.

For the Xignite service, Fast-JSON-Patch, JDR and rfc6902 always generate
small patches while jiff doesn’t (see Figure 6a). Curiously JSON8 chooses to
simply replace the whole JSON document. Regarding time, Fast-JSON-Patch
is the fastest followed by our library but the difference is no more than 0.5
milliseconds (see Figure 6b). rfc6902 takes much more time than the others.

For the Stackoverflow service it is interesting to see that Fast-JSON-Patch
performs bad in term of size as it generates large patches (see Figure 7a). JSON8
is again quite bad as it generated also large patches. JDR, jiff, rfc6902 behave
quite well regarding size as they always yield small patches. Regarding time all
the libraries behave quite well but rfc6902, which is slower (see Figure 7b).

For the Twitter service, the Figure 8a clearly shows that JDR always yields
small patches in all situation. In some cases, Fast-JSON-Patch totally fails (see
some black dots with high patch sizes). rfc6902 succeeds almost all the times but
is sometimes not that fast. Regarding time, the Figure 8b shows that JSON8
is definitively the fastest, then Fast-JSON-Patch. JDR and Jiff performs almost
within the same time. Finally rfc6902 is slow.

13 http://globalcurrencies.xignite.com/xGlobalCurrencies.json/

GetRealTimeRate?Symbol=EURUSD,USDGBP,EURJPY,CHFDKK&_token=[YOUR_TOKEN]
14 https://api.stackexchange.com/2.2/answers?order=desc&sort=activity&

site=stackoverflow
15 https://api.twitter.com/1.1/statuses/home_timeline.json

http://globalcurrencies.xignite.com/xGlobalCurrencies.json/GetRealTimeRate?Symbol=EURUSD,USDGBP,EURJPY,CHFDKK&_token=[YOUR_TOKEN]
http://globalcurrencies.xignite.com/xGlobalCurrencies.json/GetRealTimeRate?Symbol=EURUSD,USDGBP,EURJPY,CHFDKK&_token=[YOUR_TOKEN]
https://api.stackexchange.com/2.2/answers?order=desc&sort=activity&site=stackoverflow
https://api.stackexchange.com/2.2/answers?order=desc&sort=activity&site=stackoverflow
https://api.twitter.com/1.1/statuses/home_timeline.json


1 2 3 4 5 6 7 8 9 10 11 12 13 14

Object

Array

Xignite timeline

M
od

ifi
ca

tio
n 

ty
pe

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Object

Array

Stackoverflow timeline

M
od

ifi
ca

tio
n 

ty
pe

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Object

Array

Twitter timeline

Polling interval 15s

M
od

ifi
ca

tio
n 

ty
pe

Fig. 5: Timeline modification type analysis for Xignite (top), Stackoverflow (mid-
dle) and Twitter (bottom), which represent object server, array server and shift
server respectively.

The Figure 6, 7, 8 are consistent with the analyse we provided in the sec-
tion 2, and clearly show the advantages and drawbacks of the existing libraries,
depending on the support they provide to object or array. We then decided to
combine the size and time factors considering that a patch has to be sent into
the internet after it has been created (with a bandwidth of 10 Mbit/s) (See
Tables 2, 3 and 4). The Table 2 shows that Fast-JSON-Patch is the best when
the changes are only performed to the objects’ properties but our library JDR is
very close. Then, the Table 3 shows that our library JDR performs the best when
the changes are only performed to arrays. Finally, the Table 4 shows that our
library JDR performs the best when the changes are performed to both objects’
properties and arrays.

In conclusion, based on industrial real data, our JDR outperforms existing
libraries regarding the size of created patches and the time needed to create
them.

5 Conclusion

REST APIs together with JSON are commonly used by modern web applica-
tions to export their services. Such an architecture however makes the services



●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●●●●
●

● ● ●●● ●● ●●●●
●● ●● ●● ●●● ●● ●●● ●● ●● ●●●● ●●● ●●● ●●

●●
● ● ●● ●● ●●●● ●

5000

7500

10000

12500

15000

17500

JDR jiff Fast−JSON−Patch rfc6902 JSON8 Patch

Pa
tc

h 
si

ze
(b

yt
e)

Size of the computed patches for the dataset Xignite

(a) Patch size

● ●● ●● ●
●●●● ●●●● ●● ●●● ●●●●● ●●●● ●● ●● ●● ●●● ●●● ●●●●●● ●● ●●● ●● ● ●● ●●●● ●

● ●●● ●●●●●●● ●●
●

●●●● ● ●
●
●●●● ●●●

●
● ●●● ●●

●
● ●●●● ●●

●
●●● ●● ●●

●
●●●● ●●

●
●● ●●● ●● ●● ●●●●● ●●●●●●●●● ●●● ●● ●●● ●● ●●● ● ● ●●●● ●●●●●● ●● ● ●● ●●● ●● ● ●

●

● ● ●●●

●

●
● ●●

●●

●

●

●● ●●
●●

●

●●

● ●
●●●

●

● ●

●

●

●
●

●

●
●● ●●●●

●

●

●
●●● ●●

●

●

●

●●●

●

●

●● ●● ● ●●● ●● ●●● ●●● ● ●●●● ●● ●● ●● ●● ● ●● ● ●● ● ●●●●● ●●● ●●● ●● ●● ●● ●●● ●● ●●0

