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INFINITE ERGODIC INDEX OF THE EHRENFEST

WIND-TREE MODEL

ALBA MÁLAGA SABOGAL AND SERGE TROUBETZKOY

Abstract. The set of all possible configurations of the Ehrenfest
wind-tree model endowed with the Hausdorff topology is a compact
metric space. For a typical configuration we show that the wind-
tree dynamics has infinite ergodic index in almost every direction.
In particular some ergodic theorems can be applied to show that if
we start with a large number of initially parallel particles their di-
rections decorrelate as the dynamics evolve answering the question
posed by the Ehrenfests.

1. Introduction

In 1912 Paul and Tatiana Ehrenfest wrote a seminal article on the
foundations of Statistical Mechanics in which the wind-tree model was
introduced in order to interpret the work of Boltzmann and Maxwell
on gas dynamics [EhEh]. In the wind-tree model a point particle moves
without friction on the plane with infinitely many rigid obstacles re-
moved, and collides elastically with the obstacles. The Ehrenfests’ pa-
per dates from times when the notions of probability theory where not
yet rigorously defined. Thus they could not describe the distribution
of the obstacles in a probabilistic way, they used the word “irregular”
to describe it. However, they made precise what they did expected
from the placement of the obstacles: obstacles are identical squares, all
parallel to each other, the placement is irregular, every portion of the
plane contains about the same number of obstacles, and the distances
between the obstacles are large in comparison to the obstacle’s size.

If we fix the direction of the particle, the billiard flow will take only
four directions. The Ehrenfests asked the following question: start K
particles in a given direction, will the number of particles in each of
the four directions asymptotically equalize to about K/4? To answer
this question we study the ergodic properties of the wind-tree model.

We thank Jack Milnor for suggesting a nice presentation of our topology. AMS
acknowledges that this work was started during a post-doc funded by the A*MIDEX
project (ANR-11-IDEX-0001-02), funded itself by the “Investissements d’avenir”
program of the French Government, managed by the French National Research
Agency (ANR)”. She continued working on this project during the ATER posi-
tion she held at Mathematics Laboratory in Orsay in 2015-2016. ST gratefully
acknowledges the support of project APEX "Systèmes dynamiques: Probabilités et
Approximation Diophantienne PAD" funded by the Région PACA.
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Interestingly the birth of ergodic theory can be traced back to the
Ehrenfests’ article in which the word ergodic was used for the first time
with a close mathematical meaning to the current one [GaBoGe]. We
consider the set of all possible configurations and introduce a canonical
topology which makes it a compact metric space. We show that for
(Baire) generic configurations, for almost every direction the billiard
flow has infinite ergodic index, i.e., all its powers are ergodic. In a
finite measure space this would be equivalent to saying that the flow
is weakly mixing. The asymptotic equalization of the directions of K
particles in several senses then follows from various ergodic theorems
(note that we are in the framework of infinite ergodic theory here, so
the Birkhoff ergodic theorem is not directly applicable).

In two previous articles we have considered a subset of configurations
which are small perturbations of lattice configurations, and we showed
that the generic wind-tree is minimal and ergodic in almost every direc-
tion [MSTr1, MSTr2]. The topology considered in these two articles is
equivalent to the one considered in this article. Furthermore the proofs
of these two results hold mutatis mutandis in the more general setting
which we consider here.

There have been a number of results on the wind-tree model [DeCoVB,
Ga, HaCo, HaCo1, Tr, VBHa, WoLa], and on the wind-tree model with
periodical distribution of obstacles of squares, rectangles and more re-
cently other polygonal shapes [AvHu, BiRo, De, DeHuLe, DeZo, FrHu,
FrUl, HaWe, HuLeTr].

2. Definitions and main results

For sake of simplicity, a square whose sides are parallel to lines y =
±x will be referred to as rhombus in the rest of the article. The L1

distance in R2 will be denoted by d. Note that balls with respect to
this distance are rhombii.

Fix s > 0. A configuration is an at most countable collection of
rhombii with diameter s, whose interiors are pairwise disjoint. Since s is
fixed it is enough to note the centers of the rhombii, thus a configuration
g is an at most countable subset of R2 such that if z1, z2 ∈ g then
d(z1, z2) ≥ s.

