N
N

N

HAL

open science

ALGEBRAIC ISOMONODROMIC DEFORMATIONS
AND THE MAPPING CLASS GROUP
Gaél Cousin, Viktoria Heu

» To cite this version:

Gagél Cousin, Viktoria Heu. ALGEBRAIC ISOMONODROMIC DEFORMATIONS AND THE MAP-
PING CLASS GROUP. Journal of the Institute of Mathematics of Jussieu, 2021, 20 (5), pp.1497-1545.

10.1017/51474748019000562 . hal-01432947

HAL Id: hal-01432947
https://hal.science/hal-01432947

Submitted on 12 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01432947
https://hal.archives-ouvertes.fr

arXiv:1612.05779v2 [math.AG] 10 Jan 2017

ALGEBRAIC ISOMONODROMIC DEFORMATIONS AND
THE MAPPING CLASS GROUP

GAEL COUSIN AND VIKTORIA HEU

ABSTRACT. The germ of the universal isomonodromic deformation of a logarithmic connection
on a stable n-pointed genus-g curve always exists in the analytic category. The first part of
this paper investigates under which conditions it is the analytic germification of an algebraic
isomonodromic deformation. Up to some minor technical conditions, this turns out to be the
case if and only if the monodromy of the connection has finite orbit under the action of the
mapping class group. The second part of this paper studies the dynamics of this action in the
particular case of reducible rank 2 representations and genus g > 0, allowing to classify all finite
orbits. Both of these results extend recent ones concerning the genus 0 case.
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1. INTRODUCTION

The mapping class group. Let g and n be nonnegative integers. Let ¥, be a compact
oriented real surface of genus g, let ¥ = (y1,. .., yn) be a sequence of n distinct points in 3,. We
shall denote by Y™ := {y1,...,yn} the corresponding (unordered) set of points. The mapping
class group of (£4,y") is defined to be the set of orientation preserving homeomorphisms h of
¥4 such that h(y;) = y; for all i € {1,...,n}, quotiented by isotopies:

Iy, := Homeo, (3, ?/n)/{isotopies relative to Y™}
We can also consider homeomorphisms of ¥, that preserve the set Y, but do not necessarily
preserve the labelling of the punctures. This leads to the full mapping class group
I'y ., := Homeo, (3, Yn)/{isotopies relative to Y} .
Note that we have an exact sequence of groups
1—Tyn —Tyn —6, —1,
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where &,, denotes the symmetric group of degree n. In particular, I'y ,, is a subgroup of fg,n of
finite index n! . Let now yo € ¥4\ Y™ be a point. We denote the fundamental group of ¥,\ Y™
with respect to the base point yg by

(1) Agﬂ = 7'('1(29 \Yn,yo) .

The composition .o’ of two paths a, @’ € Ay, shall denote the usual concatenation “first o,
then o/”. For any group G, we may consider the space Hom(Ay ,, G) of representations as well
as the space of representations modulo conjugation, which we shall denote

(2) Xg,n(G) == Hom(Ag», G) /G -

The mapping class group acts on x,,(G). Define the groups of orientation preserving
homeomorphisms h of ¥, such that h(yo) = yo and h(y™) = y", respectively h(Y") = Y,
modulo isotopy:

Pyn+1 = Homeoy(Xg,y",y0)/{isotopies relative to Y U {yo}},
f;,n = Homeo, (34, Y™, y0)/{isotopies relative to Y™ U {yo}}.
Now fg.],n naturally acts on the fundamental group Ay ,: for h € f;,n and o € Ay, we set
a(h)(@) == hya.

Via the forgetful maps I'y ;11 — I'y, and f;,n — f’g,n we obtain a commutative diagram

Lgnt1© f;,n . Aut(Ag,n)

o

Tyn© Lyn Out(Ag,n) : == AUt(Ag,n)/Inn(A

gmn) -

Indeed, any element h € Homeo (X, y™) may be lifted to an element hy € Homeo, (34, y", 4o).
Let h; € Homeo, (2,4, y",y0) be another representative. Then they are the extremities of an
isotopy (h¢)sefo,1] relative to Y. We have a loop v € Ay, defined by v(t) = h¢(yo). Then for
any o € Ay, we have a(hy)(a) =1 a(ho)(a). v .

In particular, for any group G, the mapping class group f’g,n acts on the space x4n.(G),

and this action lifts to an action of f;,n on the space Hom(Ag,,,G). More precisely, for all

p € Hom(Ay,,,G), h € f‘;,n and a € Ay, we define
3) ([7] - p)(a) = pla(h™") ().

Application to isomonodromic deformations and a dynamical study. In this paper,
we establish two results about finite orbits of the mapping class group action on x4, (G) for
G = GL,C. These results and their respective proofs can be read independently. In Theorem
[Al which will be stated in Section [I.Al and proven in Part [Al we relate such finite orbits to
the existence of an algebraic universal isomonodromic deformation of a logarithmic connection
over a curve, whose monodromy belongs to that orbit. This motivates Theorem [Bl which will
be stated in Section [LBl and proven in Part [Bl classifying conjugacy classes of reducible rank 2
representations with finite orbit. To that end, we introduce a specific presentation of A4, and
explicit formulae for the mapping class group action.

Remark 1.0.1. Recall that a representation p € Hom(Ag,, GL,C) is called irreducible if the
only subvector spaces V' C C" stable under Im(p) are {0} and C". A semisimple representation
is a direct sum of irreducible representations.
In this paper, for integers a,b € Z, we denote [a,b] :={k € Z | a <k < b}.
2



1.A. Algebraization of universal isomonodromic deformations. We need to introduce
some additional vocabulary before stating our main result, which can be seen as a criterion
under which a GAGA-type theorem holds for isomonodromic deformations. In order to avoid
having to introduce each definition twice, we adopt the w-notation described in Table [1l

w w — manifold w — open
connected Hausdorff
complex analytic manifold
smooth irreducible
quasi-projective variety over C

analytic open with respect to Euclidean topology

algebraic open with respect to Zariski topology

TABLE 1.

Logarithmic connections. Let X be a w-manifold and let D be a (possibly empty)
reduced divisor on X. Denote by D1,..., D, the irreducible components of D. A logarithmic
w-connection of rank r over X with polar divisor D is a pair (F,V), where E — X is a w-
vector bundle of rank r over X, whose sheaf of sections we shall denote by £, and V is a C-linear
morphism

V:E—E@0%(og D),
which satisfies the Leibniz rule

V(f-e)=f-V(ie)+exdf

for any f € Ox(A),e € E(A), where A C X is any w-open subset. We require D to be minimal
in the sense that for any ¢ € [1,n], V does not factor through

E @ Qlog(D — D;)) — £ ® Q% (log D).

Such a logarithmic connection (E, V) is called flat if its curvature V2 is zero.

We are particularly interested in the case where X is a smooth projective curve (a compact
Riemann surface). Since then X is of complex dimension one, any logarithmic connection over X
is automatically flat. Moreover, since then X is projective, any analytic logarithmic connection
over X is isomorphic to the analytification of a unique algebraic logarithmic connection over X
by one of Serre’s GAGA theorems [Ser56, Prop. 18].

Monodromy. The notion of the monodromy representation of a flat connection varies
slightly in the literature. For introductory and technical purposes, let us give the definition
we are going to use. This definition can only be formulated in the analytic category; in the
algebraic case the monodromy representation is defined via analytification. Let X and D be as
above (X has arbitrary dimension). Denote X := X\ D. Let (E, V) be an analytic logarithmic
connection over X with polar divisor D. Assume moreover that this analytic connection is flat,
which is equivalent to it being integrable, i.e. S := ker(V|xo) is a locally constant sheaf of rank
r over X?. Let ¥ and Y C ¥ be topological spaces such that there is a homeomorphism

o:(,Y)3 (X, D).

Fix such a homeomorphism and fix a point gy € ¥\ Y. Denote Ty := ®(gp). For any path
v :10,1] = X\ Y, the pull back (® o~)*S is locally constant and thus isomorphic to a constant
sheaf. Hence ~ defines an isomorphism ~v(S) : Sy(1) = Sy(0)- This isomorphism is invariant
by homotopy relative to {7(0),v(1)} and satisfies 71 .72(S) = 71(S) o 72(S) for any pair of
paths (y1,72). We obtain a representation m1(X \ Y,90) — GL(Sz,). Via an isomorphism
Si, — C7, one deduces a (non canonical) representation py € Hom(m (X, o), GL,C) and a
canonical conjugacy class of representation

[pv] € Hom(m1(X\ 'Y, %), GL,C)/GL,C -
We refer to py as the monodromy representation and to [py] as the monodromy of (E,V) with
respect to ®. Conversely, given ®, given a conjugacy class of representation [p] € Hom(m (X \

Y, 90), GL,C)/GL,C and a compatible choice of mild transversal models (see Section B.2]), there
3



is a flat logarithmic analytic connection (E,V) over X, unique up to isomorphism, inducing
these transversal models and such that [pyv]| = [p] (see [Coulbal, Th. 3.3], adapted from [Del70,
Prop. 5.4]). In our work, the use of the marking ® is essential, as we wish to compare the
monodromies of connections over various homeomorphic curves.

Isomonodromy. Let C be a smooth projective curve of genus g, let D¢ be a reduced divisor
of degree n on C. Let (Ep, V() be a logarithmic connection over C' with polar divisor D¢.
A w-isomonodromic deformation of (C, Eqy, V() consists in the following data:

a w-family (k : X — T, D) of n-pointed smooth curves of genus g (see Section 2.2]);
a flat logarithmic w-connection (E,V) over X with polar divisor D;

a point tg in T ; we denote Xy, := k! ({to}); and

an isomorphism of pointed curves with logarithmic connections

(¥, ¥) : ((C, Dc), (Eo, Vo)) = ((XtoaD|Xt0)’ (E, v)|Xt0) :

Why are such deformations called isomonodromic? Again we have to work in the analytic
category. Up to shrinking 7" to a sufficiently small polydisc A containing ty, the family & :
(X,D) — A is topologically trivial. Hence there is a homeomorphism

P: (X, Y") x A5 (X,D)
commuting with the natural projections to A. Now for any t € A, the morphism
Wl(zg \ Yn’ yO) — 771((2!] \ Yn) X Aa (yO, t)) )

induced by the inclusion of the fiber at ¢, is an isomorphism. On the other hand, (E,V)|x,
is a logarithmic connection over X; with polar divisor D|x,. By flatness of V, its monodromy
representation with respect to ®|; and the base point yy can be identified with the monodromy
representation of (E, V) with respect to ® and the base point (yp,t). For t = t¢, this means
we can identify the monodromy representation of (E,V) over X with respect to ® with the
monodromy representation of (Ey, V) over C with respect to 1~ o ®|;,. In that sense, we may
say that with respect to some continuous “base point section” ¢ — (yo, t), the monodromy repre-
sentation along a germ of isomonodromic deformation is constant and given by the monodromy
representation of (Eg, Vo). More generally, one can say that an isomonodromic deformation
induces a topologically locally trivial family of monodromy representations, leading to a phe-
nomenon of monodromy of the monodromy representation. The latter will become tangible in
Section [l

Statement of Theorem [Al Following [Heul(O, Th. 3.4](see also [Mal83 Kri02]), any
triple (C, Ey, V) as before admits a universal analytic isomonodromic deformation, which is
unique up to unique isomorphism, and whose parameter space T is the Teichmiiller space
Tgn- This universal analytic isomonodromic deformation satisfies a universal property with
respect to germs of analytic isomonodromic deformations of (C, Fy, V). A universal algebraic
isomonodromic deformation of (C, Ey, V), if it exists, would be an algebraic isomonodromic
deformation whose analytic germification is isomorphic to the germification of the universal
analytic isomonodromic deformation of (C, Ey, Vj). In Section 2.4l we give an alternative def-
inition and state a juniversal property of universal algebraic isomonodromic deformationsl Our
following main result has been established in the special case of genus g = 0 in [Coul5al.

Theorem A. Let C be a smooth complex projective curve of genus g. Let Do be a set of n dis-
tinct points in C and let ® : (X4,Y"™) = (C, D¢c) be an orientation preserving homeomorphism.
Let (Ey,Vg) be an algebraic logarithmic connection of rank r over C' with polar divisor D¢.
Denote by [p] € Xg,n(GL,C) its monodromy with respect to ®. Assume that the pair (C, D¢) is
stable and has no exceptional automorphism. Assume that Vg is mild. If r > 2, then assume
further that p is semisimple. The following are equivalent:

(1) There is a universal algebraic isomonodromic deformation of (C, Ey, V).
(2) The orbit Ty - [p] in xgn(GL,C) is finite.
4



Remark 1.A.1. Note that the orbit I'y ,, - [p] in x4n(GL,C) does not depend on the choice of ®.
An automorphism of the n-pointed genus-g curve (C, D¢) is by definition an automorphism of
C' that reduces to the identity on D¢. The pair (C, Do) is said to be stable if 29 — 2 +n > 0
and it is said to have no exceptional automorphism if it has the smallest automorphism group
among the n-pointed genus-g curves (see Section 2.T]).

The main ingredients of the proof of Theorem [Alare: the logarithmic Riemann-Hilbert corre-
spondence (see Section B.2)); the introduction of a base point section for a family of punctured
curves and the splitting of the fundamental group of the total space of the family (see Section
B0, together with its relation to the mapping class group (see Section [£2)). Both implica-
tions to be proven appear as special cases of stronger results: [Theorem ATl and [Theorem A2
respectively. We give their statements and proofs in Section

The statement of Theorem [Alis natural in the following sense. As we recall in Section 2] the
(algebraic) moduli space M, ,, of stable smooth n-pointed genus-g curves is the quotient of the
(analytic) Teichmiiller space 7y, by the natural action of T'y ,, . Intuitively, a universal algebraic
isomonodromic deformation should be the quotient of the universal analytic isomonodromic
deformation with respect to a sufficiently large subgroup of I ,, that fixes [p].