3

6

9

JDR jiff Fast−JSON−Patch rfc6902 JSON8 Patch

D
iff

 ti
m

e(
m

s)

Time to compute the patches for the dataset Xignite

(b) Diff time

Fig. 6: Results for the Xignite dataset

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●
●

●

● ●

●

●
●●

●●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●
●

●

●

● ●

●

●
●●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●● ●
●●●

●

●

● ●●●
●

●
●

●

●

● ●●

●● ●●
● ●● ●

●●
●

●●
●●

●●
●

● ●●
●

●
● ●● ●
●

●

●

●●
●

●● ●
● ●●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●●

●

●
● ●

●●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●● ●●●
●●

●

● ●●●
●● ●●●●●● ●●●● ●●●● ●● ●●●●●

● ●●● ●●●● ●●●●●

●

●●●●● ●● ●●●

0

5000

10000

15000

20000

25000

JDR jiff Fast−JSON−Patch rfc6902 JSON8 Patch

Pa
tc

h 
si

ze
(b

yt
e)

Size of the computed patches for the dataset StackOverflow

(a) Patch size

●
●● ● ●●● ●

●

●
● ●● ●●●

●
●● ●● ●●●●● ●●●● ● ●●●● ●●●● ●● ●●●● ● ●● ●

●

●● ●● ●

●
●
●● ●

●

● ●● ●
● ● ●●

●
●

● ●●●
●

●●● ● ●●●●● ●●
●

●●
●●●●

●●
●

● ●
●●● ●● ●● ●● ●● ●●● ●

●
●●●

● ●

●
● ●

● ●●● ●● ●●● ●
●
●●●● ●● ●● ●●● ●

●
●

●
●●●● ●●●●● ●●●●● ●● ●●● ●
●

●● ● ●● ●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●● ● ●

●

●●●● ●●●● ● ●●●● ●● ●●●● ● ●●● ●●●● ● ●● ●●● ●●● ●●● ●

●

●●● ●●●● ●●●0

1

2

3

JDR jiff Fast−JSON−Patch rfc6902 JSON8 Patch

D
iff

 ti
m

e(
m

s)

Time to compute the patches for the dataset StackOverflow

(b) Diff time

Fig. 7: Results for the StackOverflow dataset

●●

●

●●● ●●● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●● ●●●● ●

●

●

●

●

● ●

●

●●●●●●●

●

●

●

●

● ●
● ●● ●●●● ●

● ●
●

●

0e+00

5e+04

1e+05

JDR jiff Fast−JSON−Patch rfc6902 JSON8 Patch

Pa
tc

h 
si

ze
(b

yt
e)

Size of the computed patches for the dataset Twitter

(a) Patch size

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●●

●

●● ●●● ●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●●● ●● ●●●

●
● ●0

2

4

6

JDR jiff Fast−JSON−Patch rfc6902 JSON8 Patch

D
iff

 ti
m

e(
m

s)

Time to compute the patches for the dataset Twitter

(b) Diff time

Fig. 8: Results for the Twitter dataset



Table 2: Xignite performance of the 5 existing JavaScript libraries.

Xignite

Library Patch-Size Diff-time Total-time

FastJSONPatch 100% (6683Bytes) 100% (0.103ms) 100% (5.45ms)
JDR 100% 502% 108%
jiff 152% 385% 157%
JSON8 Patch 232% 2% 228%
rfc6902 100% 2531% 281%

Table 3: Stackoverflow performance of the 5 existing JavaScript libraries.

Stackoverflow

Library Patch-Size Diff-time Total-time

JDR 100% (2257Bytes) 100% (0.123ms) 100% (1.94ms)
jiff 104% 216% 112%
rfc6902 100.3% 1880% 228%
JSON8 Patch 232% 6% 484%
FastJSONPatch 1045% 88% 995%

reachable in a pull mode which is not suitable for accessing data that periodi-
cally changes (such as Twitter timeline, realtime currency, etc.). The push mode
is on the contrary more adequate for accessing changing data, but very few web
applications, if any, support it. Our partner StreamData.IO therefore provides a
proxy server solution for turning a pull REST API into a push one. The proxy
server makes periodical requests to the API and then generates patches that
express the changes made to the new received versions of the data. Generating a
patch for JSON document is obviously the difficult part and existing approaches
handle it poorly. In this paper we then provide a new JSON patch algorithm
towards this issue, with the objective to fully support the JSON patch RFC and
to provide efficiency gain in comparison to existing libraries.

Our study first shows that the existing approaches are not optimal and
that they take drastic simplifications. More precisely, we show that existing
approaches do not support the move and copy change operations (except Java
JSON-patch), and that few of them fully support changes performed to array.