To define a topology on the set of configurations consider polar co-
ordinates (r, θ) on the plane. Each point (r, θ) in the plane is the stere-
ographic projection of a point in the sphere with spherical coordinates
(2 arctan(1/r), θ). Apply the inverse of the stereographic projection to
a configuration g to obtain a subset of the sphere. Let ĝ denote the
union of this set with the north pole of the sphere denoted by {∞}, it
is a closed subset of the sphere. The topology we define on the set of
configurations is then induced by the Hausdorff distance dH given by

dH(g1, g2) = max( sup
z1∈ĝ1

inf
z2∈ĝ2

ρ(z1, z2), sup
z2∈ĝ2

inf
z1∈ĝ1

ρ(z1, z2)).
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Here ρ denotes the geodesic distance on the sphere, i.e., the length
of the shortest path from one point to another along the great circle
passing through them.

Let Conf be the set of all configurations.

Proposition 1. (Conf, dH) is compact metric space, thus a Baire space.

The proposition is proven in the appendix. Let Uε(g) be the set of
all configurations that are at most ε-close to g

Uε(g) := {g′|dH(g
′, g) < ε}.

Proposition 2. There is a dense Gδ subset G of (Conf, dH) such that
for each g ∈ G

(1) g is an infinite configuration,
(2) every pair of points z1, z2 ∈ g satisfy d(z1, z2) > s.

Proof. There are infinite configurations arbitrarily close to any finite
configuration, thus we can choose a countable dense set {gn : n ∈ N}
of infinite configurations. Let ε(gn) > 0 be the infinimum of ε such
that there are at least n distinct points z ∈ gn satisfying ρ(z,∞) > ε.
Denote this necessarily finite set of points by B(gn). Clearly

G :=
∞
⋂

m=1

⋃

n≥m

Uε(gn)(gn)

is a dense Gδ set. If g ∈ G, then g is in Uε(hn)(gn) for an arbitrarily
large n and thus g is an infinite configuration.

Now additionally suppose that {gn} satisfies

min{d(z1, z2) : z1, z2 ∈ B(gn)} ≥ s+ 1/n.

We also require that ε(gn) satisfies : for any h ∈ Uε(gn)(gn) we have

min{d(z1, z2) : z1, z2 ∈ B(gn)} ≥ s+ 1/2n.

Point (2) follows directly. �

Fix g ∈ Conf. The wind-tree table Bg is the plane R2 with the
interiors of the union of the trees removed. Fix θ ∈ S1. The billiard
flow φg,θ

t in the direction θ or simply φθ
t is the free motion in the interior

of Bg with elastic collision from the boundary of Bg (the boundary of
the union of the trees). Once launched in the direction θ, the billiard
direction can only achieve four directions [θ] := {±θ,±(π − θ)}; thus
the phase space Xg,θ of the billiard flow in the direction θ is a subset of
the cartesian product of Bg with these four directions. We agree that
if a billiard orbit hits a corner of a tree, the outcome of the collision is
not defined, and the billiard orbit stops there, its future is not defined
anymore. Note that in this notation φθ

t , φ
−θ
t , φπ−θ

t and φθ−π
t are all the

same.
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A flow ψt preserving a measure m is called ergodic if for each Borel
measurable set A,m(ψt(A)△A) = 0 ∀t ∈ R implies that m(A) = 0 or
m(Ac) = 0. The flow ψt is said to have infinite ergodic index if for
each integer K ≥ 1 the K-fold product flow ψt × · · · × ψt is ergodic
with respect to the K-fold product measure m × · · · × m. It is well
a know fact that if m is a finite measure then infinite ergodic index
is equivalent to weak-mixing, but we will use it in the context of an
infinite measure preserving flow.

For each direction θ, the billiard flow φθ
t preserves the area measure

µ on Bg times a discrete measure on [θ], we will also call this measure µ.
Note that µ is an infinite measure. The billiard flow on the full phase
space preserves the volume measure µ × λ with λ the length measure

on S1. Let K ≥ 1, and let ~θ = (θ1, . . . , θK) be a vector of directions.