1.B. Dynamical study of finite orbits in the reducible rank 2 case. Since the pure
mapping class group is a finite index subgroup of the full mapping class group, for any repre-
sentation p € Hom(A, », G), the conjugacy class [p] € x4 (G) has finite orbit under I'y ,, if and
only if it has finite orbit under f’g,n. Note that the size of f‘g,n - [p] equals the size of the set of
conjugacy classes of m-tuples

{((s1), .0 (sm)) | o € Hom(A g, G) and [p) € Ty ]}/

where {s1,...,5,} is a set of generators of A, ,. We introduce a specific presentation

Ag7n:<061,51,...,C¥g,,8g,’}/1,...,’}/n | [alaﬁl]“‘[ag,ﬁghl‘“’%:1>
and a subgroup
P;,n = <Tl7 <3 T3g+n—25015 - - - 7Un—1>

of f;,n which, as such, acts on Hom(Ay,, G), and which is sufficiently large in the sense that
the f’;n—orbit of [p] € xgn(G) equals its ', ,-orbit. Moreover, the action of f’;n on Ay, can be
explicitely described (see Section [6]). Table 2] summarizes the explicit action of the generators
Tly+++T3g4n—2,01,-+-,0n_1 Of F;,n on the generators o, 81, ..., &g, Bg, 71, ., Vn of Ay . Here
we only indicate the action on those of our generators of A, ,, that are not fixed by the action

of the generator of f’;n under consideration.

Tok kell,g ap = b
Tok—1 kell,g B = Brag
Tog+k ke [[1,g — 1]] k41 eglakJ’,l
(072 — ak@k
Bk = 0,80k
where O = Oék+1ﬁ;;&1@/;i15k
T3g—1+k ke [[1,77, — 1]] Qg — OégEk
/Bg — Eglﬁgak
i€[1,k] Vi = o o=
where Zk = (v B,
Ok Eell,n—1] | w = Wﬂk+1%§1
Ve+1 Yk

TABLE 2. Action of I'y ,, on Ag .



We then apply this explicit description of the mapping class group action to the specific study
of finite I'g ,,-orbits on x4, (GL2C) that correspond to reducible representations. For g = 0, this
study has been completely carried out in [CM16]. In this special case, the study can be reduced
to linear dynamics. More precisely, any reducible representation p € Hom (A, GL2C) is con-
jugated to the tensor product of a character pc+ € Hom(Ay ,,C*) and an affine representation
pag € Hom(Ag,, Aff(C)):

o] = lpcr @ panl -
Moreover, [p] has finite orbit under Iy ,, in x¢.»(GL2C) if and only if [pc+] and [pag]| have finite
orbit under I'y ,, in x4, (C*) and x4,,(Aff(C)) respectively. On the other hand, for g = 0, the
pure mapping class group acts trivially on x4,(C*) and on the linear part of pag. Hence in the
special case g = 0, the study of finite orbits reduces to the study of a certain linear action on
the translation part of pag.

For g > 0, the study of finite orbits of conjugacy classes of reducible GLoC-representations
also reduces to the case of scalar and affine representations, but the linear part of pag is
no longer invariant and there is no effective means to reduce the study to linear dynamics.
However, Table 2] allows to study the orbits explicitely. In the case g =1 and n > 0, we find a
particular type of representations whose conjugacy classes have finite orbit under I ,,, namely
the representations p, ¢ € Hom(Ay ,, GL2C) defined by

meton)i= () et = () THT) mwet=(§ §) vie ]

where p € C*\ {1} is a root of unity and ¢ = (c1,...,¢,) € C" with Y | ¢; = 1. Note that the
condition 7 ; ¢; = 1 is necessary for p, ¢ to be well defined. The complete classification, for
every g > 0 and n > 0, of reducible rank-2 representations with finite Iy ,-orbit is the following.

Theorem B. Let g > 0,n > 0. Let p € Hom(Ay,, GL2C) be a reducible representation.
Consider its conjugacy class [p] € xg.n(GL2C). Then the orbit T'y,, - [p] is finite if and only if
one of the following conditions is satisfied.

(1) The representation p is a direct sum of scalar representations with finite image.

(2) We have g = 1, n > 0, there are a root of unity p € C*\ {1} , ¢ = (¢1,...,¢,) € C"
with Y"1 ¢; =1 and a scalar representation X with finite image such that

o] € Lyn- A® pu,C] .

Moreover, if the orbit I'y,, - [p] is finite, we can give an estimate for its cardinality, which for
pP=A® A and p=A® pyc in the cases [dl) and (@) respectively is

(1) %-max{card(lm()\i))Qg_l ‘ ic {1’2}} < card(Ty, - [p]) < card(Im(p))?9 and

(2) max{NQ, ¢(N)(2N—¢(N))N""1} < card(Tyn - [p]) < (N2 —1)N"~INZ,

where ¢ denotes the Euler totient function, n' := card{i € [1,n] | p(y;) € C*Iz}, N :=
order(p) and Ny := card(Im(\)).

The heart of the proof of Theorem [Bl is the complete classification of finite f‘g,n—orbits in
Xg,n(Aff(C)) under the full mapping class group (see the beginning of Section [0 for details on
how we proceed). In Section BI] we deduce an explicit description of the finite I'y ,,-orbits for
scalar and affine representations. The decomposition of reducible representations into a tensor
product of such representations then yields the result (see Sections and [R.3)).

Part A. Algebraization
2. UNIVERSAL ISOMONODROMIC DEFORMATIONS

In this section, we will recall some well known results about moduli spaces and universal
families of curves, thereby setting up our notations. For a more detailed exposition, see for
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example [ACG11, Chap. 15] and [Hub06, Chap. 6]. Then we turn to the existence of ana-
lytic and algebraic universal isomonodromic deformations of connections over curves, and their
respective universal properties.

2.1. Moduli spaces of curves. We define a curve of genus g to be a smooth projective complex
curve C with H'(C,Z) = Z*. From now on, we will assume

(4) 29—24n>0.

As a set, the Teichmiiller space 7, of n-pointed genus-g curves is the set of isomorphism
classes [C, D¢, | of triples (C, D¢, ¢), where C is a genus g curve, Do = {x1,...,2,} is a
set of n distinct points in C' and ¢ is a Teichmiiller structure, i.e. an orientation-preserving
homeomorphism ¢ : (X4,Y") — (C,D¢). Two n-pointed genus-g curves with Teichmiiller
structure (C, D¢, ¢) and (C’, D¢y, ¢') are said to be isomorphic if there exists an isomorphism
of pointed curves v : (C', Di.,) — (C, D¢) such that [¢'] = [¢po], where [p] denotes the isotopy
class of ¢. We have a natural action of I'y , on 7Tg,, given by

[h] : [C?DC’QD] = [C?DC,QDO hil]; [h] € Fg,n, [C’DCaSD] € 72’7" .
The kernel of this action is finite. More precisely, we have (see [ACG11, Prop 4.11 p. 189)]):

Lemma 2.1.1. If the natural morphism I'g,, — Aut(7T,,) has nontrivial kernel K, then
Ky, ~ 727 and one of the following holds.

e (g,n) = (2,0) and the non-trivial element of K ,, is the hyperelliptic involution of .

e (g,n) = (1,1) and the non-trivial element of K4, is the order 2 symmetry about the
puncture, given, for (X1,vy1) = (C/Z2,0), by z +— —z.

As a set, the moduli space My, of curves of genus g with n (labeled) punctures is the set
of isomorphism classes [C, x] of pairs (C,x), where C is a genus ¢ curve and x = (x1,...,Zy)
is a tuple of n distinct points in C'. The isomorphisms are isomorphisms of pointed curves that
respect the labellings of the n-tuples. Notice that a Teichmiiller structure (C, D¢, ¢) defines
such a pair (C,x), by setting x := (¢(¥i))icp1,n]- In this way, we obtain a forgetful map

(5) Trgyn : 7.:]771 - Mg,n

whose fibers are globally fixed by the action of 'y , /K, », on T . Denote by Ry, C Ty the set
consisting in points with non-trivial stabilizer for the action of I'y /K, . The subset B, =
Tgn(Rgn) of Mg, characterizes pointed curves with automorphism groups not isomorphic to
K,,,. We say that these curves have exceptional automorphisms.

Recall that 74, has a natural structure of a complex analytic manifold, and Mg, has a
natural structure of a smooth complex quasi-projective variety (see [ACGI11l chap. XIV]).
The set By, of curves with exceptional automorphisms is a Zariski closed subset of M, ,, (see
[ACG11, Rem. 5.13 p. 202 and Th. 6.5 p. 207]) which is a proper subset (see [Bai62, Mon62,
Poo00} [Cor08]). Moreover, the map gy nl7, \Ry.  Tom \ Rgn — Mgn \ Byn is an (analytic)
étale cover, with Galois group I'y,,/K,. We thereby obtain a tautological morphism

(6) tautg,n LT (Mg,n \ Bg,n;*) - ngn/Kg,n;
such that any lift 4 in 7y, for a loop 7 of 71 (Mg, \ By, x) satisfies (1) = taut, ,(v) - 7(0).

2.2. Families of pointed curves. Let C' be a curve of genus g and D¢ a reduced divisor of
degree n on C. Recall that we always assume ({); i.e. the pointed curve (C, D¢) is stable.
A w-family of n-pointed genus-g curves with central fiber (C, D¢) is a datum
Fepe)y = (k: X = T,D,t,7),
where
e 1 : X — T is a proper surjective smooth morphism of w-manifolds;
e D=>3"",D,isareduced divisor on X such that

7



e there are pairwise disjoint sections oy, ...,0, of k with o;(T) = Dj;
e tg € T is a point and Xy, denotes Xy, := k= ({to});
e Y:(C,Dc) > (Xt, D|x,,) is an isomorphism of w-manifolds.

We shall always denote by X; := x~({t}) the fiber at a parameter ¢ € T. When there is a
smooth connected w-neighborhood A of ¢y such that Fc, Dc)‘ A satisfies a certain property, we
may say that Fc p.) satisfies this property “up to shrinking”.

A morphism § : ]:(/C,Dc) — F(c,pe) is a pair f = (f2,°), where §* : X’ — X and f* : T" — T
are morphisms of w-varieties such that the following diagram commutes (and in particular
(o) = to)-

(C,D¢) == (C, D¢)
WJ Y

(X', D) "~ (X, D)

/ P’
T T

Remark 2.2.1. Note that this definition implies that (X', D’) is isomorphic to the pullback
(X, D) (the fibered product with respect to f* and ).

Suppose now that we have a Teichmiiller structure for (C, D¢), given by an orientation
preserving homeomorphism ¢ : (3,4,Y") = (C, D¢).

A w-family of n-pointed genus-g curves with Teichmiiller structure with central fiber (C, D¢, ¢)
is a datum ]:(E,Dc#p) = (F(c,pe)s @), where Fic p,) is as above and @ : (3, Y")xT = (X, D) is
a homeomorphism such that the following diagram commutes, where pr denotes the projection
to the second factor.

(2, Y™ x {to} — (C, D)

¥
(84, V") x T —2 ()],VD)
\ l“

In particular, if we denote
Py = @z, yryx{t} >
then ®;, = 1) o ¢. Notice that by definition, a w-family with Teichmiiller structure is topolog-
ically trivial. For a given ¢ as above, up to shrinking, any analytic family F(¢ p.) lifts to a
family ]:(E Do o) with Teichmiiller structure.
Let Filo poyy = (Fiene)»®) and F o p oy = (F(o ey @) be two w-families with Te-
ichmiiller structures. A morphism f,zLCchsz’) — ]:('EDCW is a datum §* = (f,°P), where

f= (f,°) is as before and f*°P is a continous map, such that the following diagram commutes.

to
(8, Y™ x T e (2, V™) % T

v 1|

(X', D') ——— (x,D)

Notice that the central fiber forces the map f*°P to be (¢~ o0 ¢') x *, up to a fiberwise isotopy.
8



To a w-family Fc p.) [resp. w-family with Teichmiiller structure ]:(E Dc,cp)] as before, one

can associate a so-called w-family F [resp. w-family with Teichmiiller structure F*] with
non specified central fiber, by forgetting (C, D¢) [resp. (C, D¢, )] and the marking ¢g,1. A
morphism of w-families with non specified central fiber is a datum § [respectively §7] as above
for a convenient choice of a marked central fiber.

2.3. Universal families of pointed curves. Let ]:(‘5 Do) = (F(c,pe)> ®) be a w-family with
Teichmiiller structure. Then the classifying map

T — T
classt(F71) : 9
(") { t = [X.Dlx, ]
is holomorphic with respect to the natural analytic manifold structure of 7, ,. The Teichmiiller
space Ty, carries a universal family (see for example [Hub06, Chap. 6]), which is an analytic
family with Teichmiiller structure ]:;7' n = (Fgm, Pg,n) and non specified central fiber, satisfying

class™(F,,) =idy, .

The universal Teichmiiller curve enjoys the following universal property: If F* = (F,®) is an
analytic family with Teichmiiller structure and non specified central fiber, then there is a unique
isomorphism

fr.Ft = class+(]:+)*(]:g,n)

with §* = idr.

Let Fc p.) be a w-family. Assume we have a labelling x of D¢, i.e. x = (2i)icpin] € C"
and Do = > 71" z;. Then there is a well defined labelling D = (D;);c[1,n) of D defined by
D =3"",D;and ¢(x;) € D; for all i € [1,n]. We then have a well defined classifying map

T = Mg.n
ClaSS(-F)-{t s [Xt,D|Xt] ’

which is a morphism of w-varieties with respect to the natural structure of w-manifold on
Mgn. We say that the fiber (X, D|x,) of F at t € T has exceptional automorphisms if
class(F)(t) € By,n. This notion does not depend on the choice of a labelling.

Although there is no universal family of curves over M, ,, in the strict sense, we can consider
algebraic Kuranishi families. Let F be a w-family and let ¢ € T' be a parameter. Denote JF|aan
the analytic germification of F at ¢, which can be endowed with a Teichmiiller structure ®aan.
We say that F is Kuranishi at t if classt (F|aan, ®aan) is an isomorphism. The notion of being
Kuranishi at ¢ does not depend on the choice of ®aan. We say that F is Kuranishi if it is
Kuranishi at each t € T. Notice that if X" is an algebraic Kuranishi family, then for any
labelling, the classifying map class(FX") is dominant and a finite possibly ramified cover onto
its image.

