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Abstract

In this paper, we study the existence of densities (with respect to the Lebesgue measure)

for marginal laws of the solution (Y, Z) to a quadratic growth BSDE. Using the (by now)

well-established connection between these equations and their associated semi-linear PDEs,

together with the Nourdin-Viens formula, we provide estimates on these densities.
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1 Introduction

In recent years the field of Backward Stochastic Differential Equations (BSDEs) has been a subject

of growing interest in stochastic calculus, as these equations naturally arise in stochastic control

problems in Finance, and as they provide Feynman-Kac type formulae for semi-linear PDEs ([27]).

Before going further let us recall that a solution to a BSDE is a pair of regular enough (in a sense

to be made precise) predictable processes (Y,Z) such that

Yt = ξ +

∫ T

t
h(s, Ys, Zs)ds −

∫ T

t
ZsdWs, t ∈ [0, T ], (1.1)

whereW is a one-dimensional Brownian motion, h is a predictable process and ξ is a FT -measurable

random variable (with (Ft)t∈[0,T ] the natural completed and right-continuous filtration generated

by W ). Since it is generally not possible to provide an explicit solution to (1.1), except for instance

when h is a linear mapping of (y, z), one of the main issues, especially regarding the applications

is to provide a numerical analysis for the solution of a BSDE. This calls for a deep understanding

of the regularity of the solution processes Y and Z. The classical regularity related to obtaining

a numerical scheme for the solution (Y,Z) is the so-called path regularity for the Z component

originally studied in [21]. In this paper, we aim at studying another type of regularity namely,

we focus on the law of the marginals of the random variables Yt, Zt at a given time t in (0, T ).

More precisely, we are interested in providing sufficient conditions which ensure the existence of

a density (with respect to the Lebesgue measure) for these marginals on the one hand, and in

deriving some estimates on these densities on the other hand. This type of information on the

solution is of theoretical and of practical interest since the description of the tails of the (possible)

density of Zt would provide more accurate estimates on the convergence rates of numerical schemes

for quadratic growth BSDEs (qgBSDEs in short), that is when h in (1.1) has quadratic growth in

the z-variable, as noted in [7].

Before reviewing the results available in the literature and the one we derive in this paper, we

would like to illustrate with the two following simple examples that the existence and the estimate

of densities issues for BSDEs are very different from the one concerning the classical (forward)

SDEs. For instance consider the following very particular case of (1.1) given by:

Yt =W1 +

∫ T

t
(s−Ws)ds −

∫ T

t
ZsdWs, t ∈ [0, 1], (T = 1). (1.2)

This equation should be extremely simple in the sense that the driver h does not depend on (Y,Z),

and indeed it can be solved explicitly to get that:

Yt =Wt

(
−1

2
+ 2t− t2

2

)
, t ∈ [0, 1].

Hence Yt is a Gaussian random variable for every time t in (0, 2−
√
3), then Y2−

√
3 = 0, and for t in

(2−
√
3, 1], Yt is Gaussian distributed once again. This illustrates the difficulty of the problem and

somehow shows how it is different from the study of forward SDEs. This example, even though it

is very simple is pretty insightful and will be studied as Example 3.10 in Section 3. Concerning

the density estimates, the backward case brings here also, significant differences with the forward

case as the following example illustrates. Consider the following equation:

Yt =W 3
1 +

∫ T

t
3Wsds−

∫ T

t
ZsdWs, t ∈ [0, 1], (T = 1), (1.3)
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which can be solved explicitly:

Yt =W 3
t + 6Wt(1− t), Zt = 3W 2

t + 6(1− t), t ∈ [0, 1],

from which we deduce that both Yt and Zt admits a density with respect to the Lebesgue’s measure

for t in (0, 1]. However, it is clear that neither the law of Yt nor the one of Zt admits Gaussian

tails. This example will be considered in Section 5 as Example 5.1.

Coming back to the general problem of existence of densities for the marginal laws of Y and Z, it

is worth mentioning that this issue has been pretty few studied in the literature, since up to our

knowledge only references [3, 1] address this question. The first results about this problem have

been derived in [3], where the authors provide existence and smoothness properties of densities for

the marginals of the Y component only and when the driver h is Lipschitz continuous in (y, z).

Note that two kinds of sufficient conditions for the existence of a density for Y are derived in [3]:

the so-called first-order (cf. [3, Theorem 3.1]) and second-order (see [3, Theorem 3.6]) conditions.

Concerning the Z component, much less is known since existence of a density for Z has been

established in [1] only under the condition that the driver is linear in z. This constitutes, to our

point of view, a major restriction since up to a Girsanov transformation this case basically reduces

to the situation where the driver does not depend on z. Nonetheless, in [1], estimates on the

densities of the laws of Yt and Zt are given using the Nourdin-Viens formula.

In this paper we revisit and extend the results of [3, 1] by providing sufficient conditions for the

existence of densities for the marginal laws of the solution Yt, Zt (with t an arbitrary time in

(0, T )) of a qgBSDE with a terminal condition ξ in (1.1) given as a deterministic mapping of the

value at time T of the solution to a one-dimensional SDE, together with some estimates on these

densities. The results concerning the Lipschitz case, i.e. when the generator h is Lipschitz, are

presented in Section 3. As recalled above, the case where h is Lipschitz continuous in (y, z) has

been investigated in [3] for the Y component only, where the authors have derived two types of

sufficient conditions. However, we provide as Example 3.10 a counter-example to [3, Theorem 3.6]

which is devoted to the second-order conditions. This is due to an inefficiency in the proof that can

be easily fixed by making a small change in a key quantity in the statement of the result. Hence,

we propose a new version of this result as Theorem 3.11. Then, we gather in Section 3.3 the first

existence results of a density for the Z component for Lipschitz BSDEs. Concerning the quadratic

case, studied in Section 4, we propose sufficient conditions for the existence of a density first for

the Y component of qgBSDEs (in Section 4.2), then for the Z component of qgBSDEs (in Section

4.3). We would like to stress once more at this stage that concerning the existence of a density

for the Y component, only the Lipschitz case was known and concerning the control variable Z,

only the case of linear drivers in z was studied (see [1, Theorem 4.3]) up to now, which makes

our result a major improvement on the existing literature. Finally, we derive in Section 5, density

estimates for the marginal laws of Y and Z using the Nourdin-Viens formula, and taking advantage

of the connection between the solution to a Markovian BSDE and the solution to its associated

semi-linear PDE. Note that contrary to [1], we do not assume that the Malliavin derivative of Y

(or Z) to be bounded which is, from our point of view, a too stringent assumption (as illustrated

in Example 5.1) both from the theoretical and practical point of view. Indeed, such an assumption

leads to Gaussian tails for the densities of Y or Z. However, even in seemingly benign situations,

we will see that it is not generally the case for BSDEs, and unlike most of the literature, we have

obtained tail estimates which are not Gaussian. This might be seen as a significant difference

between BSDEs and diffusive equations (i.e. with an initial condition) like SDEs or SPDEs for
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instance [20, 19, 25].

Before going further, we would like to explain why our results are quite relevant for financial

applications and some stochastic control problems. Most of problems in portfolio management,

utility maximization or risk sensitive control (see e.g. [9, Section 4.2]) can be essentially reduced

to study a qgBSDE. Let us present two examples.

1. Assume that a financial agent wants to maximize her utility under constraints, i.e. her

investment strategies are restricted to a specific closed set C, it was proved in [28] and [12]

that her optimal strategies are essentially given through the Z component of a qgBSDE of

the form

Yt = ξ +

∫ T

t
h(s, Zs)ds−

∫ T

t
ZsdWs, ∀t ∈ [0, T ] P− a.s.

with

h(s, z) := −zθs −
|θs|2
2α

+
α

2
dist2C

(
z +

θs
α

)
,

where α denotes the risk aversion of the investor and θ is the market price of risk, and where

distC(x) denotes the Euclidean distance between x and C. Hence, if one obtains a criterion

providing density existence for the Z component solution to a qgBSDE with estimates on

its tails, then one gets crucial information to study the behaviors of optimal strategies for

utility maximization problems. For example, since Z essentially gives the optimal quantity of

money which should be invested in the risky asset, being able to estimate the probability that

Z becomes large is particularly meaningful in risk management. Besides, the control of the

tails of the density of Z could give important information concerning the rate of convergence

for numerical schemes to solve numerically BSDEs, so as to compute optimal strategies (see

[13, 6]). For instance, one can check directly that if θ above is deterministic, C is smooth

(that is its boundary is a C2 Jordan arc), and ξ = g(WT ), where g is any bounded function

such that its second-order derivative is non-negative almost everywhere and positive on a set

of positive Lebesgue measure (for instance a smoothed butterfly spread), then Theorem 4.7

below applies and Zt admits a density for all t ∈ (0, T ].

2. Assume now that a controller, sensitive to risk, wants to maximize on the control set U

J(u) := Eu

[
exp

(
θ

∫ T

0
H(s,X·, us)ds + g(XT )

)]
, u ∈ U , (1.4)

where θ denotes the sensitiveness of the controller with respect to risk and X denotes a

solution to a classical SDE. This is the classical risk sensitive control problem introduced in

[15]. Hence, this risk sensitive control problem can be rewritten in term of the well-known

risk entropic measure (see [4] for more details). Then, according to [9, Theorem 4.3], one can

find a maximizer u⋆ of (1.4) which is essentially given by a process Z⋆ which is the second

component of the solution to the following qgBSDE

Y ⋆
t = g(XT ) +

∫ T

t
h(s, x·, Z

⋆
s , u

⋆
s) +

1

2
|Z⋆

s |2ds−
∫ T

t
Z⋆
sdWs, ∀t ∈ [0, T ], P− a.s.,

where h is the Hamiltonian process (which is given explicitly in terms of H), which is such

that z 7−→ h(s, x·, z, us)+
1
2 |z|2 has a quadratic growth for every s ∈ [0, T ] and u ∈ U . Again,

our results give information on the density of Z⋆ and thus on the law of the optimal control

which is important for obtaining qualitative properties of this optimal control as well as for

numerical approximations.
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2 Preliminaries

2.1 General notations

In this paper we fix T ∈ (0,∞). Let W := (Wt)t∈[0,T ] be a standard one-dimensional Brownian

motion on a probability space (Ω,F ,P), and we denote by F := (Ft)t∈[0,T ] the natural (completed

and right-continuous) filtration generated by W . We denote by λ the Lebesgue measure on R and

we set for any p ∈ [1,+∞], Lp(P) := Lp(Ω,FT ,P) and denote by ‖·‖p the associated norm. We

denote by Cb(Rn) (n ≥ 1) the set of functions from Rn to R which are infinitely differentiable with

bounded partial derivatives. Similarly, for any n ≥ 1 and any p ∈ N∗, we denote by Cp(Rn) the

set of functions f : Rn → R which are p-times continuously differentiable. For f in Cb(Rn), we set

fxi1
···xin

the n-th partial derivative with respect to the variables xi1 , . . . , xik with i1+ . . .+ ik = n.

For a differentiable mapping f : R −→ R, we denote f ′ its derivative in place of fx. Let us denote,

for any (p, q) ∈ N2, by Cp,q the space of functions f : [0, T ]×R → R which are p-times differentiable

in t and q-times differentiable in space with partial derivatives continuous (in (t, x)).

Finally, we introduce the following norms and spaces for any p ≥ 1. Sp is the space of R-valued,

continuous and F-progressively measurable processes Y s.t.

‖Y ‖pSp := E

[
sup

0≤t≤T
|Yt|p

]
< +∞.

S∞ is the space of R-valued, continuous and F-progressively measurable processes Y s.t.

‖Y ‖S∞ := sup
0≤t≤T

‖Yt‖∞ < +∞.

Hp is the space of R-valued and F-predictable processes Z such that

‖Z‖pHp := E

[(∫ T

0
|Zt|2 dt

) p
2

]
< +∞.

BMO is the space of square integrable, continuous, R-valued martingales M such that

‖M‖BMO := ess sup
τ∈T T

0

∥∥∥Eτ

[
(MT −Mτ )

2
]∥∥∥

∞
< +∞,

where for any t ∈ [0, T ], T T
t is the set of F-stopping times taking their values in [t, T ]. Accordingly,

H2
BMO is the space of R-valued and F-predictable processes Z such that

‖Z‖2H2
BMO

:=

∥∥∥∥
∫ .

