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Abstract 
 
Regulated deformations of epithelial sheets are frequently foreshadowed by patterning of 
their mechanical properties. The connection between patterns of cell properties and the 
emerging tissue deformations is studied in multiple experimental systems, but the general 
principles remain poorly understood. For instance, it is in general unclear what 
determines the direction in which the patterned sheet is going to bend and whether the 
resulting shape transformation will be discontinuous or smooth. Here these questions are 
explored computationally, using vertex models of epithelial shells assembled from prism-
like cells. In response to rings and patches of apical cell contractility, model epithelia 
smoothly deform into invaginated or evaginated shapes similar to those observed in 
embryos and tissue organoids. Most of the observed effects can be captured by a simpler 
model with polygonal cells, modified to include the effects of the apicobasal polarity and 
natural curvature of epithelia. Our models can be readily extended to include the effects 
of multiple constraints and used to describe a wide range of morphogenetic processes. 
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Introduction 
 
Regulated deformations of epithelial sheets play important roles during tissue 
morphogenesis and can be driven by a variety of mechanisms, the simplest of which rely 
on spatial patterns of apical cell contractility (1-3). These prepatterns are commonly 
established by upstream signaling processes, which upregulate the activity of the 
actomyosin networks on the apical surfaces or apical edges in a subset of cells within the 
epithelium (4, 5). Intracellular nonuniformities in contractility trigger shape changes of 
individual cells, leading to three-dimensional (3D) deformations, such as localized tissue 
invaginations. This sequence of processes, from patterning of apical contractility, to 
spatially restricted cell shape changes, to 3D tissue deformations has been documented in 
a wide range of experimental systems (6-10).  
 
A canonical example is provided by the early stages of mesoderm invagination in 
Drosophila, where apical constriction of cells on the ventral side of the embryo 
transforms a convex epithelial shell into a more complex shape with an omega-like cross-
section (11). In this system the apical surfaces of epithelial cells are facing towards the 
rigid membrane surrounding the embryo. In another well-studied experimental model, the 
developing Drosophila egg chamber, the epithelium has opposite polarity, with the apical 
surfaces oriented towards the oocyte, which is enclosed by the epithelial sheet (8, 12). In 
this case, a two-dimensional (2D) patch of the follicle cells evaginates, bending in the 
direction of the membrane surrounding the egg chamber. This deformation is thought to 
be guided, at least in part, by the embedded contour of apically constricting epithelial 
cells.  
 
The general principles governing 3D deformations induced by patterns of apical 
contractility remain poorly understood. It is in general unclear what determines the 
direction in which the patterned sheet is going to bend and whether the resulting 
deformation will be discontinuous or smooth. Several mathematical and computational 
models have been proposed to explore these questions, but none of them are sufficiently 
versatile for analyzing the interplay of multiple physical and geometrical factors (6, 7, 10, 
13-18). For instance, multiple models have been used to describe the invaginations in the 
early embryos (6, 7, 10, 18). However, most of these models consider only a 2D cross-
section of the epithelial shell, which limits the class of shape transformations that can be 
analyzed.  
 
Here we provide what appears to be a minimal, yet physically realistic computational 
framework that enables systematic exploration of epithelial deformations induced by 
spatial patterns of active and passive cell properties. Our approach is based on the 
recently proposed energy formulation in which every cell is modeled as a prism with 
apical, basal, and lateral surfaces that can have different properties (19). We use this 
model to construct epithelial shells enclosing a fluid-filled volume and surrounded by a 
hard membrane, mimicking a scenario encountered in developing tissues and tissue 
organoids. We then use numerical continuation algorithms to explore how these model 
epithelial shells deform in response to the prepatterns of apical contractility. We find that, 
for most cases, the deformations are smooth, i.e. they happen without bifurcations, when 
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viewed as a function of the amplitude that characterizes the spatial pattern of apical 
contractility. We also demonstrate that a simpler 2D model, in which epithelial shells are 
constructed from polygonal cells, can describe the effects predicted by the 3D model and 
can be used to explore a wide range of morphogenetic processes.  
 