Then we note the product billiard flow φ
~θ
t := φθ1

t ×· · ·×φθK
t . This flow

preserves the measure µK := µ× · · · × µ.
Now we can state our main result.

Theorem 3. For any s > 0 there is a dense Gδ subset G of Conf and
a dense Gδ set of full measure of directions H, for every integer K ≥ 1
there is a dense Gδ set H(K) of full measure of K-tuples of directions
such that for each g ∈ G

(1) the flow φθ
t has infinite ergodic index for every θ ∈ H and

(2) the flow φ
~θ
t is ergodic for every ~θ ∈ H(K).

Remark. We do not know that the set H(K) has product structure,
thus (1) does not follow from (2).

2.1. The precise question posed by the Ehrenfests. Consider a
large but finite number K of initial points in the wind-tree model in
a given direction θ. The Ehrenfests asked do the particles directions
asymptotically equalize under the wind-tree dynamics, i.e., are there
approximately K/4 particles in each direction after a large time.

This question is the motivation for our study. Let (~z, ~θ) denote the

initial positions and velocities of these particles, and fi((~z, ~θ)) denote
the number of particles pointing in the direction i ∈ {±θ,±(π − θ)}.
If the functions fi were integrable, then we could give a nice answer
to this question using Theorem 3, but unfortunately this is not the
case. We give three partial answers. First a finite measure version. Let
A ⊂ Bg be a positive but finite measure subset of the wind-tree table,
and let fA

i denote the function fi restricted to the set A×· · ·×A. This
function is integrable, thus applying the Hopf ergodic theorem to the
wind-tree flow yields the following corollary (here K and s are fixed,
and G and H are the dense Gδ sets from Theorem 3)

Corollary 4. For each g ∈ G, for each A ⊂ Bg of positive measure,
for each θ ∈ H, for each i, j the following limit holds almost surely as
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T → ∞:
∫ T

0
fA
i

(

φθ
t × · · ·φθ

t (~z,
~θ)
)

dt
∫ T

0
fA
j

(

φθ
t × · · ·φθ

t (~z, ~θ)
)

dt
→ 1.

This means that if we only count when all the particles are in the set
A then the average over times of the number going in each direction is
asymptotically the same.

If we replace the flow φθ
t × · · ·φθ

t by its first return flow ψA,~θ
t to the

region A× · · · ×A, then we can apply the Birkhoff ergodic theorem.

Corollary 5. For each g ∈ G, for each A ⊂ Bg of positive measure,
for each i, the following limit holds almost surely as T → ∞:

1

T

∫ T

0

fA
i

(

ψA,~θ
t (~z, ~θ)

)

dt→

∫

A

fA
i dµ× · · · × dµ =

K

4
· area(A).

This means that the average over time of the direction converges to
K/4, but for the first return flow.

Finally we can replace the fi by integrable functions which some-
how measure a similar phenomenon. For example the sum of the
cubes of the reciprocal of the distance of the particles from the ori-

gin: f̂i((~z, ~θ)) =
∑

{k:~θk=i}
1

min (1,|zk|3)
. These functions are positive and

integrable, thus we can apply the Hopf ergodic theorem to conclude:

Corollary 6. For each g ∈ G, for each θ ∈ H, for each i, j the follow-
ing limit holds almost surely as T → ∞:

∫ T

0
f̂i
(

φθ
t × · · ·φθ

t (~z,
~θ)
)

dt
∫ T

0
f̂j
(

φθ
t × · · ·φθ

t (~z, ~θ)
)

dt
→ 1.

This means that then the average over time of the weighed number
going in each direction is asymptotically the same.

For all three results we can replace a single θ ∈ H by a vector
~θ ∈ H(G) and state a similar result for the functions fi, f

A
i , f̂i which

counts the number of particles with direction in the ith quadrant
(i ∈ {1, 2, 3, 4}). We interpret these results in the following way, if
K particles are launched in arbitrary generic directions, then the aver-
age over time of the number of particles in the different quadrants are
asymptotically the same in the three senses mentioned above.