For any stable n-pointed genus-g curve (C, D¢), there exists an algebraic Kuranishi family
.7-"(KC"“" o) With central fiber (C, D¢). Moreover, we have (see [ACG11, Rem. 6.6, p. 208]):

Proposition 2.3.1 (Universal property of Kuranishi families). Let (C, D¢) and ‘7:(%“}'30) be as
above. Let ]:(/C De) be an algebraic family with central fiber (C, D¢). Then there are

a connected Zariski open neighborhood A’ of t;, in T';

a connected finite étale cover p : (A" t() — (A, t;); denote .7-"(”C’DC) = p*]:(/QDc);

a morphism q : (A", ) — (T, to) and
e an isomorphism f : f(”c’DC) = q*}"(%}jgc) with f* = idan.
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2.4. Universal isomonodromic deformations. Let again (C,D¢) be a stable n-pointed
genus-g curve. Let (Ey, Vo) be logarithmic w-connection over C' with polar divisor D¢

Isomonodromic deformations. A w-isomonodromic deformation of (C,Ey,Vy) is a
tuple Z(¢, gy,vo) = (F(o,pe), B, V, V), where
® Fic.po) = (k: X —=T,D,to,v) is a w-family with central fiber (C, D¢),
e (E,V) is a flat logarithmic w-connection over X with polar divisor D and
o (V) : (Eo —» C, Vo) = (E — X,V)|x,, is an isomorphism of w-logarithmic con-
nections, i.e. ¥ : Ey — E|x, is a w-vector bundle isomorphism over ¢ : €' — Xy,
satisfying U* (V|x, ) = V°.

Let Z (¢, gy,v,) and IEC,EO,Vo) be two w-isomonodromic deformations of (C, Ey, V). A mor-
phism | : Zic gy vy — IEC,EO,VO) is a datum | = (f,, 1), where (§¢,§*) is a morphism
]:(/C, Do) F(c,pe) s in Section 2.2 and P is a morphism of w-vector bundles over f¢ with
V =tV

An algebraic isomonodromic deformation Zc g, v,) of (C, Eo, Vo) as above is called regular
if moreover (E,V) is regular (with respect to a suitable meromorphic structure at infinity).
The definition of regularity can be found in [Del70, Th. 4.1]. Putting this regularity condition

on Z(¢, g, v,) may be seen as a way of standardizing algebraic isomonodromic deformations, as
illustrated by the following statement.

Lemma 2.4.1. If (Ey, V) is mild and Z(c,Eo,vo) S an algebraic isomonodromic deformation
of (C, Eo, V), then the analytification of Lic g, v,) is isomorphic to the analytification of a
reqular algebraic isomonodromic deformation IEC Fo,V0) of (C, Ey, Vo).

This Lemma will be proven in Section B.2] where we will also recall the notion of mildness,
which is a minor technical condition.

~

Analytic universal isomonodromic deformations. Let ¢ : (¥,,Y") — (C,D¢) be
an orientation preserving homeomorphism. Consider the universal Teichmiiller family f;fn =
(Fgn» Pg.n). We shall denote

Fon = (kgn: X = T D); Rgn: (39, Y") X Tgn = (X, D)5 to:=[C,De,p) € Ty -

By the definition of F

i g,m’
]:(Tc‘?glc) = (Fy,nsto, %) is an analytic family with central fiber (C, D¢), which moreover is

we then have an isomorphism ¢ : (C, D) = (X, Dlx,, ). In particu-
lar,

topologically trivial and has simply connected parameter space. The inclusion <I>g_}b oo of
the topological fiber at ty then defines an isomorphism

(7) Agn = m1(Zg \ Y™, 50) = m((Zg \ Y") X Tgn, (40, %0)) -

Now let [py,] be the monodromy of (Ey, V) with respect to ¢. The representation py, can
then be trivially extended to a representation p of m((X4 \ Y™) X Tgn, (yo,t0)). It turns out
that the conjugacy class of this “extended representation” is the monodromy representation,
with respect to ®, ,,, of a certain flat logarithmic connection (£, V) over X with polar divisor
D such that the pullback *(E, V) restricted to X}, is canonically isomorphic to (Ey, V). We
obtain the universal analytic isomonodromic deformation

T = T ..

Its construction has been carried out in [Heul0], using Malgrange’s Lemma (see [Mal83]) and the
fact that 7, is contractible by Fricke’s Theorem. It satisfies the following universal property: if
I(/(l EoVo) = ( (’ C.De)’ E', V', W) is an analytic isomonodromic deformation of (C, Ey, V), and
if A’ is a sufficiently small neighborhood of its central parameter t{,, then there is a morphism
q: (A t)) = (Tgn,to) and a canonical isomorphism

! ~ kguniv,an
(B0, Vo) |7 = L (¢,
10



The construction of this analytic universal isomonodromic deformation and the proof of its
universal property rely on the fact that up to shrinking the parameter space, analytic families
of curves are topologically trivial and have simply connected parameter space. This is of course
no longer the case in the algebraic category, the “extension of the monodromy representation”
of (C, Ey, Vp) being the main challenge.

Algebraic universal isomonodromic deformations. An algebraic universal isomon-

odromic deformation of (C,Ey,Vy) is an algebraic isomonodromic deformation Iélgig’oalgo) =
(Fe,pe)s B, V,¥), where Fe p.) = .7-"(%“}50) is an algebraic Kuranishi family with central fiber

(C,D¢). Note that an algebraic universal isomonodromic deformation of (C, Ey, V() does not
need to exist; its existence is precisely the subject of Theorem [Al When it does exist, it satisfies
the following universal property, which will be proven in Section

Proposition 2.4.2 (Universal property of universal algebraic isomonodromic deformations).
Let (C, Ey, Vo) and Iélgjgﬁl%o) be as above. Let Tiq . .y be another algebraic isomonodromic
deformation of (C, Ey,Vy). Assume that

e (Ey, Vo) is mild;

e the monodromy representation of (Eo, Vq) is irreducible;

univ,alg /
* Lo myve) M4 L g, v, ore both regular.

Then there are
e a connected Zariski open neighborhood A’ of t(, in T';
e a connected finite étale cover p : (A" 1)) — (A, );
denote (}-(”C,Dc)’E”’v”’\I’”) = p*Iéc,Eo,Vo);
e a flat algebraic connection (L,&) of rank 1 over A" with empty polar divisor;
e a morphism q : (A", () — (T,ty) and

e an isomorphism f : ( (”C,Dc)’ (E", V") @ k"™ (L,£),¥") — q*I(ug’iE’Oatléo) with f = idan.

Remark 2.4.3. 1t is not possible without further assumptions to prove a similar statement for
initial connections (Ey, V() with merely semisimple monodromy representations.

3. FUNDAMENTAL GROUPS AND THE RIEMANN-HILBERT CORRESPONDENCE

In this section, we shall see that if we allow finite coverings of the parameter space and
avoid some proper closed subsets, then any algebraic family of pointed curves can be endowed
with a section avoiding the punctures. The existence of such a base point section allows us to
decompose the fundamental group of the total space of the family of curves into an semi-direct
product of the fundamental groups of the central fiber and the parameter space. Together
with the logarithmic Riemann-Hilbert correspondence, this will be used to prove the universal
property of universal algebraic isomonodromic deformations.

3.1. Splitting of the fundamental group.

Lemma 3.1.1 (Existence of a base point section). Let F¢ p,) = (k: X = T, D, tg,%) be an
algebraic family as in Section[Z2. Let xo be a point in C'\ Dc. Then there are

e a connected Zariski open neighborhood A of ty in T and

e a connected finite étale cover p: (A',t)) — (A, to)
such that for ]:(/C,Dc) = (k' : X' = A, D' t},,), defined by ]:/C,Dc) = p*F(c,De), there exists

(
a section o of K" with values in X'\ D' such that o(t,) = ¢'(x).

Proof. Since X is embedded in some projective space PV, by Bertini’s Theorem, there exists
a hyperplane H of PV which intersects X;, transversely, is disjoint from D)| X;, and satisfies

Y(zg) € H. Since H is ample, we have deg(X; N H) > 0 for each ¢ € T. In particular,
11



H N X; # @ for each parameter t € T. By irreducibility of T, there exists an irreducible
component 7" of X N H such that x(T") = T and ¢(z¢) € T'. Now k|7 : T" — T is a connected
finite ramified covering. Denote by Z; C T its branching locus. Further, denote by Z5 the
adherence of x(T" N D). By construction, Z := Z; U Zy is a Zariski closed proper subset of T'
not containing to. Denote A := T\ Z and
A =N A)NT .

We now have t{, := ¢(zo) € A’ and

p = k|a (A 1)) = (A to)
is a connected finite étale cover. Consider the algebraic family .7-"('0’ Do) T P*Fc,pe)- By
definition of the pullback, its total space X’ is given by a fibered product

X' ={(2,) € X|-1(a) x A | 6(z) = p(t')}
and we have x' : X' — A’; (z,¢') = t'. On the other hand, A’ is a subset of X|,-1(a) by
construction and we can define a section o of k' by
o: A= X't (U, 1),
Since moreover A’ N D = & by the choice of Zs, we have o(A’) N D' = @. We conclude by
noticing o(th) = (1/(xo), th) = ¥/ (o). O
To fix notations, let us recall the definition of (inner) semi-direct products.

Let G be a group and A a subgroup. Assume we have a group B fitting into a split short
exact sequence of groups, as follows.

o
VRS

{1} A G B {1}

Assume further that the map A — G in that sequence is defined by the inclusion map. Then
A is a normal subgroup of G; for B := ¢(B) we have a natural morphism 7 € Hom(B, Aut(A))
defined by n(b)(a) =b-a-b~! for all a € A,b € B; we have a group A x,, B defined as the set

A x B endowed with the group law

(a’ ) b) : (a/ ) b/) = (a’ : n(b)(a’l) ) b- bl)
and the natural morphism A x, B — G defined by (a,b) — a - b is bijective, allowing us to
identify G = A x,, B.
Lemma 3.1.2 (Splitting). Let Fo,p.) = (k : X — T,D,to,v) be an algebraic family as in
Section[Z2. Leto : T — X be a section of k such that o(T) C X° = X\D. Denote C° := C\ D¢
and o := Y"1 (o(tg)). Then
(8) 7T1(X0’ O'(t())) = ¢*7T1(CO’ xO) Xn O'*7T1(T, tO) s
where for all v € w1 (C°, x¢) and B € m1(T,to) we have

n(oB)(Wsy) = 0By oL,

Proof. Since o takes values in X°, we have a morphism of fundamental groups o, : 71 (T, to) —
71(X%, 0(tg)). From the embedding of the central fiber, we get the morphism v, : w1 (C°, zg) —
71(X%, 0(tp)) . Consider now the family of n-punctured curves given by x : X° — T. This
family is a topologically locally trivial fibration and the fiber over tq identifies, via 1), with CY.
Hence we have a long homotopy exact sequence

(X0, 0 () 2 (T ) — T (C0, o (to)) L (X0, o (to)) 2 mi (T, to) — {11

The maps o : m;(T,to) — m;(X°, 7(to)) are sections for the corresponding . and we may

derive the following split short exact sequence:
O x

{1} — (€O, 0) —= w1 (X0, 7(t0)) == my (T, to) —= {1} 0
12



Given a decomposition (), the monodromy representation of the flat connection underlying
an isomonodromic deformation can be seen as an extension of the monodromy representation
of the initial connection. When does such an extension exist, and is it somehow unique? Again
we need a little group theory.

Lemma 3.1.3 (Extension of representations). Let G = A x,, B be as before and let ps €
Hom(A, GL,C) be a representation.

e There exists a representation p € Hom(G, GL,C) such that p|4 = pa if and only if there
exists a representation pp € Hom(B, GL,C) such that for all (a,b) € A x B we have

palb-a-57) = pu(b) - pa(a) - pu(b).
o Let p,p € Hom(G,GL,C) be representations such that p|a = p'|la = pa. Assume that
pA is irreducible. Then there is A € Hom(B, C*) such that

p=r@p .

The proof of this Lemma is elementary and will be left to the reader. A similar statement
can be found in [Coulbal Lem. 1]J.

3.2. Logarithmic Riemann-Hilbert correspondence. Let us briefly recall some notions
and results from [Coulbal, allowing to construct isomonodromic deformations from extensions
of monodromy representations.

Denote by D the unit disc around 0 in the complex line and denote by V the trivial vector
bundle of rank r over ID. Its sheaf of holomorphic sections shall be denoted by V = &;_,Op. A
(logarithmic) transversal model is an analytic logarithmic connection (V,¢) over D with polar
locus {0}. It is called a mild transversal model if any automorphism of the locally constant
sheaf ker({|p\fo}) is obtained by the restriction to D\ {0} of an automorphism of the sheaf V.
The isomorphism class of a transversal model is called a transversal type. Accordingly, a mild
transversal type is the transversal type of a mild transversal model.

Let X be a w-manifold, and let D C X be a normal crossing hypersurface. Denote (D;);cr
the irreducible components of D. Let

p € Hom(m (X \ D), GL,C)

be a representation and £ be a locally constant sheaf over X \ D with monodromy p. For each
i € I, choose a holomorphic embedding f; : D < X such that f;(ID) intersects D; transversely
exactly once, at f;(0), a smooth point of D. We say that a transversal model (V,&;) is compatible
with p at D; if its monodromy is isomorphic to the one of f L. This is a well defined notion,
independant of the choice of f;. By isomorphism invariance, this adapts to a notion of compatible
transversal type. Compatible mild transversal models always exist, e.g. one can choose non-
resonant models.

Assume we have a flat w-logarithmic connection V over X, with polar locus in D. By
[Coulbal, Prop. 3.2.1], the transversal type defined by fV is independant of the choice of f;,
it depends only of D; and V. It is called the transversal type of V at D;. The connection V is
said to be mild if for every component D;, the transversal type of V at D; is mild.

Theorem 3.2.1 (Logarithmic Riemann-Hilbert). Let X be a w-manifold, D a normal cross-
ing divisor on X and p : m (X \ GL,C) a representation. For each i € I, let (V,&;) be a
mild transversal model compatible with p. Then up to isomorphism there is a unique flat w-
logarithmic connection (E,V) over X with polar locus D such that

e the monodromy of (E,V) is given by [p] and

e for each i € 1, the transversal type of V at D; is given by (V,&);

o if “w = algebraic”, then (E,V) is regular.
Proof. The proof of this theorem in the analytic category can be found in [Coulbal Section
3.2]. We only need to check that it also holds in the algebraic category. So assume now X is

a smooth irreducible quasiprojective variety. By definition, there exists a smooth irreducible
13



projective variety X containing X as a Zariski open subset. Denote by ﬁj, j € J, the irreducible
components of X \ X and by ﬁl the Zariski closure of D; in X for each i € 1. By Hironaka’s
desingularization, we may suppose that D= Y iciug D is a normal crossing divisor. Moreover,
since X \ D = X \ D, p defines
p = p € Hom(m (X \ D),GL,C).