Materials and Methods 
 
3D vertex model 
 
Vertex models constructed from 3D cells have been proposed to study epithelial 
morphogenesis in multiple experimental systems (19-23). Based on these previous 
studies, we used the following energy functional to model an epithelial monolayer 
constructed from cells with distinct apical and basal surfaces (Fig. 1(A,B)): 
 

𝐸!! = 𝜎 𝑙! +! 𝛼 𝑆! + 𝛾 𝑆! + 𝐵 𝑉! − 𝑉!! !
!!!   .  (1) 

 
In this expression, the first term sums over all apical edges 𝑒, the second term sums over 
lateral surfaces 𝑙, the third term sums over basal surfaces 𝑏, and the last term sums over 
cells 𝑐 . The first term corresponds to the line tension along the apical edges of 
neighboring cells; 𝑙! is the edge length and 𝜎 is the apical line tension coefficient. The 
second and third terms correspond to the contributions from lateral and basal tensions, 
which are proportional to the lateral and basal surface areas (𝑆! , 𝑆!) with coefficients  𝛼 
and 𝛾, respectively. These coefficients model the resistance to deformation due to the 
cytoskeletal meshwork that underlies the surface. The last term penalizes the deviation of 
the cell volume, 𝑉! , from its target value, 𝑉!! , with compression modulus 𝐵  to 
approximate cytoplasmic incompressibility. For more details see Section S1 in the 
Supporting Material. 
 
In our 3D model, we define prepatterned apical edges to represent a contractile ring 𝑅 
embedded in the apical surface (shown in red in Fig. 2(A1), 3(A1)) or an apically 
constricting patch of cells 𝑃 (shown in red in Fig. 2(B1), 3(B1)). The first pattern is 
motivated by the embedded ‘compressive cable’ observed in follicle cells during 
Drosophila appendage formation and early sea urchin embryo, which displays 
localization of the motor protein myosin (8, 24). The second pattern is motivated by 
biological settings in which a group of cells are influenced by uniform actomyosin 
constriction across the apical surface (2, 25, 26). Apical edges belonging to the contour or 
the patch are assigned an apical line tension (𝜎 + 𝛤), which is larger than the apical line 
tension 𝜎 of the other non-patterned edges. This is implemented through an additional 
energy term for the prepatterned edges 
 
                                                               𝐸! = 𝛤 𝑙!!  ∈  !  !"  !  ,                                          (2) 
	  
where the index 𝑖 runs over all edges belonging to the apical ring 𝑅 or apical patch 𝑃. 
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2D vertex model 
 
Most of the previously published 2D vertex models were used to describe the dynamics 
of epithelia constrained to two spatial dimensions (27-29). More recently, we have used 
these models to explore 3D deformations induced by prepatterning of cell properties (8, 9, 
30). We extended these models so that they can account for the natural curvature of the 
sheet, and, importantly, for the intrinsic apicobasal polarity of epithelial cells. The energy 
in this model is defined in the following way: 
 
  𝐸!! = 𝜇 𝐴! − 𝐴!! ! + 𝜎 𝑙! + 𝛽 1−𝑵!! !! ∙𝑵!! !! + 𝑘!! 𝑵!! !! −!!!!