3. Proof of wind-tree results

Fix a wind-tree configuration g ∈ Conf. Fix K and n ∈ N, and let

Bg
n :=

(

Bg ∩ {(x, y) : |x|+ |y| ≤ ns}
)2K

. Note that K does not appear
in this notation, as well as certain other notations in this section, since
it is fixed throughout much of the proof. For each θ let [θ] be the set
of all possible directions under the billiard flow starting in direction θ,
i.e., [θ] = {±θ,±(π − θ)}. Let

Xg,~θ
n = {(z1, θ1), . . . , (zK , θK) : (z1, . . . , zK) ∈ Bg

n, θi ∈ [θi]}.
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Figure 1. An 8-ringed configuration and a configura-
tion close to it.

Consider first return flows of the product billiard flow,

φg,~θ,n
t : Xg,~θ

n → Xg,~θ
n .

For every θ ∈ S1\{0, π/2, π, 3π/2}, let µn be µ restricted to Bg
n times the

counting measure on [θ]. µn does not depend on θ and φg,~θ,n
t preserves

the measure µK
n .

Proof of Theorem 3.

We prove both statements with the same strategy: we choose a dense
set {fi} of configurations which satisfy the goal dynamical property of
K-fold ergodicity on certain compact sets. Then we will show that
wind-tree tables which are sufficiently well approximated by this dense
set will satisfy the dynamical property on the whole phase space. The
proof for K = 1 is simpler, and we will mention the simplification in
the proof even though this is not formally necessary for the proof.

A configuration h is called n-ringed if the boundary of the rhombus
{(x, y) ∈ R2 : |x| + |y| ≤ ns} is completely covered by trees as in
Figure 1 left (i.e., the obstacles covering the boundary intersect with
each other on a whole side or do not intersect at all).

For the proof of simple ergodicity, let {fi} be a dense set of parame-
ters such that each fi is an ni-ringed configuration and ni is increasing
with i. Then by [KeMaSm] the billiard flow is ergodic in almost every

direction inside the ring. So, the return flow φ
~θ,ni

t is ergodic for almost

every direction θ where ~θ = (θ).
Consider now the K-fold case. Let g be any configuration and ε > 0.

Let n > ε+ 1
ε
+s. Consider the n-ringed configuration f which coincides

with g inside the the ball of radius 1/ε and has no additional trees. We
apply Theorem 1 of [MSTr3] to the table in the interior of the ring of
the ringed configuration f yielding a dense Gδ set Θ of full measure of
directions, and a configuration that is n-ringed, and is ε-close to f and
g such that the flow is weakly mixing inside the ring for all θ ∈ Θ.
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Thus, we can find a dense set of configurations {fi} such that each
fi is ni-ringed and the flow is weakly mixing for all θ ∈ Θ inside the
ring. Again we suppose ni is increasing with i.

Fix K ≥ 1. Suppose that δi are strictly positive numbers. Then the
set

GK :=

∞
⋂

m=1

∞
⋃

i=m

Uδi(fi)

is a dense Gδ set. We will show that the δi can be chosen in such a
way that all the configurations in G are K-fold ergodic for all ~θ ∈ ΘK .
This Θ will be a Gδ set of full measure that has to be found in the
proof. Taking intersection over K will finish the proof, thus for sake of
simplicity, we will fix K from here on and drop it from the notations
when convenient.

Let {hj}j≥1 be a countable dense collection of continuous functions in

L1(R2K , Leb). For any ~θ and g ∈ Conf we think of this as a collection in

L1(Xg,~θ
n , µK

n ) in the same way as in the proof of Theorem 1 of [MSTr3].
Consider the Cesaro average

Sg
n,ℓhj(~z,

~θ) :=
1

ℓ

∫ ℓ

0

hj
(

φg,~θ,n
t (~z, ~θ)

)

dt.

By the Birkhoff ergodic theorem, the flow φg,~θ,n is ergodic for all n and
for almost every θ if and only if for all n and for almost all θ we have

Sg
n,ℓhj(~z,

~θ) →
∫

Xθ
n
(hθj(y)) dν̂n(y) as ℓ goes to infinity for all j ≥ 1.