0
ZsdBs

∥∥∥∥
BMO

< +∞.

2.2 Elements of Malliavin calculus and density analysis

In this section we introduce the basic material on the Malliavin calculus that we will use in this

paper. Set H := L2([0, T ],B([0, T ]), λ), where B([0, T ]) is the Borel σ-algebra on [0, T ], and let us

consider the following inner product on H

〈f, g〉 :=
∫ T

0
f(t)g(t)dt, ∀(f, g) ∈ H2,

5



with associated norm ‖·‖H. Let S be the set of cylindrical functionals, that is the set of random

variables F in L2(P) of the form

F = f(Wt1 , . . . ,Wtn), (t1, . . . , tn) ∈ [0, T ]n, f ∈ Cb(Rn), n ≥ 1. (2.1)

For any F in S of the form (2.1), the Malliavin derivative DF of F is defined as the following

H-valued random variable:

DF :=

n∑

i=1

fxi
(Wt1 , . . . ,Wtn)1[0,ti]. (2.2)

It is then customary to identify DF with the stochastic process (DtF )t∈[0,T ]. Denote then by D1,2

the closure of S with respect to the Sobolev norm ‖ · ‖1,2, defined as:

‖F‖1,2 := E
[
|F |2

]
+ E

[∫ T

0
|DtF |2dt

]
.

In an iterative way, one may define DnF (for n ≥ 1) as the following H⊙n-valued random variable:

DnF := D(Dn−1F ),

where H⊙n denotes the n-times symmetric tensor product of H. We refer to [24] for more details.

We recall the following criterion for absolute continuity of the law of a random variable F with

respect to the Lebesgue measure.

Theorem 2.1 (Bouleau-Hirsch, see e.g. Theorem 2.1.2 in [24]). Let F be in D1,2. Assume that

‖DF‖H > 0, P−a.s. Then F has a probability distribution which is absolutely continuous with

respect to the Lebesgue measure on R.

Let F such that ‖DF‖H > 0, P−a.s., then the previous criterion implies that F admits a density

ρF with respect to the Lebesgue measure. Assume there exists in addition a measurable mapping

ΦF with ΦF : RH → H, such that DF = ΦF (W ), then we set:

gF (x) :=

∫ ∞

0
e−uE

[
E∗[〈ΦF (W ), Φ̃u

F (W )〉H]
∣∣∣F − E(F ) = x

]
du, x ∈ R, (2.3)

where Φ̃u
F (W ) := ΦF (e

−uW +
√
1− e−2uW ∗) with W ∗ an independent copy of W defined on a

probability space (Ω∗,F∗,P∗), and E∗ denotes the expectation under P∗ (ΦF being extended on

Ω× Ω∗). We recall the following result from [23].

Theorem 2.2 (Nourdin-Viens’ formula). F has a density ρ with the respect to the Lebesgue mea-

sure if and only if the random variable gF (F − E[F ]) is positive a.s.. In this case, the support of

ρ, denoted by supp(ρ), is a closed interval of R and for all x ∈ supp(ρ):

ρ(x) =
E(|F − E[F ]|)
2gF (x− E[F ])

exp

(
−
∫ x−E[F ]

0

udu

gF (u)

)
.

2.3 The FBSDE under consideration

In this paper, we consider a FBSDE of the form:




Xt = X0 +

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs, t ∈ [0, T ], P− a.s.

Yt = g(XT ) +

∫ T

t
h(s,Xs, Ys, Zs)ds −

∫ T

t
ZsdWs, t ∈ [0, T ], P− a.s.,

(2.4)

6



with X0 a given real constant. We denote by S(Xt) the support of the law of Xt under P, that is

to say the smallest closed subset A of R such that P(Xt ∈ A) = 1. Throughout this paper we will

make the following standing assumption on the process X in (2.4).

Standing assumptions on X:

(X) b, σ : [0, T ]×R −→ R are continuous in time and continuously differentiable in space for any

fixed time t and such that there exist kb, kσ > 0 with

|bx(t, x)| ≤ kb, |σx(t, x)| ≤ kσ , for all x ∈ R.

Besides b(t, 0), σ(t, 0) are bounded functions of t and there exists c > 0 such that for all

t ∈ [0, T ]

0 < c ≤ |σ(t, ·)|, λ(dx) − a.e.

Remark 2.3. According to Theorem 2.1 in [11], (X) implies that for all t ∈ (0, T ], the law of Xt,

denoted by L(Xt), has a density with respect to the Lebesgue measure.

Our results will obviously need conditions on the parameters g, h which appear in the backward

component of (2.4). More precisely, one can distinguish between two regimes which call for two

different analyses: the case where h exhibits Lipschitz growth in its variables (developed in Section

3), and the case where h has quadratic growth in the z variable (studied in Section 4). We start

with the Lipschitz situation.

3 The Lipschitz case

In this section, we focus on the solution (Y,Z) of FBSDE (2.4) under a Lipschitz-type assumption

on the driver h. The problem of existence of a density for the marginal laws of Y has been first

studied in [3], when the generator h is assumed to be uniformly Lipschitz continuous in y and z.

We first recall in Section 3.1 some general results on Lipschitz FBSDEs, then we review in Section

3.2 the results from [3]. Next, we point out an inefficiency in [3, Theorem 3.6] by providing a

counter example to this result, and we make precise how this small flaw can be corrected, and

propose a precised version of it as Theorem 3.11. Finally, in Section 3.3, we study the existence of

a density for the marginal laws of Z when the generator h of the BSDE satisfies Assumption (L).

3.1 Generalities on Lipschitz FBSDEs

We start by making precise as Assumption (L) the Lipschitz condition on h and the associated

condition on the terminal condition g. We set:

(L) (i) g : R −→ R is such that E[g(XT )
2] < +∞.

(ii) h : [0, T ] × R3 −→ R is such that there exist (kx, ky , kz) ∈ (R∗
+)

3 such that for all

(t, x1, x2, y1, y2, z1, z2) ∈ [0, T ] × R6,

|h(t, x1, y1, z1)− h(t, x2, y2, z2)| ≤ kx|x1 − x2|+ ky|y1 − y2|+ kz|z1 − z2|.

(iii)
∫ T
0 |h(s, 0, 0, 0)|2ds < +∞.

7



Before going to the density analysis of the Y and Z components we recall briefly well-known facts

about existence, uniqueness and Malliavin differentiability for the system (2.4) which can be found

in [26, 10].

Proposition 3.1 ([26, 10]). (Existence and uniqueness) Under Assumptions (X) (that we recall

is given in Section 2.3) and (L), there exists a unique solution (X,Y,Z) in S2 × S2 × H2 to the

FBSDE (2.4).

Concerning the Malliavin differentiability of (X,Y,Z), it can obtained (see [26] and [10, Remark

of Proposition 5.3]) under the following assumptions:

(D1) (i) g is differentiable, L(XT )−a.e., g and g′ have polynomial growth.

(ii) (x, y, z) 7→ h(t, x, y, z) is continuously differentiable for every t in [0, T ].

(D2) (i) g is twice differentiable, L(XT )−a.e., g, g′ and g′′ have polynomial growth.

(ii) (x, y, z) 7→ h(t, x, y, z) is twice continuously differentiable for every t in [0, T ].

Note that (D1) ensures that Y is Malliavin differentiable, whereas (D2) ensures it is twice Malliavin

differentiable. As it will be made more clear below, since Z can be represented as a Malliavin trace

of Y , the fact that Y is twice Malliavin differentiable entails that Z is Malliavin differentiable.

Proposition 3.2. (Malliavin differentiabiliy) Under (X), (L) and (D1), we have for any t ∈ [0, T ]

that (Xt, Yt) ∈ (D1,2)2, Zt ∈ D1,2 for almost every t, and for all 0 < r ≤ t ≤ T :





DrXt = σ(r,Xr) +

∫ t

r
bx(s,Xs)DrXsds+

∫ t

r
σx(s,Xs)DrXsdWs

DrYt = g′(XT )DrXT +

∫ T

t
H(s,DrXs,DrYs,DrZs)ds −

∫ T

t
DrZsdWs,

(3.1)

where H(s, x, y, z) := hx(s,Xs, Ys, Zs)x+ hy(s,Xs, Ys, Zs)y + hz(s,Xs, Ys, Zs)z.

Notice that BSDE (3.1) is a linear BSDE, whose solution can be computed using the linearization

method (see [10]).

We will need extra properties on the Malliavin derivative of Y and Z for which the following result

will be crucial. These results rely heavily on the Markovian framework we are working with.

Proposition 3.3 ([22, 14]). Let Assumptions (X), (L) and (D1) hold, then there exists a map

u : [0, T ]× R −→ R in C1,2 such that

Yt = u(t,Xt), t ∈ [0, T ], P− a.s.

In addition, Z admits a continuous version given by

Zt = ux(t,Xt)σ(t,Xt), t ∈ [0, T ], P− a.s. (3.2)

In view of Proposition 3.3, the chain rule formula implies that Yt belongs to D2,2 and

D2Yt = ux(t,Xt)D
2Xt + uxx(t,Xt)(DXt)

⊗2, P− a.s. (3.3)

Note that by definition, Z is an element of H2. As a consequence, for any fixed element t in

[0, T ], the random variable Zt is not uniquely defined, which makes the density analysis ill-posed.
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However, by the previous proposition, Z admits in our framework a continuous version. From now

on, we will always consider this version.

The following Lemma is due to Ma and Zhang in [22, Lemma 2.4] and to Pardoux and Peng [27]

for the representation of Z as a Malliavin trace of Y (see (3.4) below).

Lemma 3.4. Let Assumptions (X), (L), (D1) and (D2) hold. Then, there exists a version of

(DrXt,DrYt,DrZt) for all 0 < r ≤ t ≤ T which satisfies:

DrXt = ∇Xt(∇Xr)
−1σ(r,Xr), DrYt = ∇Yt(∇Xr)

−1σ(r,Xr), DrZt = ∇Zt(∇Xr)
−1σ(r,Xr),

Zt = DtYt := lim
sրt

DsYt, P− a.s., for a.e. t ∈ [0, T ], (3.4)

where (∇X,∇Y,∇Z) is the solution to the following FBSDE:





∇Xt =

∫ t

0
bx(s,Xs)∇Xsds+

∫ t

0
σx(s,Xs)∇XsdWs,

∇Yt = g′(XT )∇XT +

∫ T

t
∇h(s,Θs) · ∇Θsds−

∫ T

t
∇ZsdWs.

(3.5)

Remark 3.5. Assumptions (D1) and (D2) are linked to the existence of first and second-order

Malliavin derivatives for the Y component of the solution of (2.4). We would like to point out

to the reader that we only require the differentiability of g, L(XT )−a.e. Such a relaxation will be

particularly useful in the quadratic case (i.e. in Section 4). We emphasize that when we work under

Assumption (X), the law of XT is absolutely continuous with respect to the Lebesgue measure and

XT has finite moments of any order. Thus, thanks to standard approximation arguments, we can

show that the usual chain rule formula of Malliavin calculus (see Proposition 1.2.3. in [24]) still

holds for the random variable g(XT ), under Assumptions (D1) or (D2).

Finally, set the following assumption

(M) There exists a function f ∈ C2(R) such that for all t ∈ [0, T ]: Xt = f(t,Wt).

We obtain the following proposition

Proposition 3.6. Under Assumptions (M), (L) and (D2), for all 0 < r, s ≤ t ≤ T we have

DrYt = DsYt = Zt and DrZt = DsZt, P−a.s.

Proof. Once again we set Θs := (Xs, Ys, Zs). We know that for all 0 < r ≤ t ≤ T :

DrYt = g′(XT )f
′(T,WT ) +

∫ T

t
(hx(s,Θs)f

′(s,Ws) + hy(s,Θs)DrYs + hz(s,Θs)DrZs)ds

−
∫ T

t
DrZsdWs.

Then (DrY,DrZ) satisfies a linear BSDE which does not depend on r and by the uniqueness of

the solution we deduce that for all 0 < r, s ≤ t ≤ T we have DrYt = DsYt and DrZt = DsZt,

P−a.s. Finally, DrYt = Zt by (3.4).
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3.2 Existence of a density for the Y component

We focus in this section on the existence of a density for the marginal laws of the process Y in the

Lipschitz case, pursuing the study started in [3]. Towards this goal, we recall first the so-called

first order conditions introduced in [3], which are only sufficient, as illustrated in Example 3.10.