𝑵!! !! ∙ 𝒖!!   .                           (3) 
 
The first term sums over all cells 𝑐, the second term sums over all edges 𝑗, and the last 
term sums over all interior edges 𝑗!, i.e. edges shared by two adjacent cells 𝑠1(𝑗!) and 
𝑠2(𝑗!). The first term corresponds to sheet elasticity, where 𝐴! is the area of cell 𝑐, 𝐴!  ! is 
its target area, and 𝜇 is the stretching modulus. The second term captures intercellular 
interactions in the form of tensile forces along cell-cell edges, where 𝑙! is the length of the 
edge 𝑗 and 𝜎 is the line tension coefficient. The last term represents the bending energy 
term; where 𝛽 is the bending elasticity coefficient and 𝑘!! represents the local natural 
curvature of the shell (𝑘!! is roughly the rest value of the dihedral angle between the faces 
adjacent to edge j' and it scales like the natural curvature of the midsurface times the 
typical cell size; see Supporting Material Section S2.1 for details). Here 𝑵! denotes the 
‘outward’ unit normal to a cell 𝑠 (i.e. the normal vector of each cell points towards the 
‘outside’ of the closed shell). 𝒖!!   is the unit vector joining the cell centers (Fig. 1 (C,D)) , 
 
                                                          𝒖!! =

𝑪!!(!!)!𝑪!!(!!)
|𝑪!! !! !𝑪!! !! |

 .                                               (4) 

 
where 𝑪!! !!  and 𝑪!! !!  are cell centers, defined as the mean position of the nodes 
belonging to the cells 𝑠1 and 𝑠2, respectively (Fig. 1(C,D)). The bending energy term 
defines an “at rest” value of the angle between the normals of adjacent cells, which 
depends on 𝑘!! (and is proportional to 𝑘!! for small 𝑘!!) and hence implements the notion 
of natural curvature. For more details see Section S2 in the Supporting Material. 
 
In our 2D model, we idealize the epithelial sheet as the midsurface of a 3D epithelial 
monolayer (Fig. 1(C)). We proceed to show how we mimic the effect of the prepatterns in 
our 2D model that are present on the apical surface of an epithelium (Fig. 1(D)). From 
now on, we will refer to this representation of prepatterns as being offset from the 
midsurface. Such prepatterns include a contractile ring 𝑅 (Fig. 5(A1)) and a constricting 
patch 𝑃 (Fig. 5(B1): a contractile ring 𝑅 is defined by a closed path joining the centers of 
a ring of adjacent cells (Fig. 5(A1)), while a constricting patch P represents a subset of 
the mesh and is implemented by adding a line tension along all segments joining the 
adjacent cell centers that are contained within this subset (Fig. 5(B1)). Segments 
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belonging to either type of prepattern are assigned a line tension 𝛤 and an offset 
parameter h, and an additional energy term is considered: 
 
                         𝐸! = 𝛤 (|𝑪!! !!  ∈!  !"  ! − 𝑪!! ! |− ℎ 𝑵!! ! −𝑵!! ! ∙ 𝒖!) .              (5) 
 
where the index 𝑖 runs over all edges belonging to the apical ring 𝑅 or apical patch 𝑃, and 
h is the half the thickness of the real tissue. 
	  
The key feature of equation (5) is that it represents the line tension of segments that are 
offset by a distance h from the midsurface (see Supporting Material Section S2 for 
details), but does so by using solely the degrees of freedom of the 2D model, namely the 
positions of the nodes lying onto the midsurface. The line tension parameter 𝛤 acts in two 
ways: it brings the cell centers closer together and, when h ≠ 0, it bends the surface so 
that the end points of the normal vectors come close together (h > 0) or further apart (h < 
0). Note that the line tension prepatterning parameter 𝛤 in the model with 3D cells has 
qualitatively similar effects. 
 
In the special case 𝑘!! = 0 and ℎ = 0, this model reduces to the 2D vertex model which 
has been used in the literature to understand epithelial deformations for flat epithelial 
sheets in different contexts (8, 9, 28, 30). Hereafter, we will refer to that particular case as 
the naturally planar 2D vertex model (since 𝑘!! = 0, the bending energy term corresponds 
to a naturally flat sheet). Note that the new terms which we introduce in the present work, 
namely the one proportional to 𝑘!! in Eq. (3) and the one proportional to ℎ in Eq. (5), 
both depend on the nodal positions through the same expression 𝑵!! ! −𝑵!! ! ∙ 𝒖!. 
As a result, both terms have similar numerical implementation. 
 