Now fix i. The billiard flow φfi,θ
t is weakly-mixing inside the ring

for each θ ∈ Θ, thus φfi,~θ
t inside the ring is ergodic for every ~θ in ΘK .

Thus the first return flows φfi,~θ,n
t are ergodic for every ~θ in ΘK , for all

n ≤ ni. Thus we can find positive integers ℓni ≥ ni, open sets Hi ⊂ S
1

and sets Bfi,~θ
n ⊂ Xfi,~θ

n so that ν̂
~θ
n(B

fi,~θ
n ) > 1− 1

i
, λ (Hi) > 1− 1

i
and

∣

∣

∣
Sfi
n,ℓni

hj(~z, ~θ)−

∫

X
fi,

~θ
n

hj(y) dν̂n(y)
∣

∣

∣
<

1

i

for all ~z ∈ Bfi,~θ
n , ~θ ∈ (Hi)

K , 1 ≤ j ≤ i, and 1 ≤ n ≤ ni.
Now we would like to extend these estimates to the neighborhood

Uδi(fi) for a sufficiently small strictly positive δi (see Figure 1 right).
By the triangular inequality we have:
∣

∣

∣
Sg
n,ℓni

hj(~z, ~θ)−
∫

X
g,~θ
n

hj(y) dν̂n(y)
∣

∣

∣
≤

∣

∣

∣
Sg
n,ℓni

hj(~z, ~θ)− Sfi
n,ℓni

hj(~z, ~θ)
∣

∣

∣
+

∣

∣

∣
Sfi
n,ℓni

hj(~z, ~θ)−
∫

X
fi,

~θ
n

(hj(y))dν̂n(y)
∣

∣

∣
+

∣

∣

∣

∫

X
fi,

~θ
n

hj(y) dν̂n(y)−
∫

X
g,~θ
n

hj(y) dν̂n(y)
∣

∣

∣
.

Now the proof bifurcates a bit according to the different cases stated
in the theorem. Consider case (1). By our convention the billiard flow

stops at corners, thus any point (~z, ~θ) for which the flow is defined up to
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time ℓni is a point of continuity for φfi,~θ,n
ℓni

. Consider such a point, then

the point φg,~θ,n
ℓni

(~z, ~θ) varies continuously with g in a small neighborhood

of fi; thus we can find δi > 0, an open set Ĥi ⊂ Hi and a set B̂
~θ
n ⊂ Bfi,~θ

n

so that that if g ∈ U(fi, δi), then
∣

∣

∣
Sg
n,ℓni

hj(~z, ~θ)−

∫

Xθ
n

(hj(y))dν̂n(y)
∣

∣

∣
<

2

i

for all x ∈ B̂
~θ
n, θ ∈ Ĥi, 1 ≤ j ≤ i, 1 ≤ n ≤ ni; and B̂

~θ
n and Ĥi are both

of measure larger than 1− 2
i
.

Since λ(Ĥi) > 1 − 2/i, the Gδ set H = ∩∞
M=1 ∪∞

i=M Ĥi has full
measure. Fix θ ∈ H, then there is an infinite sequence ik such that

θ ∈ Ĥik . Consider B
~θ = ∩∞

M=1 ∪
∞
i=M B̂

~θ
nik

. Since ν̂
~θ
ni
(B̂

~θ
nik

) > 1 − 1
ik

, it

follows that ν̂θni
(B

~θ) = 1.
Suppose g ∈ G := ∩∞

m=1 ∪
∞
i=m U(fi, δi). Thus for θ ∈ H, for all x in

B
~θ, for each j ≥ 1, for each n ≥ 1

(1) lim
k→∞

Sg
n,ℓnik

(hθj) →

∫

Xθ
n

(hθj(y))dν̂ni
(y)

as k → ∞. The hθj are dense in L1(Xθ
n, ν̂

θ
ni
) and limk→∞ ℓnik = ∞, thus

Equation (1) together with the Birkhoff ergodic theorem imply that for

each n ≥ 1, the first return flow φg,~θ,n
t is ergodic for all θ ∈ H. This

implies the ergodicity of the billiard flow φg,~θ
t in every direction in H.