We then turn our attention to the second-order conditions of Theorem 3.6 in [3]. We point out a

(small) inefficiency in the proof of [3, Theorem 3.6] and provide a corrected version of this result

as Theorem 3.11.

As in [3], we set for any A ∈ B(R) (i.e. the Borel σ-algebra on R), and t in [0, T ] such that

P(XT ∈ A|Ft) > 0:

g := inf
x∈R

g′(x), gA := inf
x∈A

g′(x), g := sup
x∈R

g′(x), gA := sup
x∈A

g′(x), (3.6)

h(t) := inf
s∈[t,T ],(x,y,z)∈R3

hx(s, x, y, z), h(t) := sup
s∈[t,T ],(x,y,z)∈R3

hx(s, x, y, z). (3.7)

Theorem 3.7. (First-order conditions [3, Theorem 3.1]) Assume that (X), (L) and (D1) hold. Fix

some t ∈ (0, T ] and set K := kb + ky + kσkz. If there exists A ∈ B(R) such that P(XT ∈ A|Ft) > 0

and one of the two following assumptions holds

(H+)





ge−sgn(g)KT + h(t)

∫ T

t
e−sgn(h(s))Ksds ≥ 0

gAe−sgn(gA)KT + h(t)

∫ T

t
e−sgn(h(s))Ksds > 0

(H−)





ge−sgn(g)KT + h(t)

∫ T

t
e−sgn(h(s))Ksds ≤ 0

gAe−sgn(gA)KT + h(t)

∫ T

t
e−sgn(h(s))Ksds < 0,

then Yt has a law absolutely continuous with respect to the Lebesgue measure.

Remark 3.8. Notice that g (resp. g) could be equal to −∞ (resp. +∞). Then Assumption (H+)

(resp. (H−)) cannot be satisfied. Therefore, there is no problem if we allow the extrema of g to

take the values ±∞.

Remark 3.9. In view of the proof of [3, Theorem 3.1], one can show that under (X), (L), and

(D1) and if g′ ≥ 0 and h(t) ≥ 0 (resp. g′ ≤ 0 and h(t) ≤ 0) for t ∈ [0, T ], then for all

0 < r ≤ t ≤ T , DrYt ≥ 0 (resp. DrYt ≤ 0) and the inequality is strict if there exists A ∈ B(R)
such that P(XT ∈ A|Ft) > 0 and g′|A > 0 (resp. g′|A < 0).

Note that neither Condition (H+) nor Condition (H−) are necessary for getting existence of a

density as illustrated in the following example.

Example 3.10. Let T = 1, g(x) = x, X = W , h(s, x, y, z) = (s − 2)x. In this case, K = 0 and

hx(s, x, y, z) = s− 2 for all (x, y, z) ∈ R3. For any t in (0, 1], we have:

g = g = 1, h(t) = t− 2, h(t) = −1,

so that Assumption (H−) is not satisfied. Indeed,

ge−sgn(g)KT + h(t)

∫ T

t
e−sgn(h(s))Ksds = 1− (1− t) = t > 0.

10



Similarly, (H+) is not satisfied for any t ∈
(
0, (3 −

√
5)/2

)
since:

ge−sgn(g)KT + h(t)

∫ T

t
e−sgn(h(s))Ksds = 1 + (t− 2)(1− t) = −t2 + 3t− 1,

which is negative for t ∈
(
0, (3−

√
5)/2

)
. We deduce that for t ∈

(
0, (3−

√
5)/2

)
neither Assump-

tion (H+) nor Assumption (H−) is satisfied. However, we know that:

Yt = E

[
W1 +

∫ 1

t
(s − 2)Wsds

∣∣∣∣Ft

]

=Wt

(
1 +

∫ 1

t
(s − 2)ds

)
=Wt

(
−1

2
+ 2t− t2

2

)
, ∀t ∈ [0, 1], P− a.s., (3.8)

which admits a density with respect to the Lebesgue measure except when t = 0 and t = 2−
√
3.

Notice that in the previous example, the generator does not depend on z. In that setting, another

result is derived [3], involving so-called second order conditions. There, the authors of [3] benefit

from the absence of z in the driver to make a higher order expansion of the Malliavin norm∫ T
0 |DrYt|2dr. The price to pay is that the condition involves a mapping h̃ (see (3.9) below),

which is essentially a sum of derivatives of the driver h, which goes beyond the simple derivative

hx. However, Example 3.10 provides a counter-example to [3, Theorem 3.6]. Indeed, the second-

order conditions proposed in [3, Theorem 3.6] entails that Yt admits a density, when t 6= 1
2 , so in

particular at t = 2 −
√
3. However from (3.8), Y2−

√
3 = 0. This example proves that [3, Theorem

3.6] has to be modified. The proof of [3, Theorem 3.6] is essentially correct, except that in their

proof the original Brownian motion W is not a Brownian motion any more under the new measure

Q defined in [3, page 275] and need to be replaced by the process W ′
· :=W·−

∫ ·
0 σx(s,Xs)ds which

is a Q-Brownian motion. This leads to the two extra terms −(σσxhxx + zσxhxy) in the expression

of the mapping (3.9) below, compareLd to the original expression of h̃ in the statement of [3,

Theorem 3.6]. We refer the reader to Example 3.12 below and we propose a corrected version of [3,

Theorem 3.6] as Theorem 3.11 (whose proof exactly follows the original one up to the introduction

of W ′), in which the modified second-order conditions are sufficient, and necessary in the special

situation of Example 3.10.

Consider the FBSDE (2.4) when h does not depend on z and define:

h̃(s, x, y, z) :=−
(
hxt + bhxx − hhxy +

1

2
(σ2hxxx + 2zσhxxy + z2hxxy)

)
(s, x, y)

− ((hy + bx)hx + σσxhxx + zσxhxy) (s, x, y). (3.9)

g̃(x) := g′(x) + (T − t)hx(T, x, g(x)),

g̃ := min
x∈R

g̃(x), g̃ := max
x∈R

g̃(x), g̃A := min
x∈A

g̃(x), g̃
A
:= max

x∈A
g̃(x),

h̃(t) := min
[t,T ]×R3

h̃(s, x, y, z), h̃(t) := max
[t,T ]×R3

h̃(s, x, y, z).

The following theorem corrects Theorem 3.6 in [3].

Theorem 3.11. (Second-order conditions [3, Theorem 3.6]) Fix some t ∈ (0, T ], assume that h

does not depend on z, that Assumptions (X), (L) and (D1) hold and set K := ky + kb. If there

11



exists A ∈ B(R) such that P(XT ∈ A|Ft) > 0 and one of the two following assumptions holds

(̃H+)





g̃e−sgn(g̃)KT + h̃(t)

∫ T

t
e−sgn(h̃(s))Ks(T − s)ds ≥ 0

g̃Ae−sgn(g̃A)KT + h̃(t)

∫ T

t
e−sgn(h̃(s))Ks(T − s)ds > 0,

(̃H−)





g̃e−sgn(g̃)KT + h̃(t)

∫ T

t
e−sgn(h̃(s))Ks(T − s)ds ≤ 0

g̃
A
e−sgn(g̃

A
)KT + h̃(t)

∫ T

t
e−sgn(h̃(s))Ks(T − s)ds < 0,

then the first component Yt of the solution of BSDE (2.4) has a law which is absolutely continuous

with respect to the Lebesgue measure.

Example 3.12. We go back to Example 3.10 with g ≡ Id. and h(s, x, y, z) = (s− 2)x which does

not depend on z. On the one hand, we know from (3.8) that for all t ∈ (0, 1], the law of Yt has a

density except when t = 0 or t = 2−
√
3. On the other hand, our conditions in Theorem 3.11 read:

g̃ = g̃ = g̃(x) = t, h̃(t, x, y) = h̃(t) = h̃(t) = −1, K = 0,

from which (̃H+) becomes:

t−
∫ 1

t
(1− s)ds = t− (1− t) +

1

2
− t2

2
= − t

2

2
+ 2t− 1

2
> 0,

and (̃H−) becomes:

t−
∫ 1

t
(1− s)ds = t− (1− t) +

1

2
− t2

2
= − t

2

2
+ 2t− 1

2
< 0.

We hence conclude, in view of Theorem 3.11, that the law of Yt has a density with respect to the

Lebesgue measure for every t ∈ (0, 1]\{2 −
√
3}.

In this particular example, notice that Theorem 3.11 is more accurate than Theorem 3.7 since

Condition (̃H+) and Condition (̃H−) are sufficient and necessary to obtain the existence of a

density for Y . Finally, we emphasize once more that the counterpart of Condition (̃H−) in [3,

Theorem 3.6] gives that whenever 2t − 1 < 0, Yt admits a density, which is clearly satisfied for

t = 2−
√
3. However we know that Y2−

√
3 = 0.

3.3 Existence of a density for the control variable Z

We now turn to the problem of existence of a density for the marginal laws of Z. This question

was studied in [1] when the generator is linear in z, that is to say h(t, x, y, z) = h̃(t, x, y) + αz,

which is from our point of view a too stringent assumption since by a Girsanov transformation

this equation basically reduces to a BSDE with a generator which does not depend on z. We focus

here on a general function h satisfying Assumption (L). Consider the two following assumptions

(C+) hx, hxx, hyy, hzz, hxy ≥ 0 and hxz = hyz = 0,

(C-) hx, hxx, hyy, hzz, hxy ≤ 0 and hxz = hyz = 0.

12



Let t ∈ (0, T ] and A ∈ B(R). We set:

g′′ := min
x∈S(XT )

g′′(x), g′′A := min
x∈S(XT )∩A

g′′(x), g′ := min
x∈S(XT )

g′(x), g′A := min
x∈S(XT )∩A

g′(x),

hxx(t) := min
s∈[t,T ],(x,y,z)∈R3

hxx(s, x, y, z).

Theorem 3.13. Let Assumption (X), (L) and (D2) hold. Let 0 < t ≤ T and assume moreover

• There exist (a, a) ∈ (0,+∞), such that a ≤ DrXu ≤ a, for all 0 < r < u ≤ T ,

• There exists b ≥ 0, such that 0 ≤ D2
r,tXu ≤ b, for all 0 < r, t < u ≤ T ,

• (C+) holds

• hxy = 0 or (hxy ≥ 0 and g′ ≥ 0, L(XT )− a.e.).

If there exists a set A ∈ B(R) such that P(XT ∈ A|Ft) > 0 and such that

1{g′′<0}g
′′a2 + g′1{g′<0}b+ (1{g′′≥0}g

′′ + hxx(t)(T − t))a2 ≥ 0,

and

(1{g′′A<0}g
′′Aa2 + g′A1{g′<0}b) + (1{g′′A≥0}g

′′A + hxx(t)(T − t))a2 > 0,

then, the law of Zt has a density with respect to the Lebesgue measure.

Proof. Under the assumptions of Theorem 3.13, we obtain for 0 < r, s < t ≤ T :

D2
r,sYt = g′′(XT )DrXTDsXT + g′(XT )D

2
r,sXT −

∫ T

t
D2

r,sZudWu

+

∫ T

t
[hx(u,Θu)D

2
r,sXu + hxx(u,Θu)DrXuDsXu + hxy(u,Θu)DsXuDrYu

+ hy(u,Θu)D
2
r,sYu + hxy(u,Θu)DrXuDsYu + hyy(u,Θu)DrYuDsYu

+ hz(u,Θu)D
2
r,sZu + hzz(u,Θu)DrZuDsZu]du.

Let P̃ be the probability equivalent to P such that

dP̃

dP
= exp

(∫ T

0
hz(s,Θs)dWs −

1

2

∫ T

0
|hz(s,Θs)|2 ds

)
, (3.10)

where hz is bounded thanks to Assumption (L). Under P̃ defined by (3.10), we obtain:

D2
r,sYt = EP̃

[
g′′(XT )DrXTDsXT + g′(XT )D

2
r,sXT

+

∫ T

t
[hx(u,Θu)D

2
r,sXu + hxx(u,Θu)DrXuDsXu + hxy(u,Θu)DsXuDrYu

+ hy(u,Θu)D
2
r,sYu + hxy(u,Θu)DrXuDsYu + hyy(u,Θu)DrYuDsYu

+ hzz(u,Θu)DrZuDsZu]du
∣∣∣Ft

]
.
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By standard linearization techniques, we obtain:

D2
r,sYt = EP̃

[
e
∫ T

t
hy(u,Θu)du(g′′(XT )DrXTDsXT + g′(XT )D

2
r,sXT )

+

∫ T

t
e
∫ u

t
hy(v,Θv)dv[hx(u,Θu)D

2
r,sXu + hxx(u,Θu)DrXuDsXu

+ hxy(u,Θy)(DrXuDsYu +DsXuDrYu)

+ hyy(u,Θu)DrYuDsYu + hzz(u,Θu)DrZuDsZu]du
∣∣∣Ft

]
.