For each j € J, choose an arbitrary mild transversal model (V &) on (ID) 0) compatible with p.
Then there exists an analytic logarlthmlc connection (Ean Van) over X with polar divisor D by
the analytic statement. Since X is projective, this connection is however analytically isomorphic
to an algebraic logarithmic connection (E V) on X by GAGA [Ser56, Prop. 18]. Since any
logarithmic connection on X restricts to a regular connection on X (see [Del70, Thm 4.1]),
(E,V) = (E’, @)] x has the desired properties. It remains to show uniqueness up to algebraic
isomorphism. By the analytic statement, we already know that the (analytic) isomorphism class
of (E*", V") is unique. Yet any analytic isomorphism between regular algebraic logarithmic

connections V1, Vo over X is algebraic, for the isomorphism can be seen as a horizontal section
of V1 ® V3, which is regular by [Del70, Prop. 4.6]. O

3.3. Proof of the universal property. Lemma 241 stated in Section 2.4] implying that
under suitable generic conditions, algebraic universal isomonodromic deformations, if they exist,
may be chosen to be regular is now an immediate consequence of the logarithmic Riemann-
correspondence. Moreover, we are now able to prove their universal property, also stated in

Section 2.4]

Proof of Lemma 2.4 Let Zc g, vy) = (Fc,pe) B>V, ¥) with Fo poy = (k: X =T, D, to,7)
be an algebraic isomonodromic deformation of (C, Ey, Vy). Let p € Hom(m1(X \ D, zg), GL,C)
be a representative of the monodromy [p] of (E,V). For i € [1,n], let D; be the component
of D passing through ¢ (z;). Since by assumption (C, Ey, Vq) is mild, Theorem B:2.1] yields a
regular algebraic connection (E’, V') over X with polar divisor D, monodromy [p] and the same
transversal types as V at the components (Dz‘)z‘e[[lm}]- Moreover, also by Theorem B.2.T], there
is an isomorphism W : (E, V)|x,, = (E',V')|x,,- Then Lic By vy = (Fie,pe), BV, o) is
a regular algebraic isomonodromic deformation of (C, Ey, V() and there is an analytic isomor-
phism (E**, V") ~ (E*"V'*"). In particular, the analytification of Z¢ g, v, is isomorphic to
the analytification of ZEC, Fo.Vo): O

Proof of Proposition [2.4.2 Let I(uéugalé ) = (]:(K“r o)’ E,V,¥) be a regular algebraic universal

isomonodromic deformation of (C, Ey, V() with parameter space (T,%p) and let IEC, Fovo) =
( (’07 Do)’ E',V' V') be a regular algebraic isomonodromic deformation of (C, Ey, V() with pa-
rameter space (17,¢(). By Lemma BT} up to shrinking, there is a connected finite étale cover
p:(T,i) — (T,tg), such that for ]:(%“}5 =D ]:(%uf) )» there is a section o : T — X avoiding
the marked points. Since .7-"(Kur o) is still Kuranishi, by the universal property of Kuranishi fam-
ilies, up to shr1r~1k1~ng7 we have a connected finite étale cover p : (T",t;) — (1”,t(,), a morphism
q:(T",t5) — (T, to) and an isomorphism

11 / K
f ]:CDC) :P*}-(C,Dc) f(CuBc)
In particular, o lifts to a section o” := f*G*o : T" — X" avoiding the marked points of

(C De)
Denote by

o, p € Hom(m (X" \ D" ,0"(t))), GL,C)
representatives of the conjugacy classes of the monodromy representations of (E"; V") and
f*@*p*(E, V) respectively (with respect to the identity). By the Splitting Lemma B2, we
have
m (X" \ D", 0" (t)) = ¢im(C \ D¢, xo) 3y o w1 (T, t5) .
14



Moreover, if py, denotes a representative of the monodromy representation of (Ey, Vo) (with
respect to the identity), then p” and p could be chosen so that

P iy (\De o) = Plusrm (O\Dezo) = Vi PVo-

Since py, is irreducible, by Lemma [B.1.3] there is a representation A € Hom(m (1", t3),C*)
such that A® (¢”)*p” = (¢”)*p. By the Riemann-Hilbert correspondence, there is a regular flat
algebraic connection (L, &) of rank 1 over 7", without poles, whose monodromy representation
is A~!. The monodromy representation of its lift £”*(L,¢) is the trivial extension of o”*A~! to
a representation ¢, (C'\ D¢, o) xy, oym(T",t;) — C*. Now the monodromy representations
of (E";V") @ &"*(L,€¢) and f*¢*p*(E,V) coincide. Both connections are regular, have same
monodromy representations and same transversal models, given by (Ey, V(). Hence they are
isomorphic by the logarithmic Riemann-Hilbert correspondence. U

4. THE MONODROMY OF THE MONODROMY

In this section, we introduce the so-called group of mapping classes of a w-family, which is the
image of a canonical morphism from the fundamental group of the parameter space of the family
to the fundamental group of the central fiber. For an isomonodromic deformation, the action on
the monodromy representation of the initial connection by the group of mapping classes of the
underlying family of curves corresponds to the monodromy of the monodromy representation.
Under suitable conditions, this group can be canonically translated into a subgroup of I .

4.1. Mapping classes of the central fiber. As usual, let (C,D¢) be a stable n-pointed
genus-g curve. Let Fc p,) be a w-family with parameter space (7',%). Let §: [0,1] — T
be a closed path with end point tg, i.e. a continous map such that 5(0) = (1) = tg. By
[Hus94, Cor. 10.3], the pullback bundle *(X, D) — [0, 1] possesses a topological trivialization
®:(C,D¢) x [0,1] = B*(X, D). For s € [0,1], we denote

Oy = @|(c,pc)x{s)
and deduce a homeomorphism from the central fiber seen over {1} to the central fiber seen over
{0} given by
v odgo CIDII o :(C,D¢g) = (C,Dg).
Its isotopy class shall be called the mapping class associated to 8 and Fc p.) and denoted

WAPF ) () -
Lemma 4.1.1. The mapping class mapr ., (B) is well defined, i.e. it does not depend on the

choice of a trivialization ®. Moreover, mapg ., (B) only depends on the homotopy class of 3.

Proof. For fixed f, take two trivializations : ®,® : (C,D¢) x [0,1] = *(X, D). The family
Ppod;lod, o @' gives an isotopy from &g o &' to dg o 51_1.

Consider now two paths 81 and By that are homotopic relative to their endpoints. By definition,
there exists a continuous map H : D — T, where D denotes the closed unit disc, such that
Ba(s) = H(e™(+9)) and Bi(s) = H(e!"(17)). Since D is contractible, by [Aus94, Cor. 10.3],
there is a trivialization ® of H*(X, D). It induces trivializations ®% of 87X for i = 1,2. Since
they are both induced by ®, we have &} = CI% =®_; and & = ®? = P,. O
Proposition 4.1.2. Let Ficp,) = (k : X — T,D,ty,9) be a w-family as in Section [2.2
Assume that none of the fibers (X, D|x,) has exceptional automorphisms. Let x be a labelling
of Do and denote cl : T — Mg, \ By the corestriction of the induced classifying map class(F).
Then there exists an orientation preserving homeomorphism ¢ : (X4,y") = (C,x) such that for

all B € m (T, ty), the following equation holds in Ty, /Kgr,
o omapz, , () o = tautga(cl:B),

where tauty , is the tautological morphism tauty, : m(Mgp \ Bgn,*) = Tgn/Kgn (see [@))
and * = [C, x].
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Proof. Fix an orientation preserving homeomorphism ¢ : (£4,y") = (C,x) and denote
*:=[C,Dc, ) € Tym -

As usual, denote f;fn = (Fgn,Pgn) the universal Teichmiiller curve F,, = (kgn : X —

Ty D) endowed with the Teichmiiller structure @, : (34, Y™) X Ty, — (X, D). For any point
t € Ty,n, we shall denote

Y™ = Pyl yryxiny + (Bg, Y™) x {t} = (X, Dlx,) -
Let p: (T,19) — (T, to) be a universal cover and denote
F=F:X—T,D):=p"(k: X - T,D).
Now for any contractible analytic submanifold AcCT containing t, there is a trivialization
$:(C,Dc)x A5 (X,D)|x
of F |X, unique up to isotopy, such that &)fo = ¢ with respect to the pullback identification

(X50,§|§£0):(XtO,D|XtO). Setting Ft := (‘7-"|£, ® o ($ x id)) defines an analytic family with

Teichmiiller structure. By the universal property of the Teichmiiller curve, we have an isomor-
phism § = (idx, ¢, f'°P) fitting into the following commutative diagram.

ftop

(B, V™) x A (B, V™) x A
EIV>o(<E><id)\L lclasﬁ(f*)*q’g,n
()Z',ﬁ)]g f: claser(]?*)*(X,D)

“,{J/ lclaser(]?Jr)*fig,n
A A

By commutativity of the diagram, we have §*°P = fg:p X idx up to fiberwise isotopy. Define

9) p=po (f'iop)fl

: 7 .
Now let [8] € m1(T,to) \ {1} and consider 3 : [0,1] — T, the lift of 3 with starting point Z.
If the representative S of the homotopy class [3] is well chosen, then E is a C*°-embedding.
By existence of tubular neighborhoods, there is a contractible neighborhood A of to as above,
containing E . We claim that, up to isotopy,

(10) mapf(C’DC)(ﬂ) = CIDE(ll) o®d; .

Indeed, we have 5*(X,D) = (po 5)*(X,D) = B*p*(X, D) = 5*()?,15) Since moreover f3 is
an embedding, we have 5*(X, D) = (X, D)| 5(o.1)- The claim then follows from the fact that
P~ lo 550 is the identity and from the definition of the mapping class.

Denote B = class+(.7? P B, which is a path in 7, with starting point *. By our definitions,
the black part of the following diagram is commutative.

Fo(@x {io})

~

(85, Y") x {io} LD (5, 7m) % (B(1))

top |2 a |2 2| e 2 | stop
i o lfﬂ(l) T3

to
s (D) - () Dl ) = (50, V") x {B(1))
* B(1)

(X~ D’)?go) - (Xg(l)aD‘)ZN )

~

(Xg, Y7) x {*}



We define

> -1
(11) ¢ - f%(l) © (f?o) )
so that adding the gray arrow maintains this commutativity. Since f%o(li) is isotopic to f;gp, the
following equations hold up to isotopy:
0 ® = fodyop
g,n _ a ~~
Yo = Tow ° P °#

On the other hand, cl,3 is a closed path in M ,, \ By, with end point . By construction, it

lifts, with respect to the forgetful map 7, to 8, with (0) = %. By definition of the tautological
morphism tauty ,, we thus have, for [h] := tauty ,(cl.f) € T'gpn/Kgn:

[h] ’ [X%D|X;aq)g7 ] |:XA D|X ‘1)%78)] '

Note that 1Z induces an isomorphism of pointed curves with Teichmiiller structure. By the
definition of the action of the mapping class group on 7, ,, we now have

g7n —
) o &Y ] - [2{

[h] - [X;, Dl,, @] = [h] - [X Dlx.

Dl o ®IM o pt
31y’ ¥ *

B(1)’ B(1)’ By’

Hence there is an element [k] € K, such that, up to isotopy,
7o HIN _ HIN
o @ —@B(l)ohok:.
Combined with (1) and ([I2]), this implies up to isotopy,

N -1
iy ° Yo =wohokop,

which by (I0) and the definitions of h and k yields the desired result. O

4.2. Splitting and the mapping class group. Let Fcp.) = (k : X — T,D,to,7) be a
w-family of n-pointed genus-g curves as in Section Assume there is a section o : T —
X0 := X\ D of k. Then we can define a w-family of n + 1-pointed genus-g curves .7-"(’07 De) =
(k: X — T,D®, to,v) by setting D* := D +o(T) and D, := D¢ + x¢, where ¢ := ¢~ (0(tp)).
To a labelling x = (x1,...,2,) of Do we can associate a labelling x°® := (21,..., 2y, o) of Dg.
Note that if a fiber of F* has exceptional automorphisms, then the corresponding fiber of F
also has exceptional automorphisms.

Proposition 4.2.1. Let (C, D¢) be a stable n-pointed genus-g curve. Let .7-"(’0 D) = (k: X —

T,D®, tyg, ) be a w-family of n + 1-pointed genus-g curves as above. Assume that none of the
fibers of F* has exceptional automorphisms. Let x* be a labelling of D¢, as above. Denote
cl®*: T — Mg i1\ Bgnsi1 the corestriction of the induced classifying map class(F*).

For a suitable homeomorphism ¢ : ($4,y™,yo) — (C,x,0), we have

(13) 7T1(X0, J(tO)) = (T;Z) o SD)*Ag,n Ay O'*7T1(T, 750) )
where for all « € Ay, and € m (T, 1), we have

77(0-*/8)(¢ o Qp)*a) = 048" (T;Z) o SD)*OZ : U*B_l
= (o). altautyi(clh, ) (o).
where, as we recall from the introduction, a(h)(a) = hya for all h € Ty i1 and o € Ag .
Proof. Since 2g — 2+ n > 0 by assumption, we have K, 1 = {1} according to Lemma ZT.Il

Then by Proposition [4.1.2] for a convenient choice of ¢, the following equation holds in I'y ;11
for every 8 € m (T, o).

(14) 80,1 o map re (B) o p = tauty ni1(cl®f)

(¢, D)
17



Denote C? := C'\ D¢. We claim that for any v € m,(C°, zg) and any 3 € 71(T, o), the following
equation holds in 7 (X°, o (tp)).

(15) ¢*map]_— (/8)*7 =048 - Puy - 0'*,871

(C,Dg)
Indeed, let v : [0,1] — C° be a closed path with end point xo. For any sq € [0,1], we
have a closed path 75, := 7 x {so} in the product space C° x [0,1]. We also have a path
6:[0,1] — C°x [0,1]; s = (x0,s). The path §-~; -6~ is closed and homotopic to vy. Now
let 8 € (T, tp) and let @ : (C9, xg) x [0,1] = B*(X°,0(T)) be a trivialization commuting with
the natural projections to [0, 1]. Define the homeomorphism

d:=do (((I)Il 0 1)) X id[o 1]) : (CO xo) X [0, ] B
(

(X0, 0(1)),
B). Since & is continuous, the

which is a trivialization. We have 51 1 and <I>0 = Y,map e os)
closed paths @,y and ®,0- <I>*71 -®,6~! are homotopic in 8* (XO o(T)). Considering the natural
projection & : 8*(X°,a(T)) — (X°,0(T)), we have £, ®,(70) = Pox(7) and k@, (11) = P1.(7).
Since moreover /f*fi*(e) = 0,3, we have (I5).