For case (2) we have to slightly modify the previous arguments. For

any point (~z, ~θ) of continuity of φfi,~θ,n
ℓni

, the point φg,~θ,n
ℓni

(~z, ~θ) varies con-

tinuously with g in a small neighborhood of fi; thus we can find δi > 0,

an open set Ĥi(K) ⊂ (Hi)
K and a set B̂

~θ
n ⊂ Bfi,~θ

n so that that if
g ∈ U(fi, δi), then

∣

∣

∣
Sg
n,ℓni

hj(~z, ~θ)−

∫

Xθ
n

(hj(y)) dν̂n(y)
∣

∣

∣
<

2

i

for all x ∈ B̂
~θ
ni

, ~θ ∈ Ĥi(K), 1 ≤ n ≤ ni, 1 ≤ j ≤ i; and B̂
~θ
ni

and Ĥi(K)

are both of measure larger than 1− 2
i
.

Since λ(Ĥi) > 1−2/i, the Gδ set H(K) = ∩∞
M=1∪

∞
i=M Ĥi(K) has full

measure. Fix ~θ ∈ H(K), then there is an infinite sequence ik such that
~θ ∈ Ĥik(K). Consider B

~θ = ∩∞
M=1 ∪

∞
i=M B̂

~θ
nik

. Since ν̂
~θ
ni
(B̂

~θ
nik

) > 1− 1
ik

,

it follows that ν̂θni
(B

~θ) = 1.
The rest of the proof of case(2) is identical to that of case (1). �

3.1. Generalization. If we consider a subset C of (Conf, dH) which
is itself a Baire set such that the set {h : h is N−ringed for N ≥ N0}
is dense in C for each N0 ≥ 1 then Theorem 3 holds in (C, dH) as
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well. In particular the set of configurations considered in the articles
[MSTr1],[MSTr2] is a Baire subset of (Conf, dH) thus Theorem 3 holds
in that context as well.

4. Appendix

Proof of Proposition 1. Let (gi)i∈N be a sequence of configurations.
Consider εn = 1/n. Let Bε := {z : ρ(z,∞) > ε)}. Let kj be the
cardinality of gj ∩ Bε1 . The sequence ki only take a finite number of
values. Thus we can choose subsequence (gj)j∈J0 such that the sequence
(kj : j ∈ J0) is constant, call this constant c1.

If c1 = 0 then for each j ∈ J0 let g1j be the empty configuration.

Otherwise for each j ∈ J0 let g1j := {z11,j, . . . , z
1
c1,j

} = gj ∩ Bε1 . For

each j we think of g1j as a finite configuration in Conf, but also as a
point in Sc1 . By compactness of Sc1 we can find a subsequence J1 ⊂ J0
such that the (g1j : j ∈ J1) converge to a point g1 := (z11 , . . . , z

1
c1
) ∈ Sc1 .

Note that d(z1i , z
1
j ) ≥ s for all i 6= j, thus g1 ∈ Conf. Furthermore we

have g1j ∈ Uε1(g
1) for all sufficiently large j ∈ J1. Repeat this argument

for n = 2 to produce a subsequence J2 ⊂ J1 which converge to a point
g2 ∈ Sc2. Again we have g2 ∈ Conf and g2j ∈ Uε2(g

2) for all sufficiently
large j ∈ J2. Note that c2 ≥ c1 ≥ 0 and for j = 1, . . . , c1 we have
z2j = z1j . Repeat this construction for each n. Finally we define g to be

an almost countable collection of points such that every z ∈ g is in gk

for all sufficiently large k. By construction for any z1, z2 ∈ g we have
d(z1, z2) ≥ s, thus g ∈ Conf. Note that g can be an infinite, finite, or
even the empty configuration.

We claim that g is an accumulation point of the sequence (gj)j∈N.
Fix a neighborhood U of g. Choose n so large that Uεn(g) ⊂ U . By
construction of g and gn we have Uεn(g

n) = Uεn(g). The resut follows
since gj ∈ Uεn(g

n) for all sufficiently large j ∈ Jn ⊂ N. �

Remark: if we remove the empty and finite configurations from Conf
the space is not even locally compact.
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