Then, using Remark 3.9, Lemma 3.4 and our assumptions we obtain:

e
∫ T
t

hy(u,Θu)du(g′′(XT )DrXTDsXT + g′(XT )D
2
r,sXT )

+

∫ T

t
e
∫ u

t
hy(v,Θv)dv [hx(u,Θu)D

2
r,sXu + hxx(u,Θu)DrXuDsXu

+ hxy(u,Θy)(DrXuDsYu +DsXuDrYu)

+ hyy(u,Θu)DrYuDsYu + hzz(u,Θu)DrZuDsZu]du

≥ e
∫ T
t

hy(u,Θu)du
(
1{g′′<0}g

′′a2 + g′1{g′<0}b+ (1{g′′≥0}g
′′ + hxx(t)(T − t))a2

)
≥ 0.

We deduce that:

D2
r,sYt ≥ EP̃

[
e
∫ T
t

hy(u,Θu)du
1XT∈A(g

′′(XT )DrXTDsXT + g′(XT )D
2
r,sXT )

+ 1XT∈A

∫ T

t
e−K(u−t)[hxx(u,Θu)a

2]du
∣∣∣Ft

]

≥ e−KT
(
1{g′′A<0}g

′′Aa2 + g′A1{g′<0}b
)
P̃(XT ∈ A|Ft)

+ e−KT
(
1{g′′A≥0}g

′′A + hxx(t)(T − t)
)
a2P̃(XT ∈ A|Ft).

Using the fact that D2Yt is symmetric, the chain rule formula, (3.2) and (3.3) and the fact that

limsրtD
2
r,sXt = σ′(t,Xt)DrXt, we have that limsրtD

2
r,sYt = DrZt, from which we deduce that

DrZt > 0, P− a.s. Then according to Bouleau and Hirsch’s Theorem, we conclude that the law of

Zt has a density with respect to the Lebesgue measure.

Remark 3.14. Notice that the sign assumption on D2X can be obtained under the following

sufficient conditions.

(X+) For any t ∈ [0, T ], the maps x 7−→ b(t, x) and x 7−→ σ(t, x) are respectively in C2(R) and

C3(R), and there exists c > 0 such that

σ ≥ c > 0, σ′ ≥ 0, σ′′, σ′′′ ≤ 0 and [σ, [σ, b]] ≥ 0,

where [b, σ] denotes the Lie bracket between b and σ defined by [b, σ] := b′σ + σ′b.

(X−) For any t ∈ [0, T ], the maps x 7−→ b(t, x) and x 7−→ σ(t, x) are respectively in C2(R) and

C3(R), and there exists c < 0 such that

σ ≤ c < 0, σ′ ≤ 0, σ′′, σ′′′ ≥ 0 and [σ, [σ, b]] ≤ 0.
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Indeed, according to the first step of the proof of Theorem 4.3 in [1], Condition (X+) (resp. (X−))

ensures that D2X is non-negative (resp. non-positive).

Remark 3.15. One can provide an alternative version of the previous result, whose proof follows

the same lines as the one of Theorem 3.13. Fix t in (0, T ], let Assumptions (L), (X) and (D2)

hold and assume that there exists A ∈ B(R) such that P(XT ∈ A| Ft) > 0, and such that one of

the two following conditions is satisfied:

a) (X+) and (C+) hold true and g′′ ≥ 0, g′′|A > 0 and g′ ≥ 0, L(XT )-a.e.

b) (X−) and (C−) hold true and g′′ ≤ 0, g′′|A < 0 and g′ ≤ 0, L(XT )-a.e.,

then, for all t ∈ (0, T ], the law of Zt has a density with the respect to Lebesgue measure.

When Assumption (M) holds, Theorem 3.13 takes a different form as shown below in Theorem

3.16, mainly because of Proposition 3.6. Indeed, consider the following assumptions:

(C̃+) hzz ≥ 0 and hxz = hyz ≡ 0.

(C̃−) hzz ≤ 0 and hxz = hyz ≡ 0.

Under Assumption (C̃+) or (C̃−), we recall that:

DrZt = g′′(XT )|f ′(T,WT )|2 + g′(Xt)f
′′(T,WT )

+

∫ T

t

[
hx(u,Θu)f

′′(u,Wu) + hy(u,Θu)D
2
r,tYu

]
du

+

∫ T

t

[
|f ′(u,Wu)|2hxx(u,Θu) + (hxy(u,Θu)DrYu +DtYuhxy(u,Θu)) f

′(u,Wu)
]
du

+

∫ T

t

[
hyy(u,Θu)DtYuDrYu︸ ︷︷ ︸

=|Zu|2
+DtZuDrZu︸ ︷︷ ︸

=|DrZu|2
hzz(u,Θu)

]
du−

∫ T

t
D2

r,tZudW̃u,

with W̃ := W −
∫ ·
0 hz(s,Θs)ds. We set θ = (x, y, z), and

h̃(t, w, x, y, z, z̃) := hxx(t, θ)|f ′(t, w)|2 + hx(t, θ)f
′′(t, w) + (hyy(t, θ)z + 2hxy(t, θ)f

′(t, w))z

+ hy(t, θ)z̃,

h̃(t) = min
(s,w,x,y,z,z̃)∈[t,T ]×R5

h̃(s,w, x, y, z, z̃), h̃(t) = max
(s,w,x,y,z,z̃)∈[t,T ]×R5

h̃(s,w, x, y, z, z̃).

Theorem 3.16. Assume that (M), (L) and (D2) are satisfied and that there exists A ∈ B(R) such

that P(XT ∈ A|Ft) > 0 and one of the two following assumptions holds:

a) Assumption (C̃+), ((g′ ◦ f)f ′)′ + (T − t)h̃(t) ≥ 0 and ((g′ ◦ f)f ′)′A + (T − t)h̃(t) > 0.

b) Assumption (C̃−), ((g′ ◦ f)f ′)′ + (T − t)h̃(t) ≤ 0 and ((g′ ◦ f)f ′)′A + (T − t)h̃(t) < 0.

Then, the law of Zt is absolutely continuous with respect to the Lebesgue measure on R.

Proof. Using Proposition 3.6, we recall that:

DrZt = g′′(XT )|f ′(T,WT )|2 + g′(Xt)f
′′(T,WT )

+

∫ T

t
h̃(u,Wu,Xu, Yu, Zu,DrZu) + |DrZu|2hzz(u)du −

∫ T

t
D2

r,tZudW̃u,

where W̃ := W −
∫ ·
0 hz(u,Θu)du. Then the proof follows exactly the same line as the one of

Theorem 3.13.
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4 The quadratic case

We now turn to the quadratic case and provide an extension of both Theorem 3.7 and Theorem

3.13. Note however that the assumptions of these theorems do not find immediate counterparts

in the quadratic setup since the latter involves the Lipschitz constant of h with respect to the

z variable (see Remark 4.5). We also emphasize that existence of densities for the Y and Z

components in the quadratic case that we consider here was open until now. We first make precise

the quadratic growth setting together with existence, uniqueness and Malliavin differentiability

results for these equations in the next section. Then, we investigate respectively in Sections 4.2

and 4.3 the existence of density for respectively Y and Z.

4.1 Generalities on quadratic FBSDEs

In contadistinction to the previous section, we will now assume that h exhibits quadratic growth

in the z variable. As noted in the introduction, this case is particularly useful for applications,

especially in Finance where any pricing and hedging problem on an incomplete market which can

be translated into a BSDE analysis will lead to a quadratic BSDE. The precise assumption for

dealing with quadratic BSDEs is given as:

(Q) (i) g : R −→ R is bounded.

(ii) h : [0, T ] ×R3 −→ R is such that:

⊲ There exists (K,Kz ,Ky) ∈ (R∗
+)

3 such that for all (t, x, y, z) ∈ [0, T ]× R3

|h(t, x, y, z)| ≤ K(1 + |y|+ |z|2), |hz| (t, x, y, z) ≤ Kz(1 + |z|), |hy| (t, x, y, z) ≤ Ky.

⊲ There exists C > 0 such that for all (t, x, y, z1, z2) ∈ [0, T ]× R4

|h(t, x, y, z1)− h(t, x, y, z2)| ≤ C(1 + |z1|+ |z2|)|z1 − z2|. (4.1)

(iii)
∫ T
0 |h(s, 0, 0, 0)|2ds < +∞.

Existence and uniqueness of a solution triplet (X,Y,Z) under Assumption (Q) has been obtained

in [18]. More precisely:

Proposition 4.1 ([18]). (Existence and uniqueness of BSDEs) Under Assumptions (X) and (Q),

there exists a unique solution (X,Y,Z) in S2 × S∞ ×H2
BMO.

Note that Condition (4.1) on the generator h in Assumption (Q) in the one that ensures uniqueness

of the solution. Hence, it can be dropped and one can then consider the maximal solution Y of

the BSDE, for which our proofs still apply.

Concerning the Malliavin differentiability of the processes (X,Y,Z) it has been obtained in the

quadratic case in [2] under the Assumptions (D1) and (D2) (that are defined in Section 3.1). Note

that Proposition 3.3 still holds true if Assumption (L) is replaced by Assumption (Q). However,

although the above proposition is completely proved in [22] in the Lipschitz case, we did not find

a proper reference in the quadratic case, except for [14] which proves the result under Assumption

(Q), with the exception that u is only shown to be in C1,1. Nonetheless, one can still obtain the

required result by proving that Theorem 3.1 of [22] still holds for a BSDE with a driver which is

uniformly Lipschitz in y and stochastic Lipschitz in z with a Lipschitz process in H2
BMO (which
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is exactly the case of the BSDE satisfied by the Malliavin derivative of Y ). This can be achieved

by following exactly the steps of the proof of Theorem 3.1 in [22], where the a priori estimates of

their Lemma 2.2 have to be replaced by those given in Lemma A.1 of [14]. As in the Lipschitz

case, Relation (3.3) still holds true under (Q). In addition, as for Proposition 3.3, the proof of

Lemma 3.4 can be extended to the quadratic setting. Finally, Propositions 3.2 and 3.6 are valid if

one replaces Assumption (L) by Assumption (Q).

Proposition 4.2. (Malliavin differentiabiliy) Under (X), (Q) and (D1), we have for any t ∈ [0, T ]

that (Xt, Yt) ∈ (D1,2)2, Zt ∈ D1,2 for almost every t, and for all 0 < r ≤ t ≤ T :





DrXt = σ(r,Xr) +

∫ t

r
bx(s,Xs)DrXsds+

∫ t

r
σx(s,Xs)DrXsdWs

DrYt = g′(XT )DrXT +

∫ T

t
H(s,DrXs,DrYs,DrZs)ds −

∫ T

t
DrZsdWs,

(4.2)

where H(s, x, y, z) := hx(s,Xs, Ys, Zs)x+ hy(s,Xs, Ys, Zs)y + hz(s,Xs, Ys, Zs)z.

4.2 Existence of a density for the Y component

Theorem 4.3. Fix t ∈ (0, T ] and assume that (X), (Q) and (D1) hold. If there is A ∈ B(R) such

that P(XT ∈ A | Ft) > 0 and one of the following assumptions holds (see Definitions (3.6)-(3.7))

(Q+) g′ ≥ 0 and g′|A > 0, L(XT )−a.e. and h(t) ≥ 0,

(Q−) g′ ≤ 0, g′|A < 0, L(XT )−a.e. and h(t) ≤ 0,

then Yt has a law absolutely continuous with respect to the Lebesgue measure.