Modeling the effects of constraints 
 
To study the effects of epithelial shell curvature, a fluid-filled inner cavity and an outer 
stiff membrane during epithelial bending, we consider an initial homogeneous spherical 
configuration and include additional terms in the energy functions: 
 

           𝐸 = 𝐵! 𝑉! − 𝑉!! ! + 𝜖 !
!!!!! ! + 𝐸!!/!!  ! + 𝐸! .   (6) 

 
Here, the first term penalizes deviations from the initial volume of the inner cavity. 𝑉! is 
the volume enclosed by the closed surface, 𝑉!!   is the initial volume, and 𝐵!  is a 
compression modulus. The second term corresponds to the outer membrane stiffness (16, 
18) that runs over all vertices on the outer surface of the shell and restricts the radial 
motion of vertices within a sphere of radius 𝑅! . This sphere is concentric with the 
homogeneous spherical configuration from which the system is initialized. The center of 
the initial spherical configuration acts as reference center to calculate the radial distance 
of the vertices. The term 𝑅!  denotes the radial distance of the vertex 𝑘, and hence 
𝑅! − 𝑅!  represents the membrane thickness near that vertex. 𝜖 is a membrane stiffness 
parameter, and 𝑛 is the exponent of the repulsive potential term that models the effects of 
the outer stiff membrane. 
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Numerical methods 
 
To find an equilibrium shape for a typical configuration in the 3D vertex model, we 
solved the system of nonlinear algebraic equations that correspond to vanishing of the 
gradient of the energy with respect to node positions by Newton-Raphson iteration. The 
number of equations was halved for the corresponding configurations in the 2D vertex 
model. Initial guesses were obtained by direct forward Euler integration following 
overdamped gradient dynamics. In some cases, rotational and translational symmetries 
had to be factored out through appropriate pinning conditions, as described in Supporting 
Material Section S3. Pseudoarclength continuation (31, 32) was used to follow solution 
branches in parameter space and to go around turning points. The eigenvalues of the 
Jacobian upon convergence quantify the stability of the computed equilibrium shapes. 
Branches were terminated when equilibrium solutions featured vertices too close to each 
other (edge length < 0.01). The merging of vertices and the rearrangement of cell 
neighbors were not considered here. We used the Armadillo, a C++ linear algebra library 
to solve the linear systems of equations and calculate leading eigenvalues (33).   
 
Homogeneous configurations and model parameters 
 
In all cases considered below, we start with a system with spatially uniform cell 
properties at a mechanical equilibrium. This equilibrium configuration is then used as a 
starting point for numerical continuation that analyzes the effects of spatial patterns of 
cell properties, with the amplitude of the pattern chosen as continuation parameter. To 
construct the initial equilibrium states for our model epithelial shells, we analyzed an 
idealized system sheet with uniform cell properties. For the 2D vertex model, we 
considered a shell constructed from regular hexagons (Fig. 1(D)). For the 3D model, we 
considered a shell constructed from a ‘lampshade’ shape with hexagonal apical/basal 
surfaces (Fig. 1(A)). In both these cases, one can analyze the explicit expressions for the 
overall energy as a function of the geometric and model parameters. The geometric 
parameter for the 2D model is the edge length of the unit hexagonal cell. For the 3D 
model, the geometric parameters are the edge length of the hexagonal apical and basal 
surfaces and the height of the unit cell. The minima of such functions provide a 
relationship between equilibrium cell shape and tissue properties.  
 