Since ¢ is a homeomorphism, the induced map ¢, : Ay, — 71 (C°, ) is an isomorphism.
The statement then follows from (I4]), (I5) and the Splitting Lemma 1.2 . O

5. NECESSARY AND SUFFICIENT CONDITIONS FOR ALGEBRAIZABILITY

We shall see in Section [5.2] that Theorem [Alis a corollary of the juxtaposition of [Theorem ATl
showing that our algebraizability criterion is necessary, and [Theorem A2l showing that it is also
sufficient. We have already established the main ingredients for the proofs of both theorems.
For [Theorem A2l we moreover need a representation-theoretical result developed in Section G511

5.1. Extensions of representations.

Proposition 5.1.1. Let py € Hom(Ay ,, GL,C), such that either r = 2 or pa is semisimple.
Let (U,ug) be a smooth connected quasi-projective variety, and let € Hom (w1 (U, ug),T'gn41) be
a morphism. Assume that H = Im(0) stabilizes [pa] € Xgn(GL,C). Then there are a Zariski
closed subset Z C U \ {ug}, a connected finite étale covering p : (V,vg) — (U \ Z,ug) and a
representation pp € Hom(m1(V, vg), GL,C) such that, for all B € m(V,vp), o € Ay, we have

(0(p<B) 7] - pa) (@) = pB(B) - pale) - p(B7).

Proof. Let us first consider the general semisimple case. Let pa = @, pi‘ be a decomposition
such that each pi‘ is irreducible. By a general fact for group representations acted on by
automorphisms of the source group (see for example [Coul5al Lemma 3]), the subgroup

ﬂ Stang,n+l [p%A] - Stang,n+1[pA] )

i€l
stabilizing the conjugacy class [pil] for each i € I, is of finite index. Hence the subgroup
H' := H Neg Stabr, ., [pY4] is of finite index in H. Consider now the finite connected Galois
covering p’ : (W, wp) — (U, up) characterized by plmi (W, wg) = 6~1(H’). Note that p’ induces
a structure of smooth quasi-projective variety on W. Since H' stabilizes [pf;‘], for every h € H'
and every ¢ € I, there is a matrix M}, € GL,,C such that

(16) (M) iy M} = [B] - py
Given i and h, the choice of M fl is unique up to an element of the centralizer of p’y. Since pY

is irreducible, this centralizer is given by the set of scalar matrices. Denote by M ,’L € PGL,,C

the projectivization of M}L € GL,,C. Then pg' : 3 Mg*p, 3 is a well defined element of
Hom (71 (W, wo), PGL,,C). According to the Lifting Theorem [Coul5bl Th. 3.1], there exists a
Zariski closed subset Z’ of W not containing wg, a connected finite étale cover
P’ (Vo) = (W Z',w)
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and a representation piy € Hom(m(V,vp), GL,,C) whose projectivization is p”*pg’. For a
convenient choice of p”, this property is satisfied for all 7 € I at once. We obtain a representation
pB = Dicr pls in Hom(m(V,vg), GL,,C) satisfying the required properties with respect to
p:=p op’and Z :=p/'(Z).

Now consider the case r = 2. Since we have already treated semisimple representations, we
may assume that pa is not semisimple. Hence up to conjugation, we may moreover assume
that p4 takes values in the group of upper triangular matrices Upp C GLyC. Since H = H’
stabilizes [p4], we also have (I6]), for i = 1, p} = pa and suitable elements (M), of Upp.
Again, M ,1 is not uniquely determined by this property, but for every h, there is a unique choice
with M} € Aff(C) (see Lemma below), these choices determine the sought representation
pp € Hom(m (U, ugp), Aff(C)). O

The rank 2 case in the above proposition is special, due to a particular property of affine
representations. Consider a representation p € Hom(Ay,, Upp), where Upp is the group of
invertible upper triangular matrices of rank 2. To such a representation, we may associate two
other ones : the scalar part pc- : o — p(a)2,2 and the affine part pag == p ® ,0(6*1 The latter
takes values in

Aff(C) := {(a;;) € Upp | az2 =1}

which is isomorphic to the affine group of the complex line.

Lemma 5.1.2. Let p; € Hom(Ay,, Upp) with i = 1,2 be non semisimple representations. If
these representations are conjugate by some element in GLoC, then they are conjugate by a
unique element of Aff(C).

Proof. Since they take values in Upp, both representations p; and po leave the line span(e;) of
C? invariant. By non semisimplicity, for each of the representations, there is no other globally
invariant line. Let M = (m; ;) € GL2C conjugate both representations. Then A must leave
span(e;) invariant, i.e. M € Upp. As the scalars are central in GLoC, the element M/msg o
gives the desired element of Aff(C).

The conjugacy implies that both representations have the same scalar part. Consequently,
an element of Aff(C) conjugates p; to po if and only if it conjugates their affine parts. Non-
semisimplicity for p; implies that the image of its affine part is a non abelian subgroup of Aff(C),
which, consequently, has trivial centralizer. Whence the uniqueness assertion. O

5.2. Finiteness and algebraization.

Theorem A1l. Let (C,D¢) be a stable n-pointed genus g-curve as in Section [23. Let ¢ :
(24,Y™) 5 (C, D¢) be an orientation preserving homeomorphism. Let (Ey, Vo) be an algebraic
logarithmic connection over C with polar divisor Do and denote by [pv,] € Xgn(GL,C) its
monodromy with respect to . Let T gy v,) = (]:(C',Dc)’ E, V., W) be an algebraic isomonodromic

deformation of (C, Ey, Vo) with parameter space T as in Section [2.4] Assume that
e (C,D¢) has no exceptional automorphisms and
o the classifying map class(F) : T — My, is dominant (see Section[Z.3).
Then the I'y ,-orbit of [pv,] in xg.n(GL-C) is finite.

Proof. Since x := class(F)(to) € My \ By, by assumption, up to restricting Z¢ g, v,) to
a Zariski open neighborhood A of ty in T, we may assume that class(F)(T) N By, = .
Notice that this property, as well as the assumption of class(F) being dominant is not altered
by finite covers and further excision of strict subvarieties not containing tg. According to
Lemma B.T.T] up to further restricting and up to considering the pull back p*Z¢ g, v,) With
respect to a convenient connected finite étale cover p : (T7,t() — (A, tp), we may assume that
F,pe) = (k: X — T, D, tg,9) admits a section ¢ : T — X of x with values in X%:=X\D
such that o(tg) = 1 o (yp). Denote by p a representative of the monodromy representation of
(E,V) with respect to the identity such that the restriction of p to the subgroup (¢ o ¢).Agn
of w1 (X, 0(tg)), given by the inclusion of the central fiber, is identical to (1 o ¢).pv,. Such a
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representative exists, as implies for example Theorem B2l Since the I'y ,-orbit of [py,] does
not depend on the choice of ¢, we may assume that ¢ is convenient in the sense of Proposition
4271 We then have a semi-direct product decomposition

(X%, 0(t0)) = (¢ 0 @)eAgp Xy aum1 (T, o)
where we have two different expressions for its structure morphism 7, proving that
H :=tautg n1(cl®mi (T, tg)) C Lgni
acts on py, € Hom(Ay,,GL,C) by conjugation. More precisely, for all a € Ay, and [h] =
tautg,41(cl®s B) € H, we have
pvo (a(h) (@) = p(a4f) - pvy(a) - plof™)

and in particular [h~1] - [py,] = [pv,]- In other words, H is a subgroup of the stabilizer of [py,]
in I'y ,41. By definition of the mapping class group action, we then have

n(H) C Stabr, , [pv,],

where 7 : I'y ,41 — I'g 5, is the projection forgetting the marking yo. Since the size of the orbit
Lyn - [pv,] equals the index of Stabr, ,[pv,] in 'y, it now suffices to prove that 7(H) has
finite index in I'y,,. Denote by ¢ : I'y,, = I'y n/ Ky n the quotient by the normal subgroup K,
which, by Lemma 2. T.T] has order at most 2. Hence for the indices, we have

[Cyn:m(H)] <2-[Cyn/Kgn:q(r(H))].
We have a commutative diagram

tauty p41 0cl®x

Lyt w1 (T, to)
Wi \Ltautgm oclx
q
PQ’” ngn/ngn ?

where cl : T' — Mg ,\ By, »n denotes the corestriction of class(F). On the other hand, by the dom-
inance assumption and [Deb01, Lemma 4.19], the subgroup cl, w1 (7', tg) of m1 (Mg \ Bgn,*)
is of finite index. In particular, since the tautological morphism taut, , : 71 (Mg \ Bgn,*) —
I'y /K4y is onto, the subgroup ¢(m(H)) = tauty ,(climi (T, to)) of I'y /Ky » has finite index. O

Theorem A2. Let Fiop.y = (k: X — T,D,ty,9) be an algebraic family of stable n-pointed
genus-g curves with central fiber (C, D) as in Section[Z2. Let (Ey, Vo) be an algebraic logarith-
mic connection over C' with polar divisor D¢ and denote by [pv,] € Xg,n(GL,C) its monodromy

with respect to an orientation preserving homeomorphism ¢ : (£4,Y™) 5 (C, D¢). Assume that

e (C,D¢) has no exceptional automorphisms,

e (Ey, Vo) is mild,

o 1 =2 or py, is semisimple, and

o the I'y n-orbit of [pv,] in xg.n(GL,C) is finite.
Then there are

e q connected Zariski-open neighborhood A of tg in T,

e a connected finite étale cover p: (T',ty) — (A, to) and

e a flat algebraic logarithmic connection (E,V) over X' := p*X with polar divisor p*D,
such that V*(E, v)’Xé/ is isomorphic to (Fo, Vo).

0

Proof. Up to shrinking (excision of Zariski closed subsets not containing the central parameter

to) and up to pullback under connected finite étale covers of the parameter space T', we may

assume, by Lemma BT that there is a section o : T — X of x with values in X° := X \ D

and such that o(tg) = v o p(yp). With the notation of Section 42 we may consider the

family of n + 1-pointed genus-g curves ]:(.CvD'c) =(k: X = T,D+0(T),tg,1p). Let x* be
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the labelling of D = D¢ + ¢(yo) induced by ¢. Note that by assumption, we have x :=
[C,x°*] € Mgni1\ Bgnt1. Altering neither D2, nor the labelling, nor the orbit I'y,, - [pv,], we
may assume that ¢ is conveniently chosen in the sense of Proposition 21l We then have a
semi-direct product decomposition 71 (X \ D,o(to)) = (¢ 0 ¢)«Agn Xy oxm1 (T, to), where

(0B (1 0 9)sa) = 04+ (1 0 )war- 0,7 = (Y 0 p),a(6:8)(c)

and 0 := tautg 41 0cl® T (T, tg) = Lgnp1-
Since the I'g ,,+1-orbit of [py,] in x4n(GL,C) is finite, the stabilizer

H = Stabrg,n+l [pv()]

of the conjugacy class of py, under the action of I'y 41 has finite index in I'y, 1. Since the
tautological morphism is onto, the subgroup taut;,IHI(H) of m1 (Mg nt1\Bg,n+1,*) then has also
finite index. In particular, there is a finite connected étale cover ¢ : (U, ug) — (Mg n+1\Bgnt1, %)

such that 71 (U, up) = tautg_;l +1(H). Now consider the fibered product

(T', th) —2— (T 1)

\L \L class(F*®)

(U, up) —2> (Mgps1, ).

We denote the pullback family of curves by ]:(/C,D'C) =K : X' = T,D +d(T),t,¢) =
p*]:(°c Do) We further denote cl’ = cl® o p, which is the corestriction of class(F’). By construc-
o]
tion, the morphism ¢ := 6 o p = taut, 41 o cl's : w1 (1", ¢)) — [y pni1 takes values in H.
Again up to shrinking and finite connected étale covers of (17, (), by Proposition 5.I.1] there
is a representation pp € Hom (7 (1", t()) such that for all 8 € m(T",t(), o € Ay, we have

([628)7" - pwo) (@) = pB(B) - pyo(@) - pr(B71).
Since by definition ([6,8]7! - pv,) (@) = pv,(a(6.8)(a)), we obtain a well defined representation

{ m(X'\D',o'(t;)) — GL,C
' (W op)ea-alf = py,(a)-pa(B)

(see Lemma [3.1.3]) with respect to the semi-direct product decomposition w1 (X’ \ D', o' (t)) =
(¥ 0 @)y n Xy olmi (T, ;). By construction, p extends py,. We conclude by the logarithmic
Riemann-Hilbert correspondence (see Theorem B.2.T]). O

Proof of Theorem [Al Let us first prove the implication (Il) = (). Let I(uéljg’(iléo) = (]:(Ié‘ﬁ)c), E,

V,¥) be an algebraic universal isomonodromic deformation of (C, Ey, Vg) as in Section 241
Then by definition, the family ‘7:([871}'30) is Kuranishi. In particular, the classifying map class(FXu) :
T — Mg, is dominant. Then by [Theorem AT the Iy ,-orbit of [py,] in x4, (GL-C) is finite.
Let us now prove the implication () = (). Let ‘7:([871}'30) = (k : X = T,D,to,9) be
any algebraic Kuranishi family with central fiber (C, D¢) as in Section Note that such
a family exists since (C, D¢) is stable, and that it remains Kuranishi after pullback via a
connected finite étale cover of a Zariski-open neighborhood of the central parameter. Up to
such a manipulation, according to [Theorem A2] the family ‘7:([871}'30) can be endowed with a
flat algebraic logarithmic connection (E,V) over X with polar divisor D such that there is
an isomorphism ¥ : (Ep, Vo) — (E,V)|x,, commuting with ¢ via the natural projections to

(C, D¢) and (Xy,, D|x,, ) respectively. Now Zzlg’i;’oatléo) = (]:(Ié‘ﬁ)c), E,V,¥) defines an algebraic

universal isomonodromic deformation of (C, Ey, Vo) (see Section 2.4)). O
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Part B. Dynamics
6. EFFECTIVE DESCRIPTION OF THE MAPPING CLASS GROUP ACTION

In this section we describe the action of f‘g,n on Ay, in terms of specified generators for both
groups.