Proof. To simplify the notations for any s in [0, T ], we set Θs := (Xs, Ys, Zs). We set K :=

kb∨ky∨kσ. We assume that (Q+) is satisfied (the proof with (Q-) follows the same lines, so we omit

it). According to Bouleau-Hirsch’s criterion, it is enough to show that γYt :=
∫ T
0 |DrYt|2dr > 0,

P-a.s. As in the proof of [3, Theorem 3.6], we have for 0 ≤ r ≤ t ≤ T , that DrYt writes down as:

DrYt = g′(XT )DrXT +

∫ T

t
hx(s,Θs)DrXs + hy(s,Θs)DrYsds+

∫ T

t
DrZsdWs. (4.3)

From (4.3), and following the expression of γYt given in [3, page 271], we deduce that

γYt =

(
E

[
g′(XT )ζTψT +

∫ T

t
ψshx(s,Θs)ζsds|Ft

])2

(ψ−1
t )2

∫ t

0
(ζ−1

r σ(r,Xr))
2dr,

with

ψtζt = e
∫ t

0
(bx(s,Xs)+hy(s,Θs)+σx(s,Xs)hz(s,Θs))ds︸ ︷︷ ︸

=:Et

e
∫ t

0
(σx(s,Xs)+hz(s,Θs))dWs− 1

2

∫ t

0
(σx(s,Xs)+hz(s,Θs))2ds︸ ︷︷ ︸

=:Mt

.

Let Q the probability measure equivalent to P with density dQ
dP :=MT . Indeed, M is a martingale

as
∫ ·
0(σx(s,Xs) + hz(s,Θs))dWs is a BMO martingale due to the boundedness of σx (by (X)) and

the fact that |hz(s,Θs)| ≤ C(1 + |Zs|) (by (Q)) and from the BMO property of
∫ ·
0 ZsdWs (by

Proposition 3.1). We therefore have:

E

[
g′(XT )ψT ζT +

∫ T

t
ψshx(s,Θs)ζsds

∣∣∣Ft

]
=MtE

Q

[
g′(XT )ET +

∫ T

t
hx(s,Θs)Esds

∣∣∣Ft

]
.
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Using (Q+), we know that:

g′(XT )ET +

∫ T

t
hx(s,Θs)Esds ≥ gET + h(t)

∫ T

t
Esds ≥ 0.

Thus,

E

[
g′(XT )ψT ζT +

∫ T

t
ψshx(s,Θs)ζsds

∣∣∣Ft

]

≥MtE
Q

[
1XT∈A

(
g′(XT )ET +

∫ T

t
hx(s,Θs)Esds

) ∣∣∣Ft

]

≥Mt

(
gAe−2KTEQ

[
1XT∈Ae

−K
∫ T

0
|hz(s,Θs)|ds∣∣Ft

]

+ h(t)e−2KT (T − t)EQ
[
1XT∈Ae

−K
∫ T

0
|hz(s,Θs)|ds∣∣Ft

] )

≥Mt

(
gAe−2KTEQ

[
1XT∈Ae

−K
√
T
√

∫ T

0
|hz(s,Θs)|2ds∣∣Ft

]

+ h(t)e−2KT (T − t)EQ
[
1XT∈Ae

−K
√
T
√

∫ T
0 |hz(s,Θs)|2ds∣∣Ft

])
,

where the last inequality is due to Cauchy-Schwarz inequality. Besides, according to Assumption

(Q), |hz(s,Θs)| ≤ C(1 + |Zs|). Then, we deduce that
∫ T
0 |hz(s,Θs)|2ds < +∞, P−a.s., since

Z ∈ H2. Hence, Mt > 0, P−a.s. Given that the law of XT is absolutely continuous with respect

to the Lebesgue measure, we deduce that E
[
g′(XT )ψT ζT +

∫ T
t ψshx(s,Θs)ζsds

∣∣∣Ft

]
> 0, P − a.s.

We conclude using Theorem 2.1.

Remark 4.4. Similarly to Remark 3.9, the proof of Theorem 4.3 shows that under (X), (Q),

(D1) and if g′ ≥ 0 and h(t) ≥ 0 (resp. g′ ≤ 0 and h(t) ≤ 0) for t ∈ [0, T ], then for all

0 < r ≤ t ≤ T , DrYt ≥ 0 (resp. DrYt ≤ 0) and the inequality is strict if there exists A ∈ B(R)
such that P(XT ∈ A|Ft) > 0 and g′|A > 0 (resp. g′|A < 0).

Remark 4.5. Conditions (Q+) and (Q−) are stronger than (H+) and (H−), due to the un-

boundedness of hz, which prevents us from reproducing the same proof than in [3]. Indeed, in this

framework the quantity appearing for instance in (H+) becomes:

ge−2Ksgn(g)T e−Ksgn(g)
∫ T
0 |hz(s)|ds + h(t)e−2Ksgn(h(t))T

∫ T

t
e−Ksgn(h(t))

∫ s

0
|hz(s)|ds,

whose sign for every K ≥ 0 depends strongly on those of g′ and hx. This is why we must use the

stronger conditions (Q+) and (Q−).

Remark 4.6. In [8, Corollary 3.5] comonotonicty conditions on the data of a BSDE under As-

sumption (Q) are given so that Zt ≥ 0, P−a.s., ∀t ∈ [0, T ]. In addition, the authors claim that

strict comonotonicity entails that Zt > 0, which implies by Bouleau-Hirsch criterion that the law

of Yt has a density with respect to the Lebesgue measure. However, we do not understand their

proof and it is not true that an increasing mapping which is differentiable has a positive derivative

everywhere (even if one relaxes it by asking for a positive derivative Lebesgue-almost everywhere)

and one needs an extra assumption to prove that the derivative does not vanish. Indeed, take any

closed set of positive Lebesgue measure with empty interior (for instance the Smith-Volterra-Cantor

set on R). By Whitney’s extension Theorem, there exists a differentiable increasing map whose

derivative vanishes on this set.
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4.3 Existence of a density for the control variable Z

In this section, we obtain existence results for the density of Z under Assumption (Q). We actually

have exactly the same type of results as in the Lipschitz case with similar proofs, which highlights

the robustness and flexibility of our approach. Let us detail first the changes that we have to make.

Under (Q), using the fact that for all s ∈ [0, T ] |hz(s,Θs)| ≤ C(1 + |Zs|) and according to

Proposition 3.1 we deduce that
∫ ·
0 hz(s,Θs)dWs is a BMO-martingale. Then, according to Theorem

2.3 in [17], the stochastic exponential of
∫ ·
0 hz(s,Θs)dWs is a uniformly integrable martingale and

we can apply Girsanov’s Theorem. We also emphasize that in (Q), g is not assumed to be twice

continuously differentiable. Indeed, to recover the BMO properties linked to quadratic BSDEs

(and thus in order to be able to apply the above reasoning), g needs to be bounded, which is

incompatible with g convex (or concave). Nevertheless, there exist terminal conditions g which

are twice differentiable almost everywhere on the support of the law of XT (which is some closed

subset of R), such that their second-order derivative have a given sign there. As an example,

take X = W and g(x) := f(x)1x∈[a,b] + f(a)1x≤a + f(b)1x≤b with f a twice differentiable convex

function and a, b ∈ R.

Theorem 4.7. Let Assumptions (X), (Q) and (D2) hold. Let 0 < t ≤ T and assume moreover

• There exist (a, a) s.t., 0 < a ≤ DrXu ≤ a, for all 0 < r < u ≤ T .

• There exists b s.t., 0 ≤ D2
r,sXu ≤ b, for all 0 < r, s < u ≤ T .

• (C+) holds and hy ≥ 0.

• hxy = 0 or (hxy ≥ 0 and g′ ≥ 0, L(XT )-a.e.).

If there exists A ∈ B(R) such that P(XT ∈ A|Ft) > 0 and such that:

1{g′′<0}g
′′a2 + g′1{g′<0}b+ (1{g′′≥0}g

′′ + hxx(t)(T − t))a2 ≥ 0,

and

(1{g′′A<0}g
′′Aa2 + g′A1{g′<0}b) + (1{g′′A≥0}g

′′A + hxx(t)(T − t))a2 > 0,

then, the law of Zt has a density with respect to the Lebesgue measure.

Proof. As in the proof of Theorem 3.13, we notice that for all 0 < r, t ≤ s ≤ T :

D2
r,sYt = EP̃

[
g′′(XT )DrXTDsXT + g′(XT )D

2
r,sXT

+

∫ T

t
[hx(u,Θu)D

2
r,sXu + hxx(u,Θu)DrXuDsXu + hy(u,Θu)DrYuDsYu

+ hyy(u,Θu)D
2
r,sYu + hzz(u,Θu)DrZuDsZu]du

∣∣∣Ft

]
,

where P̃ is the equivalent probability measure to P with density

dP̃

dP
:= exp

(∫ T

0
hz(u,Θu)dWu − 1

2

∫ T

0
|hz(u,Θu)|2 du

)
,

given that
∫ ·
0 hz(u,Θu)dWu is a BMO-martingale and using Theorem 2.3 in [17]. Then the proof

is similar to that of Theorem 3.13.
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Remark 4.8. In order to satisfy the condition in Theorem 4.7, there are basically two types of

sufficient conditions

• First of all, if the support of the law of XT is bounded from above, then one can take g to

continuously differentiable everywhere, non-decreasing, convex and bounded on this support.

Then it suffices to take h to be convex in x as well.

• However, when the support of the law of XT is no longer bounded from above, then it is no

longer possible to find g which is non-decreasing, bounded and convex on this support. We

must therefore allow g′′ to become non-positive, and the role of hxx becomes then crucial, as

it has to be sufficiently positive in order to balance g′′. As an example, take X := W . Then

a = a = 1 and b = 0. One can choose g(x) := 1
1+x2 . Then, there exists a positive constant

M such that −2 ≤ g′′(x) ≤ M and by choosing h such that h satisfies the assumptions in

Theorem 4.7 and t ∈ (0, T ) such that hxx(t)(T − t) ≥ 2, we deduce that Zt admits a density.

We give also a theorem under Assumption (M):

Theorem 4.9. Assume that (M), (Q) and (D2) are satisfied and that there exists A ∈ B(R) such

that P(XT ∈ A|Ft) > 0 and one of the two following assumptions holds:

a) Assumption (C̃+), ((g′ ◦ f)f ′)′ + (T − t)h̃(t) ≥ 0 and ((g′ ◦ f)f ′)′A + (T − t)h̃(t) > 0.

b) Assumption (C̃−), ((g′ ◦ f)f ′)′ + (T − t)h̃(t) ≤ 0 and ((g′ ◦ f)f ′)′A + (T − t)h̃(t) < 0.

Then, the law of Zt is absolutely continuous with respect to the Lebesgue measure.

The proof is the same as the proof of Theorem 3.16 using the BMO property of
∫ ·
0 ZsdWs, we

therefore omit it. We now turn to the simplest case of quadratic growth BSDE and verify that it

is covered by our result.

Example 4.10. Let us consider the following BSDE

Yt = g(WT ) +

∫ T

t

1

2
|Zs|2ds−

∫ T

t
ZsdWs,

where g is bounded. According to Theorem 4.7 with a = a = 1, b = 0 and hxx = 0, we deduce

that for all t ∈ (0, T ], the law of Zt has a density with respect to the Lebesgue measure if g′′ ≥ 0,

λ(dx)-a.e. and if there exists A ∈ B(R) with positive Lebesgue measure such that g′′|A > 0.

We emphasize that, as a sanity check, this can be verified by direct calculations. Indeed, using the

fact that if F ∈ D1,2 then Dr(E[F |Ft]) = E[DrF |Ft]1[0,t)(r) (see [24, Proposition 1.2.4]) we deduce

that if 0 ≤ r < t ≤ T then:

DrYt =
E[g′(WT )e

g(WT )|Ft]

E[eg(WT )|Ft]
,

which does not depend on r. Then according to Proposition 3.4, Zt =
E[g′(WT )eg(WT )|Ft]

E[eg(WT )|Ft]
.

Take 0 < r < t ≤ T , then:

DrZt =
E[g′′(WT )e

g(WT ) + |g′(WT )|2eg(WT )|Ft]E[eg(WT )|Ft]− |E[g′(WT )e
g(WT )|Ft]|2

E[eg(WT )|Ft]
.

Using Cauchy-Schwarz inequality, if g′′ ≥ 0, λ(dx)-a.e. and if there exists A ∈ B(R) with positive

Lebesgue measure such that g′′|A > 0, we deduce that for all t ∈ (0, T ], Zt has a density with respect

to the Lebesgue measure by Theorem 2.1.
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5 Density estimates for the marginal laws of Y and Z

Up to now, the density estimates obtained in the literature relied mainly on the fact that the

framework considered implied that the Malliavin derivative of Y was bounded. Hence, using the

Nourdin-Viens’ formula (or more precisely their Corollary 3.5 in [23]), it could be showed that the

law of Y has Gaussian tails. Although such an approach is perfectly legitimate from the theoretical

point of view, let us start by explaining why, as pointed out in the introduction, we think that

this is not the natural framework to work with when dealing with BSDEs. Consider indeed the

following example.