We then propose our JSON patch algorithm that is compliant witht the
JSON Patch RFC and that further supports all of the 5 change operations.
Indeed, our algorithm succeeds to support move and copy operations for object
nodes and for arrays. Its limitation is that it only considers changes that are
performed on a whole sub-tree, and does not consider changes that modifies
the structure of a sub-tree. Further, it only considers change to array that are
localized in the same place in the two versions of a JSON document. Those
limitations have however been driven by our observations performed on existing
REST API, which showed that such changes almost never happen. Our approach



Table 4: Twitter performance of the 5 existing JavaScript libraries.

Twitter

Library Patch-Size Diff-time Total-time

JDR 100% (2475Bytes) 100% (1.77ms) 100% (3.75ms)
rfc6902 198% 276% 235%
FastJSONPatch 1525% 50% 827%
jiff 2064% 107% 1140%
JSON8 Patch 3575% 3% 1887%

only handles the transformation of pull mode services into push mode but not
their updates. The future work is to study the subsequent API updates that
may involve structural changes, which aims to better understand how far APIs
are updated.

We evaluate the efficiency of the JavaScript implementation of our algorithm
against existing JavaScript libraries that support the JSON Patch RFC. The
evaluation has been done by requesting real web applications with data suggested
by our industrial partner. It clearly shows that our library outperforms the other
libraries. It creates small patch quite fast, and can handle different situations
(where the changes target objects’ properties or arrays).

As a main conclusion, we provide an efficient algorithm to create a path
between two versions of a JSON document. The patch created by our approach
is fully complies with RFC. Even it is not optimal, it however expresses all
change operations such as the move and copy ones, and the ones that target
arrays. Our work is the most essential part for turning a pull REST API into
a push one, which is frequently requested by the web developers to get notified
of data changes. As an example we provide a prototype framework that can be
used to convert a pull service into a push one (see the online demo16).

References

1. Al-Ekram, R., Adma, A., Baysal, O.: diffX: An Algorithm to detect Changes in
Multi Version XML Documents. In: In processing of the CASCON ’05. pp. 1–11
(2005)

2. Bille, P.: A survey on tree edit distance and related problems. Theor. Comput. Sci.
337(1-3), 217–239 (2005)

3. Bryan, P., Nottingham, M.: JavaScript Object Notation (JSON) Patch. Tech. rep.,
RFC 6902, April (2013), http://www.hjp.at/doc/rfc/rfc6902.html

4. Buttler, D.: A short survey of document structure similarity algorithms. In: Inter-
national conference on internet computing. pp. 3–9 (2004)

5. Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change Detection
in Hierarchically Structured Information. In: Jagadish, H.V., Mumick, I.S. (eds.)
Proceedings of the 1996 ACM SIGMOD International Conference on Management

16 http://diff-and-patch.pubstorm.site/

http://www.hjp.at/doc/rfc/rfc6902.html
http://diff-and-patch.pubstorm.site/


of Data, Montreal, Quebec, Canada, June 4-6, 1996. pp. 493–504. ACM Press
(1996)

6. Cobena, G., Abiteboul, S., Marian, A.: Detecting Changes in XML Documents. In:
Agrawal, R., Dittrich, K.R. (eds.) Proceedings of the 18th International Conference
on Data Engineering, San Jose, CA, USA, February 26 - March 1, 2002. pp. 41–52.
IEEE Computer Society (2002)

7. Crockford, D.: RFC4627: JavaScript Object Notation (2006)
8. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. In: Acm Sig-

mod Record. vol. 18, pp. 399–407. ACM (1989)
9. Fielding, R.T., Taylor, R.N.: Principled design of the modern Web architecture.

ACM Transactions on Internet Technology (TOIT) 2(2), 115–150 (2002), http:
//dl.acm.org/citation.cfm?id=514185

10. Higuchi, S., Kan, T., Yamamoto, Y., Hirata, K.: An A* algorithm for computing
edit distance between rooted labeled unordered trees. In: New Frontiers in Artificial
Intelligence, pp. 186–196. Springer (2012)

11. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. Jour-
nal of the ACM (JACM) 24(4), 664–675 (1977)

12. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7), 558–565 (1978)

13. Lindholm, T., Kangasharju, J., Tarkoma, S.: Fast and Simple XML Tree Differ-
encing by Sequence Alignment. In: Proceedings of the 2006 ACM Symposium on
Document Engineering. pp. 75–84. DocEng ’06, ACM, New York, NY, USA (2006),
http://doi.acm.org/10.1145/1166160.1166183

14. Pawlik, M., Augsten, N.: RTED: A Robust Algorithm for the Tree Edit Distance.
PVLDB 5(4), 334–345 (2011)

15. Zhang, K., Shasha, D.: Simple Fast Algorithms for the Editing Distance Between
Trees and Related Problems. SIAM J. Comput. 18(6), 1245–1262 (Dec 1989), http:
//dx.doi.org/10.1137/0218082

16. Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered
labeled trees. Information processing letters 42(3), 133–139 (1992)

http://dl.acm.org/citation.cfm?id=514185
http://dl.acm.org/citation.cfm?id=514185
http://doi.acm.org/10.1145/1166160.1166183
http://dx.doi.org/10.1137/0218082
http://dx.doi.org/10.1137/0218082

	JSON Patch for turning a pull REST API into a push