6.1. Presentation of the fundamental group. To give an effective description of A, , and
how fg,n acts, we will assume that X, is the subsurface of genus g of R3 depicted in Figure [Il
On this surface we also depicted, in gray, an embedded closed disk A C %, we will denote A
its interior. We fix n and we consider a subset Y™ = {y1,...,y,} C A of cardinality n, as well
as a point g € A\ A. We have

7"-l(zg\AayO) = <O[1’Bla--- aag’ﬁg’(s ‘ [al’ﬁl] [O‘gyﬁg] = 571>a

where the mentioned generators correspond to the loops in Figure [I1

FIGURE 1. Preferred elements of the fundamental group, 1

The loops in Figure 2] correspond to the following presentation.

ﬂ-l(A\Yn7y0) = <'717---7'7n75 ‘ Y1 In :5>

Yo

FIGURE 2. Preferred elements of the fundamental group, 11

By the Van Kampen theorem, we have
Ay = m(S\Ayo)*s T (A\Y", y0)
= <a1aﬁ1,---,0¢gaﬁgm,---,% [ = ([al,ﬁl]---[ag,ﬁg])*ly
In the sequel, writing “the generators” of A, ,, we will refer to the above

(2)ieqr,g) » (Bi)ieqngl » (Vi)jeqnng -
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6.2. Mapping class group generators. We define I’; to be the mapping class group of ori-
entation preserving homeomorphisms of 3\ A that restrict to the identity on OA. Continuating
such homeomorphisms by the identity on A, we get a morphism
1 -
g : Ty =175,

After Lickorish [Lic64] (see also [FMI2, Th. 4.13]), the group I'} is generated by the (right)
Dehn-twists along the loops 71, ..., T34—1 represented in Figure 3l

FIGURE 3. Dehn-twists
A right Dehn twist acts on paths which cross the corresponding Dehn curve as depicted in

Figured This action can be summarized as “a path crossing the Dehn curve has to turn right”.
A left Dehn twist is the inverse of a right Dehn twist.

M

FIGURE 4. Dehn-twist action

One can now easily check the following.

Lemma 6.2.1 (Dehn-twists). The action of the Dehn twists above on the fundamental group
(g \ A, yo) is given in Table B, where we only indicate the non-trivial actions on the gen-
erators. Here for Top_1 we give the formula for the left Dehn twist. The other gemerators all
correspond to right Dehn twists. Moreover, for k € [1,g — 1], the element Oy, described in
Table Bl is fized by Togr.

o ke[l g] ap = agBy
k-1 k€ [1,4] Bk = Brag
Togrk k€[l,g—1] [ aki1 — O aks
(073 — ak@k
Bk = 0, ' BkO
where Oy = ak+1ﬂk_i1ak_:i1/8k
TABLE 3.
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On the other hand, one can define the mapping class group of orientation preserving home-
omorphisms of A that preserve the set Y™ and restrict to the identity on OA. It is classically
called the braid group on n strands and denoted B,. Continuating such homeomorphisms by
the identity on the complement of A in ¥, we get a morphism

©o Bn — f;,n'
After Artin [Art25], the group B, is generated by half-twists o1,...,0,_1, whose action is
depicted in Figure

Yo

B
g

FIGURE 5. half-twists

Lemma 6.2.2 (half-twists). The action of B, = (01,...,0n—1) on the fundamental group
(A \ Y™, yo) is described in Table M, where we only indicate the nmon-trivial actions on the
generators. Moreover, Table, indicates the action of ooye == op—10---001 € By, and some of
1ts powers.

o, kel,n—1]wm = WVt
Y+l 7 Yk

Ocycl 4! = 6’7n5_1
i€ [2,n] Vi = Y-l

Ufyd ke [1,n]
1€ [[1, /{7]] Yi — 5’yn+i,k5*1
JER+Ln] v = -k

TABLE 4.

Remark 6.2.3. Note that 0., is almost a cyclic permutation of the generators of 71 (A\ Y™, yo).
More precisely, it acts as such on the representations p that satisfy p(d) = id, e.g. representations
with abelian image.

By construction, the subgroups ¢y (B,,) and wg(F;) of f;n commute, and we have a morphism
B, x T} 7287 e

Composing with the canonical map « : f;n — fg,n (forgetting that yg is fixed) yields a mor-
phism B, x I‘; — I’y n, which is not surjective. In order to generate the whole mapping class

group f’g,n, it suffices to add min(0,n — 1) Dehn twists, namely the ones corresponding to the
loops T3y, ..., T3g4n—2 of Figure [d (see [EM12), Sec. 4.4.4]). We call them mizing twists.

Lemma 6.2.4 (Mixing twists). The action of the (right) mizing twists T3g, ..., T3g1n—2 on the
fundamental group Ay, is described in TableB], where we only indicate the non-trivial actions on

the generators. Moreover, for k € [1,n — 1], the element =, described there is fived by T3g—11k-
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T3g— l+ :

T3g—1+k+1

FIGURE 6. Mixing twists

T3g—1+k ke [[1,77, — 1]] Qg OégEk
/Bg = E]; Bguk
i€ [1,k] Yi o~ B tvEk
where e o= (%) 1ﬁg
TABLE 5.

The twists, mixing twists and braids we introduced all fix 5. We denote by f;,n the subgroup
of f;,n they generate. If ¢ = 0, then we have f;,n = B,,. We are interested in the case g > 0,
where we have

9, = (r,0;|i€[l,3g—1+min(0,n—1)],j € [L,n—1]).

As mentioned, the image of I'y ,, under 7 : 'y, — Iy, is ['g .

Remark 6.2.5. We did not call § = ~; - -y, = ([, B1] - - [ag, By]) ™" & generator of the funda-
mental group. It will nevertheless be usefull to recall that among our preferred generators of
I'? ., only the mixing twists act non trivially on §. More precisely, for k € [1,n — 1] we have

g,ns
T3g-141(0) =[5, Bl0 .

7. AFFINE REPRESENTATIONS WITH FINITE ORBIT

We have now established an explicit description of the full mapping class group action on Ay ,,,
which is resumed in Table 2l This descriRtion at hand, we will now classify affine representations
p € Hom(Ag,,, Aff(C)) with finite orbit I'y 5, - [p] in xg.n(Aff(C)) for g > 0:

e We establish that for those representations p € Hom(Ay,,, Aff(C)) such that the group
Im(p) is abelian, the orbit I'y ,, - [p] is finite if and only if Im(p) is finite (see Proposition
[C1.2).

e We then consider representations p € Hom(Ay ,, Aff(C)) such that the group Im(p) is
not abelian. We classify all finite orbits in this case in three steps.

— We give a necessary condition for the finiteness of 'y, - [p] in Lemma

— We prove that in the genus one case, this necessary condition is also sufficient (see
Proposition [7.3.7]).

— We prove that in the higher genus case, this necessary condition can be enforced
(see Lemma [T4]]), and this enforced necessary condition cannot hold for every

conjugacy class [p/] € fg,n - [p]. We conclude that in the higher genus case, there
are no conjugacy classes of non abelian Aff(C)-representations with finite orbit

under Iy ,, (see Proposition [.4.2]).
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The group Aff(C) = {(a;;) € GL2(C) | a21 = 0, aze = 1} identifies with the group {z — az +
b|aeC*be C} of affine transformations of C. For shortness, its elements will be denoted as
polynomials az + b. Our explicit calculations are easier to check with the following formulas in
mind.

(Az)o(az+b)o(X2)"! = az+ b
(z4+c)o(az+bo(z+¢c)! = az+b—cla—1)
Az+caz+b = z—cla—1)+(A—=1)b

Also, recall that by definition, for all 7 € f;,n , p € Hom(Ay ,, Aff(C)) and o € Ay, we have

(7 p)@) = p(r. ).

7.1. Abelian case.

Lemma 7.1.1 (Finding a non trivial subgroup). Let g > 0, n € N. Let G be a group with

identity element id and let p : Ay, — G be a representation. Assume that for any p' € f‘;m - p,
we have

p(ag) =1id.
Then p is the trivial representation, i.e. Im(p) = {id}.
Proof. Note that our assumption on p is f’;’n—invariant, so that anything we prove for p also
holds for any p’ € I'g - p- We denote
R = (p'(0g), p'(Bg),- - P (1), p'(B1)), 8" = (' (), (m))-

o

e First step: for any p' € fgm - p, the group R’ is trivial.
For k € [1, g], define the following property, which we shall denote H (k):

For any p' € f;,n - p, the group Ry = (p'(ag), 0 (Bg)s- -, p (ar), P (Br)) is trivial.

Let us first prove that our assumption implies H(g). Consider 7 := 7'2_91 and p) =71 p.
Then o/(ay) = platgBy) = p(By). We have p'(ay) = play) = id, hence p(B,) = plag) =
id. By I'y ,-invariance, we have H(g).
Let now p be a representation satisfying H (k). In particular, we have
plai) = p(Bi) =id Vi€ [k, g].

For of =7 p, with 7 =75} | we have p/(aw) = p(B owbBe) = p(Br—1) .
For p/ =7 p, with 7 = (Tog_3 0 Tag+x—1) "', we have p'(ag) = p(Br—1a_1) "
Hence p satisfying H (k) implies

pla;) = p(Bi) =id Vie [k—1,9].

As H(k) is f;m—invariant, this proves H(k — 1). We conclude by noticing R’ = R].
e Second step: for any p’ € f;,n - p, the group S’ is trivial.
If n = 0 or n = 1, there is nothing to prove. Assume n > 1. We have already proven that
R’ is trivial for any p’ € 'y - p. In particular p'(6) = id. Considering, for i € [1,n],
the action of 7 = (O‘?y;; o 73g+n,2)_1 on ¢y then shows that for p' = 7-p we have
id = p'(ag) = p(7:) (see Table @ page 24)). Hence
{p(y1), -+, plom)) = {id} .

Since the assertion is f’;m—invariant, we have proven that S’ is trivial for any p’ € f;,n -p.

We conclude that Im(p) = (5", R') = {id}. O

Proposition 7.1.2 (Abelian case). Let g > 0. Let p: Ay, — Aff(C) be a representation such
that the group Im(p) is abelian. Then the orbit of the conjugacy class [p] under the action of
Iy, is finite if and only if Im(p) is finite.
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Proof. If Im(p) is finite, then the orbit f’;,n - p is finite. A fortiori, the orbit f;,n - [p] is finite.
Assume now that p is abelian and the orbit of [p] is finite. Since Im(p) is an abelian subgroup
of Aff(C) it is, up to conjugation, either a non trivial subgroup of the translation group

{z—2z+c|ceC}CAff(C),
or it is a subgroup of the linear group
{z—= Xz | A e C*} C Aff(C).

e Im(p) cannot be a non trivial translation group.
Indeed, if it would be the case, by Lemma [Z.T.I], we might assume p(ay) # id. Up to
conjugation, we would then have

(3)- (1)

for a certain ¢ € C. Considering the action of 77" with 7 := 7541 :

—m g\ _ Qg _ [ &z F 1
T ’O<Bg> ’O<ﬁga?> (z—i—c—i—m ’
we would deduce that, for m # m/, the conjugacy classes of 7™ p and 7™ - p are distinct.

Hence f;,n - [p] would be infinite, yielding a contradiction.

e IfIm(p) is a subgroup of the linear group, then it is finite.
Note that two distinct linear representations are not conjugated. For any i € [1,g],
finiteness of the orbit under (7;) yields that p(3;) is torsion. Similarly, considering
(T2i—1) yields that p(«;) is torsion for all ¢ € [1,g]. For j € [1,n — 1], finiteness of the
orbit under (734_14;) yields that p(vy1...7;) is torsion. Consequently, ~; is torsion for
all j € [1,n —1]. Hence
Im(p) = <p(ai)’p(/8i)’p(71) | S [[1’9]] » J€ [[Ln - 1]]>

is an abelian group generated by finitely many torsion elements, whence the conclusion.

(]

7.2. Preparation lemmata.

Lemma 7.2.1 (Finding a non abelian subgroup). Let g > 0. Let p : Ay, — Aff(C) be a
representation. Assume that for any p' € Lo n - p, the subgroup

(P/(O‘g)no/(ﬁg»
of Im(p) is abelian. Then p is an abelian representation, i.e. Im(p) is abelian.
Proof. Denote
R;a‘ = <pl(ag)v p,(ﬁg)7 s 7p/(ak)7 pl(ﬂk» , 8= <p,(71)7 e 7p,('7n)> :

e First step: For any p’ € f‘;,n - p, the group Ry is contained in the center of Rj.
For k € [1, g], define the following property.

H(k): | For any p' € f;n - p, the group R is a subgroup of the center of R}

By assumption, we have H(g). Assume now H(k) is proven. In particular, R, :=
(plag), p(By)) is a subgroup of the center of Ry := (p(ag), p(Bg), -, plak), p(Br))-
Note that H (k) is 'y ,-invariant. Hence in order to prove H(k — 1), is suffices to prove
that R, is also a subgroup of the center of Rj_;.

For p/ =7 p, with 7 = 7—27g£rk71’ only one of the generators of Ry is modified, namely

p'(ar) = p(By b awBr) = p(Be—1) " plarBr) -
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In particular, we have p'(84) = p(By). Then H(k) implies that p(8,) belongs to the
center of (Ry, R}) = (Rk, p(Br—1)) . For p" = 7' p, with 7/ = 7 o 75, 5, we have

o (ar) = p(Br-10%-1) " ploxBi) -

Then H(k) implies that p”(8;) = p(By) belongs to the center of (Ry,R}) =
(Ry, p(Br—1—1)). We have now proven that for any representation p such that H (k)
holds, p(f4) is an element of the center of

Rip_1 = (Ry, R}, RY).

This assertion applied to 7'2_91_1 - p shows that p(By0y) is an element of the center of
Ry_1. Hence Ry = (p(By), p(Bgeyg)) is a subgroup of the center of Rjy_;.

Second step: For any p’ € f’;n - p, the group R’ := R} is abelian.