Example 5.1. Let us consider the FBSDE (2.4), with T = 1, g(x) := x3, h(t, x, y, z) := 3x,

b(t, x) = 0, σ(t, x) = 1 and X0 = 0. Then, simple computations show that the unique solution is

given by

Xt =Wt, Yt =W 3
t + 6Wt(1− t), Zt = 3W 2

t + 6(1− t).

Then, both Yt and Zt have a law which is absolutely continuous with respect to the Lebesgue measure,

for every t ∈ (0, 1], but neither Yt nor Zt has Gaussian tails.

Moreover, when it comes to applications dealing with generators with quadratic growth, assuming

that the Malliavin derivative of Y is bounded implies that the process Z itself is bounded as Zt =

DtYt, which is seldom satisfied in applications, since in general, one only knows that Z ∈ H2
BMO.

One of the main applications of the results we obtain in this section is the precise analysis of the

error in the truncation method in numerical schemes for quadratic BSDEs, introduced in [13] and

studied in [6]. We recall that according to Proposition 3.3 there exists a function v : [0, T ]×R 7−→ R

in C1,2 such that Yt = v(t,Xt) and Zt = vx(t,Xt)σ(t,Xt). Since we want to study the tails of the

laws of Y and Z, we will assume from now on that the support of these laws is R, which implies

that neither v nor v′ is bounded from below or above. Moreover, we emphasize that throughout

this section, we will assume that Yt and Zt do have a law which is absolutely continuous, so as to

highlight the conditions needed to obtain the estimates. Throughout this section we assume that

Xt =Wt in (2.4) (that is X0 = 0, σ ≡ 1, b ≡ 0).

5.1 Preliminary results

We will have to study the asymptotic growth of v and vx in the neighborhood of ±∞. To this end,

we introduce for any measurable function f : R −→ R the following two kinds of growth rates:

αf := inf

{
α > 0, lim sup

|x|→+∞

∣∣∣∣
f(x)

xα

∣∣∣∣ < +∞
}
, αf := inf

{
α > 0, lim inf

|x|→+∞

∣∣∣∣
f(x)

xα

∣∣∣∣ < +∞
}
.

Lemma 5.2. Let f ∈ C1(R). Assume that for all x ∈ R, f ′(x) > 0. If 0 < αf < +∞ then for all

positive constant 0 < η < αf :

αf(−1) ≤ 1

αf − η
,

where f (−1) is the inverse function of f .

Proof. Using the definition of αf , we deduce that for all η > 0,

lim inf
|x|→+∞

∣∣∣∣
f(x)

x
αf−η

∣∣∣∣ = lim
|x|→+∞

∣∣∣∣
f(x)

x
αf−η

∣∣∣∣ = +∞.
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Since f and f (−1) are increasing and unbounded from above and below, we deduce that there

exists x > 0 such that for all x ≥ x, f(x) and f (−1) are positive. Then, for all M > 0, there exists

x0 ≥ x such that for all x ≥ x0 > 0 and for all y ≥Mx
αf−η

0 ∨ x

f(x) ≥Mx
αf−η ⇐⇒ f

(
(yM−1)

1
αv−η

)
≥ y ⇐⇒ (yM−1)

1
αf−η ≥ f (−1)(y).

This implies directly that lim sup
y→+∞

∣∣∣∣∣
f(−1)(y)

y

1
αf−η

∣∣∣∣∣ < +∞. The proof is similar when y goes to −∞.

It is rather natural to expect that for well-behaved functions f ∈ C1(R), αf = αf and αf = αf ′ +1.

However, the situation is unfortunately not that clear. First of all, this may not be true if f is not

monotone. Indeed, let f(x) := x2 sin(x), then αf = αf = 2. Furthermore, the strict monotonicity

of f is not sufficient either. Without being completely rigorous, let us describe a counterexample.

Consider a function f defined on R+, equal to the identity on [0, 1], which then increases as x4

until it crosses x 7−→ x2 for the first time, which then increases as x1/2 until it crosses x 7−→ x

for the first time and so on. Finally, extend it by symmetry to R−. Then, it can be checked that

αf = 2, αf = 1, αf ′ = 3, αf ′ = 0.

A nice sufficient condition for the aforementioned result to hold is that f ′ is a regularly varying

function (see [5] and [29]).

Lemma 5.3. Assume that f ′ is equivalent in +∞ (resp. in −∞) to a regularly varying function

with Karamata’s decomposition xβL1(x) where L1 is slowly varying (resp. xβL2(x) where L2 is

slowly varying) and where β > 0. Then

(i) f is equivalent in +∞ (resp. in −∞) to a regularly varying function with Karamata’s decom-

position xβ+1L̃1(x) where L̃1 is slowly varying (resp. xβ+1L̃2(x) where L̃2 is slowly varying).

(ii) αf = αf = αf ′ + 1 = αf ′ + 1.

Proof. By Karamata’s Theorem (see Theorem 1.5.11 in [5] with σ = 1), for any x0 ∈ R:

xf ′(x)
f(x)− f(x0)

−→ β + 1, when x −→ +∞. (5.1)

In addition, f ′ is equivalent to a regularly varying function with Karamata’s decomposition xβL1(x)

when x −→ +∞, hence in view of (5.1), there exists a function L̃1 (equivalent to a constant times

L1 at +∞) slowly varying such that f is equivalent when x −→ +∞ to a regularly varying function

with Karamata’s decomposition xβ+1L̃1(x). The same result holds when x −→ −∞.

We now show (ii). According to Proposition 1.3.6 (v) in [5] and (i), we deduce that:

αf = β + 1 = αf and αf ′ = β = αf ′ .

5.2 A general estimate

From now on, for a map (t, x) 7−→ v(t, x), v′(t, x) will denote for simplicity the derivative of v

with respect to the space variable. Before enonciating a general theorem which gives us density

estimates for the tails of the law of random variables of the form v(t,Wt) and will be used to obtain

estimates for the laws of Yt and Zt, we set some constants in order to simplify the notations in

Theorem 5.4 below.
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List of constants Let α ∈ (0,+∞), α′ ∈ R+ and α̃ > 0. For ε > 0, we set

Cε,v,α := sup
x∈R, t∈[0,T ]

|v(t, x)|
1 + |x|α+ε

, δα′ := max(1, 2α
′

), Ξα′ :=
α′Γ

(
1+α′

2

)

2
√
π

, µ(α̃) :=

∫

R

φ(z)

1 + |z|α̃ dz,

Dα′ := max

(
1 + δα′Ξα′ +

δ2α′

2

(
Ξα′ + (1 + α′)−1

)2
,
1

2
+

δα′

1 + α′

)
,

where Γ is the usual Euler function and φ the distribution function of the normal law, defined by

Γ(x) :=

∫ +∞

0
e−ttx−1dt, x > 0, and φ(x) :=

1√
2π
e−

x2

2 , x ∈ R.

We emphasize that the following theorem can be applied in much more general cases, and it is

clearly not limited to the context of BSDEs. It could for instance be used to provide non-Gaussian

tail estimates for the law of solutions to some SDEs. Therefore, it has an interest of its own.

Theorem 5.4. Fix t ∈ (0, T ]. Let v : [0, T ] × R −→ R in C1,1 and let Pt := v(t,Wt). Assume

furthermore that Pt ∈ L1(P), that v is unbounded in x both from above and from below, that v′ > 0,

αv ∈ (0,+∞), αv′ < +∞ and that there exist α̃ > 0 and K > 0 such that:

1

v′(t, x)
≤ K(1 + |x|α̃), for all x ∈ R. (5.2)

Then, the law of Pt has a density with respect to the Lebesgue measure, denoted by ρt, and for all

ε, ε′ > 0 and for every y ∈ R

ρt(y) ≤
E[|Pt − E[Pt]|]

2M(ε′)t

(
1 + |y|2α̃(αv(−1)+ε′)

)
exp

(
−
∫ y−E[Pt]

0

(M ′(ε, ε′)t)−1xdx

1 + |x+ E[Pt]|2(αv′+ε)(α
v(−1)+ε′)

)
,

(5.3)

and

ρt(y) ≥
(2M ′(ε, ε′)t)−1E[|Pt − E[Pt]|]

1 + |y|2(αv′+ε)(α
v(−1)+ε′)

exp


−

∫ y−E[Pt]

0

x
(
1 + |x+ E[Pt]|2α̃(αv(−1)+ε′)

)
dx

M(ε′)t


 ,

(5.4)

with

M ′(ε, ε′) := C2
ε,v′,αv′

Dαv′+ε

(
1 + C

2(αv′+ε)

ε′,v(−1),α
v(−1)

)
δ2(αv′+ε),

and

M(ε′) :=
µ(α̃)

K2

(
1 + C2α̃

ε′,v(−1),α
v(−1)

δ2α̃

) ,

using the aforementioned definitions of the constants.

Proof. Notice immediately that since the map x 7−→ v(t, x) is in C1(R) and increasing, the law of

Pt clearly has a density. We prove inequalities (5.3) and (5.4) using Nourdin and Viens’ formula

(see Theorem 2.2).The rest of the proof is divided into three steps.

Step 1: Given that for all 0 < r ≤ t ≤ T , DrPt = v′(t,Wt), the function gPt defined by (2.3)

becomes

gPt(y) :=

∫ ∞

0
e−aE

[
E∗[〈ΦPt(W ), Φ̃a

Pt
(W )〉H]|Pt − E[Pt] = y

]
da, y ∈ R,
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with1 ΦPt(W ) := v′(t,Wt) and where Φ̃a
Pt
(W ) := ΦPt(e

−aW +
√
1− e−2aW ∗) with W ∗ an inde-

pendent copy of W defined on a probability space (Ω∗,F∗,P∗) where E∗ is the expectation under

P∗ (ΦPt being extended on Ω× Ω∗). Letting φ(z) := 1√
2πt
e−

z2

2t , we get that

gPt(y) =

∫ ∞

0
e−aE

[
E∗[〈ΦPt(W ), Φ̃a

Pt
(W )〉H]|Wt = v(−1)(t, y + E[Pt])

]
da, y ∈ R,

= tv′(t, v(−1)(t, y + E[Pt]))

∫ ∞

0
e−a

∫

R
v′
(
t, e−av(−1)(t, y + E[Pt]) +

√
1− e−2az

)
φ(z)dzda.

(5.5)

Step 2: Upper bound for gPt

Recall that for all ε > 0:

0 < v′(t, x) ≤ Cε,v′,αv′

(
1 + |x|αv′+ε

)
, ∀x ∈ R.

Then, using (5.5) we get:

gPt(y) ≤ C2
ε,v′,αv′

t

(
1 +

∣∣∣v(−1) (y + E[Pt])
∣∣∣
αv′+ε

)

×
∫ +∞

0
e−a

∫

R

(
1 +

∣∣∣e−av(−1)(t, y + E[Pt]) +
√

1− e−2az
∣∣∣
αv′+ε

)
φ(z)dzda

≤ C2
ε,v′,αv′

t
(
1 + |v(−1)(y + E[Pt])|(αv′+ε)

)

×
∫ +∞

0
e−a

∫

R

(
1 + δαv′+ε

(
e−a(αv′+ε)

∣∣∣v(−1)(t, y + E[Pt])
∣∣∣
αv′+ε

+ |z|αv′+ε

))
φ(z)dzda

≤ C2
ε,v′,αv′

t
(
1 + |v(−1)(y + E[Pt])|αv′+ε

)

×
(
1 +

δαv′+ε

1 + αv′ + ε
|v(−1)(y + E[Pt])|αv′+ε + δαv′+εΞαv′+ε

)

≤ C2
ε,v′,αv′

tDαv′+ε

(
1 + |v(−1)(y + E[Pt])|2(αv′+ε)

)
.

By Lemma 5.2, αv(−1) belongs to (0,+∞), hence by the definition of αv(−1) it holds for all ε′ > 0

that

gPt(y) ≤M ′(ε, ε′)t
(
1 + |y + E[Pt]|2(αv′+ε)(α(v)−1+ε′)

)
. (5.6)

Step 3: Lower bound for gPt

Using Assumption (5.2) and (5.5) we have that

gPt(y) ≥
t

K2(1 + |v(−1)(t, y + E[Pt])|α̃)

×
∫ +∞

0
e−a

∫

R

1

1 + |e−a(v)−1(t, y + E[Pt])|α̃ + |
√
1− e−2az|α̃

φ(z)dzda.

Noticing that |
√
1− e−2az|α̃ ≤ |z|α̃, and that

∫

R

(1 + |x|α̃)φ(z)
1 + |x|α̃ + |z|α̃ dz ≥ µ(α̃), ∀x ∈ R

1Knowing that DrPt does not depend on r, ΦPt
(W ) : [0, T ] −→ L2(Ω,F , P) is a random process which is actually

constant on [0, t].
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we deduce that:

gPt(y) ≥
µ(α̃)t

K2(1 + |v(−1)(t, y + E[Pt])|α̃)

∫ +∞

0
e−a 1

1 + e−aα̃|v(−1)(t, y + E[Pt])|α̃
da.

Hence: gPt(y) ≥ µ(α̃)t

K2(1+|v(−1)(t,y+E[Pt])|2α̃) . We finally get Relation (5.4) for

M(ε′) :=
µ(α̃)

K2

(
1 + C2α̃

ε′,v(−1),α
v(−1)

δ2α̃

) .

We conclude using Nourdin and Viens’ formula.

Corollary 5.5. Let the assumptions in Theorem 5.4 hold, with the same notations. Assume

moreover that 0 ≤ αv′ < αv < +∞. Then there exist ε0, ε
′
0 > 0, y0 > 0 and γ ∈ (0, 1) such that

for any |y| > y0:

ρt(y) ≤
E[|Pt − E[Pt]|]

2M(ε′0)t

(
1 + |y|2α̃(αv(−1)+ε′0)

)
exp

(
−|y − E[Pt]|2(1−γ) − |y0 − E[Pt]|2(1−γ)

4(1− γ)tM ′(ε0, ε′0)

)
,

(5.7)

and

ρt(y) ≥
E[|Pt − E[Pt]|]

2M ′(ε0, ε′0)t (1 + |y|γ) exp
(
−|y − E[Pt]|2(α̃(αv(−1)+ε′0)+1) − |y0 − E[Pt]|2(α̃(αv(−1)+ε′0)+1)

M(ε′0)t(α̃(αv(−1) + ε′0) + 1)

)

× exp

(
−|y0 − E[Pt]|2

M(ε′0)t

(
1 + y

2α̃(α
v(−1)+ε′0)

0

))
. (5.8)

Proof. Let us define for any ε, ε′ > 0

γ(ε, ε′) := (αv′ + ε)(αv(−1) + ε′).

Since we assumed that 0 ≤ αv′ < αv < +∞, we can deduce using Lemma 5.2 that there exist some

ε0, ε
′
0 > 0 such that

γ := γ(ε0, ε
′
0) < 1.

We start with (5.7). We have from Theorem 5.4

ρt(y) ≤
E[|Pt − E[Pt]|]

2M(ε′0)t

(
1 + |y|2α̃(αv(−1)+ε′0)

)
exp

(
−
∫ y−E[Pt]

0

xdx

M ′(ε0, ε′0)t (1 + |x+ E[Pt]|2γ)

)
.

We notice that

lim
|x|→+∞

x

M ′(ε0, ε′0)t(1 + |x+ E[Pt]|2γ)
× 1

x
M ′(ε0,ε′0)t|x|2γ

= 1,

so that there exists x0 large enough such that x
M ′(ε0,ε′0)t(1+|x+E[Pt]|2γ) ≥

x
2M ′(ε0,ε′0)t|x|2γ

when |x| ≥ x0.

Hence, since γ ∈ (0, 1), we know that we can find some y0 > 0 large enough such that if |y| > y0
∫ y−E[Pt]

y0−E[Pt]

xdx

M ′(ε0, ε′0)t(1 + |x+ E[Pt]|2γ)

≥
∫ y−E[Pt]

y0−E[Pt]

xdx

2M ′(ε0, ε′0)t|x|2γ

=
1

4(1− γ)tM ′(ε0, ε′0)

(
|y − E[Pt]|2(1−γ) − |y0 − E[Pt]|2(1−γ)

)
,
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from which (5.7) follows directly. Similarly, increasing y0 if necessary, we have that for |y| > y0

∫ y−E[Pt]

0
x
(
1 + |x+ E[Pt]|2α̃(αv(−1)+ε′0)

)
dx

=

∫ y0−E[Pt]

0
x
(
1 + |x+ E[Pt]|2α̃(αv(−1)+ε′0)

)
dx

︸ ︷︷ ︸
:=I1

+

∫ y−E[Pt]

y0−E[Pt]
x
(
1 + |x+ E[Pt]|2α̃(αv(−1)+ε′0)

)
dx

︸ ︷︷ ︸
:=I2

.

Using the fact that the function x 7−→ 1 + |x+E[Pt]|2α̃(αv(−1)+ε′0) is convex, we deduce that for y0
large enough

I1 ≤ |y0 − E[Pt]|2
(
1 + y

2α̃(α
v(−1)+ε′0)

0

)
.

Moreover, since lim
x→+∞

x
(
1 + |x+ E[Pt]|2α̃(αv(−1)+ε′0)+ε′0)

)
× 1

x
2α̃(α

v(−1)+ε′
0
)+1

= 1, we obtain for x

large enough

x
(
1 + |x+ E[Pt]|2α̃(αv(−1)+ε′0)+ε′0)

)
≤ 2x2α̃(αv(−1)+ε′0)+1.

Then, we have that for |y| ≥ y0

I2 ≤
|y − E[Pt]|2(α̃(αv(−1)+ε′0)+1) − |y0 − E[Pt]|2(α̃(αv(−1)+ε′0)+1)

α̃(αv(−1) + ε′0) + 1
.

Hence,

∫ y−E[Pt]

0
x
(
1 + |x+ E[Pt]|2α̃(αv(−1)+ε′0)

)
dx

≤ |y0 − E[Pt]|2
(
1 + y

2α̃(α
v(−1)+ε′0)

0

)
+

|y − E[Pt]|2(α̃(αv(−1)+ε′0)+1) − |y0 − E[Pt]|2(α̃(αv(−1)+ε′0)+1)

α̃(αv(−1) + ε′0) + 1
,

from which the second inequality (5.8) follows directly using (5.4).

Finally, we have the following theorem, which is a simple application of the results obtained above

in the special cases where we take the random variables (Yt, Zt) solutions to the BSDE (2.4) when

they can be written Yt = v(t,Wt) and Zt = v′(t,Wt).

Theorem 5.6. Let (Y,Z) be the solution to the BSDE (2.4) (which is assumed to exist and to be

unique). Assume that there exists a map v ∈ C1,2 such that Yt = v(t,Wt).

(i) If in addition, v′ > 0, 0 ≤ αv′ < αv < +∞ and there exist K > 0, α̃ > 0 such that

v′(t, x) ≥ 1/(K(1 + |x|α̃)) then, denoting ρYt the density of the law of Yt, there exist y0 > 0,

C1, C2 > 0, p1 ∈ (0, 2) and p2 > 0 (which are given explicitly in Theorem 5.4) such that for

any |y| > y0

ρYt(y) ≥
E[|Yt − E[Yt]|

C2t
(
1 + |y|1−p1/2

) exp

(
−|y − E[Yt]|2(p2+1) − |y0 − E[Yt]|2(p2+1)

(p2 + 1)C2t

)

ρYt(y) ≤
E[|Yt − E[Yt]|

C1t

(
1 + |y|2p2

)
exp

(
−2 |y0 − E[Yt]|2

C2t

(
1 + y2p20

))

× exp

(
−|y − E[Yt]|p1 − |y0 − E[Yt]|p1

p1C2t

)
.
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(ii) If in addition, v′′ > 0, 0 ≤ αv′′ < αv′ < +∞ and there exist K > 0, α̃ > 0 such that

v′′(t, x) ≥ 1/(K(1 + |x|α̃)) then, denoting ρZt the density of the law of Zt, there exists

Z0 > 0, C1, C2 > 0, p1 ∈ (0, 2) and p2 > 0 (which are given explicitly in Theorem 5.4) such

that for any |z| > z0

ρZt(z) ≥
E[|Zt − E[Zt]|

C2t
(
1 + |z|1−p1/2

) exp

(
−|z − E[Zt]|2(p2+1) − |z0 − E[Zt]|2(p2+1)

(p2 + 1)C2t

)

ρZt(y) ≤
E[|Zt − E[Zt]|

C1t

(
1 + |z|2p2

)
exp

(
−2 |z0 − E[Zt]|2

C2t

(
1 + z2p20

))

× exp

(
−|z − E[Zt]|p1 − |z0 − E[Zt]|p1

p1C2t

)
.

5.3 Verifying the assumptions of Theorem 5.6

In this subsection, we give some conditions which ensure that the assumptions in Corollary 5.5

hold. We recall that under Assumptions (X), (L) or (Q), (D1) and according to Proposition 3.3,

there exists a map u : [0, T ] × R −→ R in C1,2 such that Yt = u(t,Wt), t ∈ [0, T ], P−a.s., and

Z admits a continuous version given by Zt = u′(t,Wt), t ∈ [0, T ], P−a.s., assuming that σ ≡ 1

and b ≡ 0 in the studied FBSDE (2.4). Moreover we suppose for simplicity that the generator h

of BSDE (2.4) depends only on z, and that u′ and u′′ are2 in C1,2. By a simple application of the

non-linear Feynman-Kac formula (see for instance [27]), and by differentiating it repeatedly, it can

be shown that u, u′ and u′′ are respectively classical solutions of the following PDEs:



−ut(t, x)−

1

2
uxx(t, x)− h(t, ux(t, x)) = 0, (t, x) ∈ [0, T )× R

u(T, x) = g(x), x ∈ R,
(5.9)




−u′t(t, x)−

1

2
u′xx(t, x)− hz(t, u

′(t, x))u′x(t, x) = 0, (t, x) ∈ [0, T )× R

u′(T, x) = g′(x), x ∈ R,
(5.10)




−u′′t (t, x)−

1

2
u′′xx(t, x)− hz(t, u

′(t, x))u′′x(t, x)− hzz(t, u
′(t, x))|u′′(t, x)|2 = 0, (t, x) ∈ [0, T )× R

u′′(T, x) = g′′(x), x ∈ R.

(5.11)

We show in the following proposition and its corollary that under some conditions on g, g′, g′′ and

h, hz , the assumptions in Theorem 5.6 are satisfied. We emphasize that this is only one possible

set of assumptions, and that the required properties of u and its derivatives can be checked on a

case by case analysis.

Proposition 5.7. Let u, u′ and u′′ be respectively the solution to (5.9), (5.10) and (5.11) and

assume that a comparison theorem holds for classical super and sub-solutions of these PDEs, in the

class of functions with polynomial growth. Assume that there exist (ε, C,C) ∈ (0, 1) × (0,+∞)3,

such that for all x ∈ R

C(1 + |x|1−ε) ≤ g(x) ≤ C(1 + |x|1+ε).

Assume moreover that h is non-positive and that there exist (ε′,D,D) ∈ (0, ε) × (0,+∞)2 s.t.

D(1 + |x|ε′) ≤ g′(x) ≤ D(1 + |x|ε).
2This assumption is satisfied if g and h are smooth enough.
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Assume that there exist (B,B) ∈ (0,+∞)2 such that for all x ∈ R

B ≤ g′′(x) ≤ B, and 0 ≤ hzz(t, x) <
1

4BT
.

Assume finally that there exist λ ∈ (0, ε−1 − 1] and C > 0 such that |hz(t, z)| ≤ C(1 + |z|λ), then

for all (t, x) ∈ [0, T ]× R,

αu ∈ [1− ε, 1 + ε], αu′ , αu′ ∈ [ε′, ε], αu′′ = 0, u′(t, x) ≥ D and u′′(t, x) ≥ B.

Proof. Let ϕ(t, x) := C̃(T − t) + Ckε(x), where kε(x) is in C∞(R), coincides with the function

(1 + |x|1+ε) outside some closed interval centered at 0 and is always greater than (1 + |x|1+ε).