If R is trivial, then in particular it is abelian. If R’ is non trivial, then by the first step in
the proof of Lemma [Z.1.7], we can find 7/ € f’;n such that for the induced representation
p" =171"-pwehave R” = R" and Ry is non trivial. Hence by the first step of the current
lemma, R’ has a non trivial center. Yet any subgroup of Aff(C) with non trivial center
is abelian.

Third step: For any p' € f’;n - p, the group R/g is a subgroup of the center of Im(p').
We have now proven that under our assumption, R’ is abelian for any p’ € f;n -p. In
particular, p(0) = id. Recall, from Remark [6.2.5] the action of the mixing twist 73g.n—2
on 4. It is given by & — [B, 167, 1, By]6.

Hence, for p' =7 p with 7 = (a?y_cf 0 T394+n—2) 1, we have

P6) = [p(B5 1) p(B)] = [p(By) ™2 p(i) 7Y

(see Table @l page [24]). Consequently, p(3,) centralizes S := (p(v;) | i € [1,n]). Yet we
could have applied the same argument to p” = 7’ - p, where 7/ = 7'2_91_1 is the inverse of
the Dehn-twist 8, — B40y4, and we would have obtained that p(84ay) centralizes S. It
follows that R, centralizes S. By fgm—invariance of the statement, we deduce that for

any p € f’;yn - p, the group R centralizes Im(p’) = (R', S').

Fourth step: Im(p) is abelian.

If p is the trivial representation, there is nothing to prove. Otherwise, by Lemma [Z.T.]
there is a representation p’ € I'y ,, - p in the orbit of p such that R}, = (p'(ay), p'(8y)) is
not the trivial group. On the other hand, we have proven that R’g is a subgroup of the
center of Im(p'). Hence Im(p) = Im(p’) is abelian.

O

Lemma 7.2.2 (Prepared form). Let g > 0. Let p: Ag,, — Aff(C) be a representation. Assume

that Im(p) is non abelian and f’g,n - [p] is finite. Then up to the action of a certain element of
the mapping class group and up to conjugation, p is of the following “prepared form”

Qg pmnez
By z4+1
pl o [=1| w™zta |,
Bi z+b;
Vj z ¢

forie[l,g—1] and j € [1,n], where p € C*\ {1} is a root of unity, mgy,m; € Z, a;,b;,c; € C
and "9 #£ 1.

Proof. According to Lemma [[.2.1] up to the action of an element of the mapping class group,
we may assume p([ag, Bq]) # id. Since I'y,, - [p] is finite, the linear part py;,, of p also has finite
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orbit. After Proposition [.I.2] pj;, takes values in a finite cyclic group (u) € C*. Hence for
each i € [1,¢g], we have

plai) = p™z+ai,  p(Bi) = p™z+bi

for integers m;,n; € Z and complex numbers a;,b; € C. Consider the actions of 7, L and Tiil
on (m;,n;) (the other exponents are not altered) :

1 0 my;

1 1 T,

_ m;

7'2;1 < n;>

= 1 m; 11 m;
2 n; 01 n;

These actions generate the action of SLeZ on (m;,n;) € Z*. If (m;,n;) # (0,0), then m; :=
ged(mg, ;) is a well defined positive integer. Let p; and ¢; be integers such that p;m;+q;n; = m;.

The matrix
<_pé i) € SLoZ

m; m;

then sends (m;,n;) to (m;,0). Hence, up to the action of a word in the twists (72i)ic[1,g];
(T2i-1)ie[1,9), We may assume n; = 0 for each i € [1,g]. The property p([ay,By]) # id is not
altered by such a word, hence u™¢ # 1. Up to conjugation by an element of Aff(C), we may
moreover assume

(3)-(231)

For j € [1,n], let ¢j,d; € C be defined by p(v;) = d;z + ¢j. For k € Z, consider the action
of T;k

k Qg oz + ke ptaz
noep| By | = 2 +1 ~| z2+1 1y
ol djz + ¢ djz + ¢ — kg

For these sequences of normalized triples to be finite, we must have d; = 1 for each j € [1,n]. O

7.3. Non abelian case in genus one.

Proposition 7.3.1 (Non abelian representations for g = 1). Assume g = 1. Let p : Ay, —
Aff(C) be a representation with non abelian image (in particular n > 1). Then the orbit 'y, - [p]
is finite if and only if there is a root of unity p # 1 and ¢ := (c1,...,¢,) €C" with Y ;" j¢; =1
such that [p] € fg,n - [pu,cl, where p, c is the representation given by

1 .
Pue(0) =123 pue(Br) = 2= 7= pucln) =2+e Vie[ln].

Proof. Recall that for g = 1, the fundamental group A, has the following presentation
Ag,n = <C¥1,,81,")/1, -5 In ‘ Y Y = [041751]> )

and the mapping class group fg,n is generated by the elements of Table[6l Assume [p] has finite

orbit, then by Lemma [[.22] we have f‘g,n [p] = f‘g,n - [pu,c] for a convenient choice of ¢ € C"
and a root of unity p # 1. Let us now prove that [p, | has finite orbit. Denote

N := order(u); D¢ == pZei + ...+ e, .
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T1 S = Biag
P’ aq = a1
Torh =Ty 0Ty, ke€[Ln—1]lar +— 185
B e L BE
i€ [1,k] Vi = 2 vEk
where =k = (m...%) B
of icl,in—1] | v = YY1y
Vil i
TABLE 6.
Denote the following sets of tuples of affine transformations
gl . ke ki,ko €Z, ki & NZ,
wd = ged(ky, ko, N) = 1
o s Hkil ki,ks €Z, ky& NZ,
pod uh2z ged(ky, ko, N) =1
z+ ¢ (61,...,én)EGn-(cl,...,cn),
Ru,c,d = . G € ,U,Zéi Vi € [[1,77,]],

z+Cn d=2?:15i

Moreover, we set S, 4 := S}h Y Si 4~ Then by definition, we have

aq Pa
b1 ©3 »1
Pu,c a! IS Ou,c = U ¥1 < Po > e Su,d, S R,u,c,d
: deD : ve
: ¢ : ¥n
Tn Pn

Note that O, is a finite set, and we will prove that each conjugacy class in the orbit of p, ¢
under the action of the mapping class group has a representative in O,, .. We shall denote [O,, ¢]
the image of O, ¢ in x4, (Aff(C)).
o The set [Oy.c] is stable under the inverses of 71 and To.
In order to prove this first assertion, it is enough to prove that the sets S}h 4 and Si d

are stable under the action of 7 L and Ty ! modulo conjugation by translations. Let

k1
aq w2 1
= €S,
,0< B1 > ( MkQZ_ ,ﬁ1d_1 ) pod

Then

and

ki+k pkid
il O )= o R
2 b pk2z — uk1d—1

To see that, up to conjugation by a translation, this image also belongs to S, 4, we need
to distinguish two cases. Firstly, if k1 + ko € NZ, then ko ¢ NZ and we obtain

k1+k k1d _d_ d

pk QZ_ZL%—l B Z+M’“2—1 N Z+E ESQ
ko d - ICQZ_ d ~ ko H,d
pEe = Rl K uF1—1 nz
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Secondly, if k1 + ko & NZ, then we obtain

ki+kz, _ _pMd k1+ko
1% < 11 - 1% < c st
koo d ~ MkQZ 4 Hyd
Mz ;,Lkl -1 Mk1+k2_1

In a similar way, one can show that up to conjugation by translations, we have 7, ! -Si 4 C
S,.,a and ’7’51 . Sﬁ - SZ.

The set (O, ¢] is stable under the inverses of o1,...,0n_1.

Indeed, for every p € Oy, the group (p(71),...,p(vn)) is a translation group. In
particular, it is abelian. Hence the elements o; act as permutations. But permutations
stabilize the set R, ¢ 4.

The set [Opc| is stable under the inverse of the modified mizing twist To1y for every
kell,n—1].

Note that for k£ € [1,n — 1], up to a common conjugation by p(Zj), the representation
p = 7~'2;1k - p may be described as follows, where =5, = (71 ...7%) ' f1.

P (o) = p(Epaa By )

P (B1) = p(Br)

P (vi) = p(vi) i€ [1,k];
p() = pE,E,")  Jelk+1n]

In the following calculations, i represents an index less or equal to k (if such an index
exists) and j represents an index greater than k.
Assume first that p(ay,B;1) € S} .d- Then

o ke )
B1 phzz — 2 - k
= pi =1 and Br) = pu'?z —
2 e g p(Zx) = p k1—1 ;z
i zZ+ Ej
Hence
a phrz+d— Y5 6 pkz
k d k d
p/ /81 — lu’ 22_ “kl—l ~ lu’ 22_ ﬂkl 1 ,
Yi z+ ¢ z+ ¢
i z + uk2é; 2+ uh2é;
where
k k n
i=1 i=1 j=k+1

since d = Zle ¢ + Z?:k-H ¢;. In other words, up to conjugation by a translation, we
have p' € Opc. By an almost identical argumentation, we show that if p € O, ¢ with
plar,B) € SEL 40 then 7~'2;1k - p is also in O, modulo conjugation.

Since every element of f’;n induces a bijection of x4 ,(Aff(C)) and we have proven that [0, c]

is stable under 7, * for every i € [1,n 4 1] and O'j_l for every j € [1,n — 1], these generators of

I'y », induce bijections of

[Ope] C xgn(AH(C)).

Hence [0, c] is also stable under 7; for every ¢ € [1,n 4 1] and o, for every j € [1,n — 1]. We
conclude that the orbit f‘g,n puel = f‘;,n - [pu,c] is contained in the finite set [0 c]. O
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7.4. Non abelian case in higher genus. We are now considering the case g > 1, and arbitrary
n > 0. Recall that A, , then contains the group

G = <05g71a ﬁgfla Qg, ﬁg> C Ag,n
and I'y , contains a subgroup

N Mo
H = <7—2g73, T2g—2,T2g—1,T2g; 7_3g71> C Fg,n

acting on G as summarized by Table [1

Tok kelg—1,9]| o = B
-1 k€fg—1,9] | Bk = Brag
T3g—1 a, — O7lq,
Qg—1 > 049_1@
Bg—l = 671/89—1@
where © = agﬂglaglﬂg_l
TABLE 7.

Lemma 7.4.1 (Elimination criterion). Let g > 2. Let p: Ay, — Aff(C) be a representation of
the following “weak prepared form”

ay wmez
By | z2+1

(19) p ag—l - ,umg_lz + a 9
Bg—1 24+0b

where  is a root of unity, a,b € C, mg,mgy_1 € Z and p™9s # 1. If fg,n - [p] is finite, then the
conditions of Table® are fulfilled.

‘H

mg_1

I
a
b =

I
O O

TABLE 8.

Proof. Note that if two representations p, p’ of the form () are conjugated, then they their
restrictions to G are equal. Assume

ay wnez
By | z2+1
ag1 | | pz4a
Bg—1 24+0b
Now consider the action of 7'2;]1 o for k € Z:
ay wnez
k. ﬂg B z+1
29—2 P Qg1 - Mmg_1z +a+k- ,umg—lb
Bg—1 Z2+b

Since the suborbit (7_2;52 - [p])k is supposed to take finitely many values, we have .

Now consider the action of T?:q]i 1- We have

Qg Wz + kpme pmez

T?;Jk—l P /89 = ZT—YLF—ll mg+mg_ ~ i 2mg+mg_1 _, mg
Qg1 Pz 4@ — kpMat e pretz ta =k Py
/89—1 z z
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As the corresponding suborbit is supposed to be finite, we have | y™9-1 = =™ |,

. ~ 1 L -1
In order to conclude, consider T34_1 = 7~ 0 T34—1 © T, Where 7 := Tyy_3 0 Tog © Tog—1 © T2g- We
have

Qg @_ka @k
-k By B,0"
7'39_1* : — ~L s
Oég_l ch_l@
Q—k -1 ok Qk
Bg—1 C] ﬁg,lozgfl@ ag_10

where © := 7-;1@ = a;lﬂg_la;_ll. We have
p(ék) =z—k-a.

Hence, modulo conjugation by p <€)k>, we have

Qg Qg Mmgz
Ok
ik By <) (:)ﬁg _ z+1—-k-a
3g9—1 ag 1 @k%_l u’}lg 2+ (1—k)-a
5971 597105;711@]%)@,1 z—k- aumg

Provided 1 — k- a # 0 (which is the case for an infinite number of k € Z anyway), we obtain

mgz
Qg 2
B z+1
T351° P I ~ 1 (1-k)-a
g— —k).
Qg—1 T z+ 1-k-a
59*1 2 1ﬁ}g.aﬂmg

Again by finiteness, we have . (|

Proposition 7.4.2 (Non abelian representations for g > 1). Assume g > 2 and n > 0. Let
p: Ny — Aff(C) be a representation with non abelian image. Then the orbit Ty - [p] is infinite.

Proof. Let g > 2 and let p be a representation with finite orbit modulo conjugation. Let
us assume for a contradiction that p(Ag,) is non-abelian. We may then assume that p is of
“prepared form” as in Lemma In particular, we may assume that p is of “weak prepared
form” and hence, by Lemma [7.4T] p satisfies the conditions of Table 8 In other words, we may
assume that p is of the following form.

Qg w2
By | 21
Qg1 %Z ’
/Bgfl z
where p # 1 is a root of unity. We have
Qg Kz + Qg Hz
—1 /89 — z+1 . -1 59 _ z+1
7_ . e ) 7— . 7— _ . pum—
3g—1" P g1 %Z -1 2g ( 3g—1 p) g1 %Z -1
Bg—1 2 Bg—1 2

Now 194 © 7-3;1_1 - p is also of weak prepared form, but is not compatible with the elimination
criterion of Table 8, whence the contradiction. O
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8. REDUCIBLE RANK 2 REPRESENTATIONS WITH FINITE ORBIT

Theorem [Bl concerns representations p : Ay, — GL2C that are reducible, i.e. that globally
fix a line in C?. A particular case of reducible rank 2 representations are those that are totally
reducible, i.e. that globally fix two distinct lines in C?. In [Theorem BIl, we will prove the
statement in the totally reducible case, and in [Theorem B2, we will prove it in the reducible
but not totally reducible case. The juxtaposition of these two results yields Theorem [Bl First,
we are going to estimate the size of finite orbits of conjugacy classes of affine representation
under the pure mapping class group and prove the reduction to the affine case.