We show that ϕ is a (classical) super-solution to (5.9) for some positive constant C̃ large enough.

Indeed we can choose C̃ > 0 such that for any (t, x) ∈ [0, T ) ×R

−ϕt(t, x)−
1

2
ϕxx(t, x)− h(t, ϕx(t, x)) = C̃ − 1

2
Ck′′ε (x)− h(t, ϕx(t, x)) ≥ 0,

since h ≤ 0 and lim
|x|→∞

1
2k

′′
ε (x) = 0.

Moreover, by the assumption made on g, we clearly have for all x ∈ R, g(x) ≤ Ckε(x), so that we

deduce by comparison that for all (t, x) ∈ [0, T ]× R:

u(t, x) ≤ Ckε(x) + C̃(T − t).

Now, we let φ(t, x) := −C̃1(T − t) + Cκε(x) for (t, x) ∈ [0, T ) × R, where κε(x) is in C∞(R),

coincides with the function (1 + |x|1−ε) outside some closed interval centered at 0 and is always

smaller than (1 + |x|1−ε). We show that φ is a classical subsolution to (5.9) for some positive

constant C̃1 large enough. We have

− φt(t, x)−
1

2
φxx(t, x)− h(t, φx(t, x)) = −C̃1 +

1

2
Cκ′′ε(x)− h(t, φx(t, x)). (5.12)

Given that the quantity h(t, φx(t, x)) = h(t, Cκ′ε(x)) is bounded because lim
|x|→∞

κ′ε(x) = 0 and h is

continuous, we can always choose C̃1 so that (5.12) is non-positive. Then, since we clearly have

for all x ∈ R, g(x) ≥ Cκε(x), we deduce by comparison that for all (t, x) ∈ [0, T ]× R:

u(t, x) ≥ Cκε(x) + C̃1(T − t).

To sum up, we have showed that for all (t, x) ∈ [0, T ]× R:

Cκε(x)− C̃1(T − t) ≤ u(t, x) ≤ Ckε(x) + C̃(T − t).

In other words [αu, αu] ⊂ [1− ε, 1 + ε].

We now study (5.10). Define for some constant C̃2 > 0 to be fixed later

ψ(t, x) := C̃2(T − t) +DΥε(x),

where Υε(x) is in C∞(R), coincides with the function (1+|x|ε) outside some closed interval centered

at 0 and is always greater than (1 + |x|ε). We then have

−ψt(t, x)−
1

2
ψxx(t, x)− hz(t, ψ(t, x))ψx(t, x) = C̃2 −

1

2
DΥ′′

ε(x)− hz(t, ψ(t, x))DΥ′
ε(x).
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Next, for some constant C > 0 which may vary from line to line

|hz(t, ψ(t, x))| ≤ C(1 + |ψ(t, x)|λ) ≤ C(1 + |x|λε),

and since λ ≤ 1
ε − 1 we deduce that:

∣∣hz(t, ψ(t, x))DΥ′
ε(x)

∣∣ ≤ C(1 + |x|λε+ε−1), which is bounded.

Since in addition we have Υ′′
ε(x) −→ 0 as |x| goes to +∞, we can always choose C̃2 large enough

so that

−ψt(t, x)−
1

2
ψxx(t, x)− hz(t, ψ(t, x))ψx(t, x) ≥ 0.

By the assumption we made on g, we can use once more the comparison theorem to obtain

u′(t, x) ≤ ψ(t, x).

Similarly, we show that DΥε′(x)− C̃3(T − t) is a sub-solution of (5.10) for some positive constant

C̃3, since λ ≤ ε−1−1 ≤ ε′−1−1. Then, by comparison, we deduce that αu′ , αu′ ∈ [ε′, ε]. Moreover,

we notice that D ≤ g′(x) for all x ∈ R, so D is a sub-solution of (5.10). Thus, using once more

the comparison theorem u′(t, x) ≥ D for all (t, x) ∈ [0, T ]× R.

We now study (5.11). Given that hzz is non negative and B ≤ g′′(x) for all (t, x) ∈ [0, T ]× R, we

deduce directly that B is a sub-solution of (5.11). Next, let ̟(t, x) = B + B
T 1−η (T − t)1−η where

η ∈ (0, 1) is chosen small enough so that hzz(t, x) ≤ 1−η

4TB
. Thus,

−̟t(t, x)−
1

2
̟xx(t, x)− hz(t, u

′(t, x))̟x(t, x)− hzz(t, u
′(t, x))|̟(t, x)|2

= (1− η)
B

T 1−η
(T − t)−η − hzz(t, u

′(t, x))B
2
(
1 +

(T − t)1−η

T 1−η

)2

≥ (1− η)
B

T 1−η
(T − t)−η − 1− η

4T
B

(
1 +

(T − t)1−η

T 1−η

)2

≥ 0.

We deduce that ̟ is a super solution of (5.11), which by comparison, implies that u′′ is bounded,

so αu′′ = 0.

Corollary 5.8. Consider the FBSDE (2.4) and assume that for all t ∈ [0, T ] Xt = Wt and h

depends only on z. Let u(t,Xt) := Yt and assume that u ∈ C1,2, u′ ∈ C1,2 and u′′ ∈ C1,2. Let the

assumptions of Proposition 5.7 hold, and assume moreover that ε ∈ (0, 12). Then, the assumptions

of Theorem 5.6 hold.

Proof. According to Proposition 5.7, αu ≥ 1 − ε, αu′ ≤ ε and u′(t, x) ≥ D, (t, x) ∈ [0, T ] × R.

From the fact that ε is smaller than 1/2, we deduce that 0 ≤ αu′ < αu < +∞. Moreover,

0 = αu′′ < ε′ ≤ αu′ .
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6 Table of assumptions-results

In this appendix we recall the different assumptions made within this paper and we give a summary

table of some most significant results on BSDEs including ours.

Assumption for X:

(X) b, σ : [0, T ]×R −→ R are continuous in time and continuously differentiable in space for any

fixed time t and such that there exist kb, kσ > 0 with

|bx(t, x)| ≤ kb, |σx(t, x)| ≤ kσ , for all x ∈ R.

Besides b(t, 0), σ(t, 0) are bounded functions of t and there exists c > 0 such that for all

t ∈ [0, T ]

0 < c ≤ |σ(t, ·)|, λ(dx) − a.e.

List of assumptions for BSDEs:

(L) (i) g : R −→ R is such that E[g(XT )
2] < +∞.

(ii) h : [0, T ] × R3 −→ R is such that there exist (kx, ky , kz) ∈ (R∗
+)

3 such that for all

(t, x1, x2, y1, y2, z1, z2) ∈ [0, T ] × R6,

|h(t, x1, y1, z1)− h(t, x2, y2, z2)| ≤ kx|x1 − x2|+ ky|y1 − y2|+ kz|z1 − z2|.

(iii)
∫ T
0 |h(s, 0, 0, 0)|2ds < +∞.

(Q) (i) g : R −→ R is bounded.

(ii) h : [0, T ] ×R3 −→ R is such that:

⊲ There exists (K,Kz ,Ky) ∈ (R∗
+)

3 such that for all (t, x, y, z) ∈ [0, T ]× R3

|h(t, x, y, z)| ≤ K(1 + |y|+ |z|2), |hz| (t, x, y, z) ≤ Kz(1 + |z|), |hy| (t, x, y, z) ≤ Ky.

⊲ There exists C > 0 such that for all (t, x, y, z1, z2) ∈ [0, T ]× R4

|h(t, x, y, z1)− h(t, x, y, z2)| ≤ C(1 + |z1|+ |z2|)|z1 − z2|.

(iii)
∫ T
0 |h(s, 0, 0, 0)|2ds < +∞.

List of assumptions for Malliavin differentiability of (X,Y,Z):

(D1) (i) g is differentiable, L(XT )−a.e., g and g′ have polynomial growth.

(ii) (x, y, z) 7→ h(t, x, y, z) is continuously differentiable for every t in [0, T ].

(D2) (i) g is twice differentiable, L(XT )−a.e., g, g′ and g′′ have polynomial growth.

(ii) (x, y, z) 7→ h(t, x, y, z) is twice continuously differentiable for every t in [0, T ].

30



List of assumptions for the existence of densities for Y and Z:

g := inf
x∈R

g′(x), gA := inf
x∈A

g′(x), g := sup
x∈R

g′(x), gA := sup
x∈A

g′(x),

h(t) := inf
s∈[t,T ],(x,y,z)∈R3

hx(s, x, y, z), h(t) := sup
s∈[t,T ],(x,y,z)∈R3

hx(s, x, y, z),

and K := kb + ky + kσkz. There exists A ∈ B(R) such that P(XT ∈ A|Ft) > 0 and such that:

(H+)





ge−sgn(g)KT + h(t)

∫ T

t
e−sgn(h(s))Ksds ≥ 0

gAe−sgn(gA)KT + h(t)

∫ T

t
e−sgn(h(s))Ksds > 0

(H−)





ge−sgn(g)KT + h(t)

∫ T

t
e−sgn(h(s))Ksds ≤ 0

gAe−sgn(gA)KT + h(t)

∫ T

t
e−sgn(h(s))Ksds < 0,

Set

h̃(s, x, y, z) :=−
(
hxt + bhxx − hhxy +

1

2
(σ2hxxx + 2zσhxxy + z2hxxy)

)
(s, x, y)

− ((hy + bx)hx + σσxhxx + zσxhxy) (s, x, y).

g̃(x) := g′(x) + (T − t)hx(T, x, g(x)),

and

g̃ := min
x∈R

g̃(x), g̃ := max
x∈R

g̃(x), g̃A := min
x∈A

g̃(x), g̃
A
:= max

x∈A
g̃(x),

h̃(t) := min
[t,T ]×R3

h̃(s, x, y, z), h̃(t) := max
[t,T ]×R3

h̃(s, x, y, z),

and set K := ky + kb. There exists A ∈ B(R) such that P(XT ∈ A|Ft) > 0

(̃H+)





g̃e−sgn(g̃)KT + h̃(t)

∫ T

t
e−sgn(h̃(s))Ks(T − s)ds ≥ 0

g̃Ae−sgn(g̃A)KT + h̃(t)

∫ T

t
e−sgn(h̃(s))Ks(T − s)ds > 0,

(̃H−)





g̃e−sgn(g̃)KT + h̃(t)

∫ T

t
e−sgn(h̃(s))Ks(T − s)ds ≤ 0

g̃
A
e−sgn(g̃

A
)KT + h̃(t)

∫ T

t
e−sgn(h̃(s))Ks(T − s)ds < 0.

(Q+) g′ ≥ 0 and g′|A > 0, L(XT )−a.e. and h(t) ≥ 0,

(Q−) g′ ≤ 0, g′|A < 0, L(XT )−a.e. and h(t) ≤ 0,

(Z+) – There exist (a, a) s.t., 0 < a ≤ DrXu ≤ a, for all 0 < r < u ≤ T .

– There exists b s.t., 0 ≤ D2
r,sXu ≤ b, for all 0 < r, s < u ≤ T .

– hx, hxx, hyy, hzz, hxy ≥ 0 and hxz = hyz = 0 (and hy ≥ 0 under (Q))

– hxy = 0 or (hxy ≥ 0 and g′ ≥ 0, L(XT )-a.e.).
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– We have

1{g′′<0}g
′′a2 + g′1{g′<0}b+ (1{g′′≥0}g

′′ + hxx(t)(T − t))a2 ≥ 0,

and

(1{g′′A<0}g
′′Aa2 + g′A1{g′<0}b) + (1{g′′A≥0}g

′′A + hxx(t)(T − t))a2 > 0,

We give the following summary table which sums up significant results for BSDEs in both the
Lipschitz case and the quadratic case with assumptions made and references.

Results

Cases
Lipschitz case (L) Quadratic case (Q)

Existence and uniqueness
Prop. 3.1 (X) Prop. 4.1 (X)

of solutions of BSDEs

Malliavin differentiability
Prop. 3.2 (X) and (D1) Prop. 4.2 (X) and (D1)

of (X,Y, Z)

Density existence for Y
Th. 3.7 (X), (D1) and (H+) or (H-)

Th. 4.3 (X), (D2) and (Q+) or (Q-)
Th. 3.11 (X), (D1) and (H̃+) or (H̃−)

Density existence for Z Th. 3.13 (X), (D2) and (Z+) Th. 4.7 (X), (D2) and (Z+)
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