8.1. The size of some finite orbits. Note that since C* is abelian, we have a natural identi-
fication between scalar representations and their conjugacy classes: x4,,(C*) = Hom(Ag,, C*).
In particular, I'y ,, acts on Hom(A ,,, C*).

Proposition 8.1.1. Let g > 0,n > 0. Let A\ € Hom(A, ,,C*) be a scalar representation with
finite image. Then

(20) card(Tm(X\))* ! < card(T'y,, - A) < card(Im(\))?

Proof. Since Im(\) is finite, there is a root of unity p € C* such that Im(\) =
J € [1,n], choose an integer m; € Z such that A(y;) = u™. Denote N := order(u
t) e

k:=(kg,....,k1) €Z9, L:=(l,
gcd(kg,...,kl,ﬁg,...,61,m1,...,mn,N)—1 ’

u”. For each
)

O = {(u"“g,;/g, RUNTANTEY

Note that to any element (p%s, uls, ... u*1, uf1) € Oy we can associate a well defined representa-
tion X' € Hom(A,,,, C*) by setting N (o) = p*i; N(8;) = pb for all i € [1,g] and N (v;) = ™
for all j € [1,n]. In that sense, we can see Oy as a subset of Hom(Ag,,, C*).

We claim that 'y ,-A = Oy. Notice that this claim implies (20). Indeed, the second inequality
is obvious, and the first one follows from the fact that if we set for example k; = 1, then we can
choose all other exponents freely.

Let us now prove the claim. We clearly have A\ € O,. Each pure element 7 of f‘;m transforms
the generators 7; into conjugates ¢; 1~i¢. Since C* is abelian, this implies that for any represen-
tation A’ corresponding to an element of Oy, we have (7-\)(v;) = N (y;) = p™. Consequently,
[y yn-Ox = Oy and in particular I'y,, - A C O,

The orbits of T' ,, on X, ,(C*) = Hom(A,,,, C*) are the ones of f;,n' Note that the subgroup
H:=(r;]i€[1,3¢g — 14+ min(0,n — 1)]) C F;n is generated by pure elements. Translating
Table 2] into an action of f;n on the powers of u corresponding to the generators of A, then
yields the following.

(a) For a given (l;:g, ... k1) € {1,...,N}9 such that gcd(l;:g, o ki,mi, ... ,mp,N) = 1, the
subgroup (79;, T2;—1 | # € [1,9]) C H acts transitively on those elements of O, satisfying
ged(ki, £;) = k; for all i € [1,g] (see also the proof of Lemma [722).

(b) For all k := (kg,... k1) € {1,..., N} such that ged(k,,... Iz:l,ml, ..,my, N) =1, there
is an element of the subgroup (7’22, T2i—1, Tog+i | @ € [1, g]] i' € [1,¢ — 1]) € H, which
sends the element of Oy glven by k = (ged(ky, - - -, k1),0,...,0) and £ = 0 to the element of
O, given by k = k and ¢ = 0.

(c) The subgroup (135145 | j € [1,min(0,n — 1)]) C H acts transitively on those elements of
O, satisfying ¢ = 0 and k; = 0 for all i € [1,g — 1].
Consequently, the pure subgroup H acts transitively on Oy. This implies I'g,, - A = O,. O

Recall that we denote

(21) AR(C) = {(g i’)

a,beC, a#O}.
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Proposition 8.1.2. Let ¢ = 1 and let n > 0. Let p € C* be a root of unity of order
N > 1 and let ¢ = (c1,...,¢,) € C" with 31" ; ¢; = 1. Consider the representation p,c €
Hom(Ag,, Aff(C)) defined by

(0. (v ) . Voo (Lo :
Pu,C(al) = <O 1> ; pu,C(IBI) = <0 li ; Pu,C(%) —\o 1 Vi € [[1,”]]-
Its orbit T'y - [pu,c] is finite in x g, (AfF(C)). More precisely, we have
(22) S(N)(2N = ¢(N)) - N"' ! < card(Tg,n - [ppue]) < (N = N™T,
where n' := card{i € [1,n] | ¢; # 0} and ¢ denotes the Euler totient function.
Remark 8.1.3. Observe that the estimate ([22]) yields an equality if N is a prime number.

Proof. For convenience we shall represent the elements of Aff(C) by degree one polynomials
az + b, as in page Denote

D = ,chl +...+ ,chn ; Spd = S}L,d U Sid; Ryca; Ouc
as in the proof of Proposition [[L3.1l Moreover, denote

z4c ~ ;
pure ! ¢ € ple; vie [1,n]
w,e,d " : =
z + én d = Z?:l Ci
#1
orre = | ) { (0o 05,01, %) ( o > €Sua, | 1 | €RCY
d€Dc $n

We shall denote by [O,.c] and [Of¢ ] the respective images of O, ¢ and O}.c“ in x4, (Aff(C)).
By a slight refinement of the proof of Proposition [[.31], we have

(23) Lo - [puel € [OFE]-

Indeed, recall that the pure subgroup I'y ,, of f’g,n is the subgroup that respects the labellings

of the punctures. Each pure element 7 of f;,n transforms the generators ; into conjugates

C;lfy,(i. As we have p((;) = p™z + d for suitable m € Z, d € C, we deduce (7 - p)(v;) = p"¢;.

This proves the inclusion (23]).

Moreover, using Table [6] page B0, we can check successively:

(a) as observed in the proof of Lemma [[. 2.2 any element p = [, %2, 2 4 ¢1,... 2+ ] of [0y c]
can be transformed into an element p' = [z+d/(u—1), uz, 2+ ¢é1,. .., 2 + &) by an element
of (11, 72), where d = """ | &;

(b) for any j € [1,n], by the action of an element of B, = (o; | i € [1,n — 1]), the element p’
can be transformed into [z + d/(u — 1), puz,2 + ¢}, ..., 2 + ¢} ], where ¢} = ¢;, ¢; = & and
¢, =¢ for i # 1, 7;

(c) for any m; € Z, using a power of 73, we transform this latter element into [z+d’/(pu — 1), pz,
z4+p"idy, ...,z +d,], where d =d+ (p"™ — 1)¢;.

(d) reusing an element of B, one gets p’ altered only by replacing &; by p™i¢é; and d by d'.

This allows to infer that any element p = [*1,*2,2 4+ ¢1,...2 + &,] of [Oc] can be transformed
into [z +1/(u — 1), 42, 2 +¢1, ..., 2 + ¢,] by a suitable element of T'y,,. Reusing (@), we deduce
f‘g,n - [pue) = [Ope). The conjunction of this equality and the inclusion ([23)) yields

Lyn - lpue] = 07"

Denote by [S,, 4+ and [O¢“]; the set of equivalence classes of S, 4 and Of'¢ © respectively modulo
conjugation by translations. For each d € D, the cardinality of S, 4] equals the cardinality of

Ky = {(k1,k2) € [1,N]* | ged(k1, ko, N) =1} .
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Indeed, for {7, j} = {1,2}, the elements of Si,d that are not conjugated by a translation to an

element of Si 4 are precisely those corresponding to k; = 0 and ged(k;, V) = 1. We can estimate

HIN)(2N — §(N)) < card([Spal) < N2 — 1.
These inequalities are readily derived from the inclusions

{(k1,k2) € [1, N]* | ged(k1,N) =1 or ged(ke, N) =1} € Ky C [1,N]*\ {(0,0)}.

On the other hand, conjugations by translations act trivially on Rzug ¢ By definition of n’,
we have
pure _ /
card U Rmcd =N".
deDe
We deduce

S(N)(2N — ¢(N))N™ < card[On4°], < (N* — 1)N™ .

The condition > ; ¢; = 1 ensures n’ > 0. In particular, there is an index ig € [1,n] such
that ¢;, # 0. Up to conjugation by powers of the linear transformatlon wz, we can normalize

Gio = iy for each element in [0} )¢, which yields card[Of¢ ‘] = % card[O}%“]; . O

8.2. Reduction to the affine case. Consider the natural inclusion

L ((C*)2 — GLoC;  (a1,a9) — (al 0 ) .

0 as

Lemma 8.2.1. Let g > 0,n > 0. Let p € Hom(A ,,, GL2C) be a totally reducible representation.
Then there are scalar representations A1, A2 € Hom(Agy,,C*) such that [p] = [ti(A1,A2)] €
Xg,n(GL2C). Moreover, we have

(24) %max{card(l’g,n X)) | i€ {1,2}} <card(T'y - [p]) < card(Ly, - A1) - card(Ty - A2) .
In particular, the following are equivalent:

o I'y - [p] is a finite subset of xgn(GL2C).

o I'y - A is a finite subset of Hom(Ay ,, C*) fori=1,2.

Proof. The image of the map ¢, from Hom(A,, (C*)?) to x4.n(GL2C) is obviously the set of
conjugacy classes of totally reducible representations.

Note that by definition, the action of I'y,, on t,Hom(A, ., (C*)?), induced by the action on
Hom(A, », (C*)?), coincides with the action of I'y,, on x4, (GL2C). Moreover, we have

(25) % ~card(Ty n - (A1, A2)) < card(Lg, - [te(A1, A2)]) < card(Typn - (A1, A2)).

Indeed, the second inequality is obvious, and the first one follows from the fact that if [t (A1, A2)] =
[te(A], AL)] then either (A1, o) = (N[, A)) or (A1, A2) = (A5, \)).
On the other hand, we have

(26) max{card(I'yn-A;) | i € {1,2}} <card(I'g, - (A1, A2)) < card(Dy - A1) - card(T'g - A2)
We conclude by noticing that (25]) and (26]) imply (24)). O

Remark 8.2.2. The equality [p] = [tx(A1,A2)] € Xg,n(GL2C) in the above Lemma is commonly
written as p = A\ & Ay. We adopted this notation in the statement of Theorem [Bl and we will
use it in its proof.

Consider the natural inclusion

w: AFI(C) = {(8 i’)

a,beC, a#O}% GL,C.
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Lemma 8.2.3. Let g > 0,n > 0 and let p € Hom(Ag,,, GL2C) be a reducible but not totally
reducible representation. Then there is a unique A € Hom(Ay,,C*) and a unique conjugacy
class [pag] € Xg,n(AfF(C)) such that [p] = [A @ wwpag] € Xgn(GL2C). Moreover, we have

(27) max{card(I'yn-A),card(Ly - [pag])} < card(T'yn - [p]) < card(Ly,-A)-card(Tg, - [pag]) -
In particular, the following are equivalent.

o I'y - [p] is a finite subset of xgn(GL2C).

o I'y -\ is a finite subset of Hom(Ag ,, C*) and T'y .- [pas] is a finite subset of x4n(Aff(C)).

Proof. The unique decomposition statement has been proven in Lemma [(5.1.2]in Part A of the
present paper. This Lemma also yields (27)). O

8.3. Proof of Theorem

Theorem B1. Let g > 0,n > 0. Let p € Hom(Ay ,, GL2C) be totally reducible, i.e. p = A1 @ Ao
is a direct sum of scalar representations. The following are equivalent:

o the orbit T'y,, - [p] in xg,n(GL2C) is finite.

e the subgroup Im(p) of GLoC has finite order.

Moreover, if the orbit 'y, - [p] is finite, then its size can be estimated as follows:
1
(28) 5 max{card(Im(\;))2 ™! | i € {1,2}} < card(Ty, - [p]) < card(Im(p)) .

Proof. From Lemma B2.T] finiteness of the orbit Iy, - [p] in x¢,n(GL2C) is tantamount to the

finiteness of the orbits Iy, - A; C Hom(Ag,,,C*) for i = 1,2. Since [I'y,, : I'y ] = n! is finite,
finiteness of I'y ,, - A; is equivalent to the finiteness of f‘g,n - A;. Proposition establishes that
f’g,n - \; is finite if and only if Im();) is finite. This proves the equivalence in the statement.
The left inequality in (28] follows from Lemma [8.2.1] and Proposition [8.1.1]
Each pure element 7 of f; » transforms the generators 7; into conjugates. By abelianity, for

p ' =71-pandany i€ [1,n], we get p/(vi) = p(vi). We deduce the right inequality in (28). O

Theorem B2. Let g > 0,n > 0 and let p € Hom(Ay n, GL2C) be a reducible but not totally
reducible representation. The following are equivalent:

o the orbit Ty, - [p] in xg,n(GL2C) is finite.

e g=1,n>0, there are a scalar representation X € Hom(Ay ,,C*) and an affine repre-
sentation py.c € Hom(Ag,, Aff(C)) as in Proposition , such that

[p] € Fg,n : [)‘ ® pu,c] .

Moreover, if the orbit 'y, - [p] is finite, then its size can be estimated as follows:
(29)  max {N2 L (N (2N — ¢(N))N"’*1} < card(Ty,, - [p]) < (N2 — 1)N""IN2,

where n' := card{i € [1,n] | p(vi) € C*Ix}, N := order(u), Ny = card(Im(\)) and ¢ is the
Euler totient function.

Proof. From Lemma B.2.3] we know that [p] admits a unique decomposition [p] = [A ® pag],
where A is a scalar representation and pag is an affine representation. Moreover, since p is not
totally reducible, the affine representation pag has non abelian image. Still by Lemma B2.3]
the orbit I'g, - [p] C xg,n(GL2C) is finite if and only if the orbits I'y , - A C Hom(Ay ,, C*) and
Ly [pas] C xgn(Aff(C)) are finite. From Proposition [[.T.2] the orbit I'y , - A C Hom(Ay ,, C*)

A

is finite if and only if A has finite image. Since [I'y,, : I'g,] = n! is finite, finiteness of the orbit
Cyn-[pas] € Xgm(AfF(CT)) is equivalent to the finiteness of the orbit Ty, - [pag] C Xg.n(AfF(C)).
Since pag has non abelian image, by the Propositions and [[.3.7] the finiteness of the latter
orbit is equivalent to g = 1, n > 0 and [pag] € I'yy - [pu,er] for a convenient choice of a non

trivial root of unity u and ¢’ = (¢}, ...,c,) € C" with >_" , ¢, = 1. Composing with a suitable

»&n =11
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element of B,, shows this is also equivalent to [pag| € I'ypn - [pp,c), for some ¢ € &, - c’. This
proves the equivalence in the statement.

The estimate (29]) follows from Lemma [R:2.3] Proposition RI.1] and Proposition RI.2] taken

into account that

card{i € [1,n] | p(vi) &€ C* Iy} = card{i € [1,n] | pag(vi) # id} = card{i € [1,n] | ¢; # 0}.
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