Once the parameters were found for an idealized sheet at an equilibrium, we used 
DistMesh to realize an epithelial shell with a finite number of cells tiling a closed surface 
(34). This meshing package builds triangular tessellations on a sphere for the given edge 
length. As an input geometry for the 2D vertex model, we used these tessellations to 
construct polygonal cells by considering centers of triangular mesh elements as vertices 
of epithelial cells. To construct the 3D vertex model input geometry, we first constructed 
the inner surface of the epithelial shell using the 2D model input geometry approach and 
then extended the vertices radially to a given height to form 3D cells. This produces a 
globally curved epithelial shell with finite number of 3D ‘lampshade’-shaped cells, i.e. 
cells with asymmetric apical and basal surface. Further details are provided in the 
Supporting Material Section S6.1. 
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Results  
 
3D vertex model  
 
3D vertex models have previously been used to study dynamic tissue morphogenesis for 
cell aggregates and spatially uniform cell sheets (21, 22, 27). Recently Hannezo et al. 
extended a similar framework to model different shapes of epithelial cells (19). Here, we 
use a simplified 3D vertex model (Eq. 1), along with the additional term for prepatterns 
(Eq. 2), to numerically find equilibrium shapes in an epithelial monolayer induced by the 
in-plane prepatterns of apical contractility. We also analyze the effects of a fluid-filled 
cavity and an outer membrane (Eq. 6) on out-of-plane deformations induced by such 
prepatterns. All of these factors are present in different developmental contexts including 
Drosophila appendage formation (12, 35) and the blastula-to-gastrula transition in 
different species (6, 7, 10, 18, 36, 37) 
 
To understand the effect of model parameters on cell morphology and to provide good 
initial guesses for the numerical calculation of equilibrium shapes, we calculated 
equilibrium shapes for flat, as well as curved homogeneous epithelial monolayers. The 
analysis was performed for ideal cases where apical and basal surfaces were 
approximated as hexagons. For the 3D vertex model with planar cells, increasing the 
lateral tension coefficient (𝛼) makes the equilibrium cell shape more columnar, whereas 
increasing the basal tension coefficient (𝛾) makes the cell more squamous (Fig S4(C, D)). 
We discuss the effects of basal and lateral tension coefficients in greater detail in 
Supplementary Information Section S6.1. We use this information to construct the initial 
homogeneous configuration (𝛤 = 0) with given model parameters (see Materials and 
Methods) and then apply different prepatterns (𝛤 > 0) and solve for the equilibrium 
shapes. 	  
 
We started with a closed shell monolayer of 3D cells, which had polarity similar to the 
cells in the follicular epithelium in the developing Drosophila egg, where the apical side 
forms the inner surface of the epithelium (apical-in case, Fig. S1(D),(8)). Consistent with 
recent observations (38), we kept the value of the cell-volume compression modulus B 
large, to make sure that the deviation from the initial cytoplasmic volume of each cell 
was small. We then introduced spatial patterns of apical contractility. We considered two 
prepatterns of apical constriction in different settings: (I) an embedded contractile ring 
(Fig. 2(A1)); and (II) a patch of apically constricting cells (Fig. 2(B1)). As mentioned 
before, the first prepattern is motivated by the study of Drosophila appendage formation 
(8). The second prepattern is found in diverse developmental settings in which a group of 
cells undergo apical constriction driving localized tissue bending (2, 25, 26).  
 
We found one continuous branch of stable equilibria in which the epithelium bent in the 
basal direction (evagination) for both apical contractility prepatterns (Fig. 2(A4,B4)). 
Due to cytoplasmic incompressibility, a patch of cells undergoing apical constriction 
leads to the expansion of the basal surface and thus causes the sheet to bend in the apical-
to-basal direction. Inclusion of an outer membrane term kept the configuration more 
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spherical (Fig S8), and increasing the inner-fluid compression modulus (𝐵!) decreased 
deflection without affecting the qualitative nature of the equilibrium shapes (Fig S9).  
 
We then considered a scenario in which the apical side forms the outer surface of the 
shell (apical-out case, Fig. S1(C)) by reversing the polarity and keeping the energy 
formulation the same. A similar scenario is observed during the blastula-to-gastrula 
transition in many species, such as sea urchin (24) and Drosophila (37). We introduced 
similar prepatterns of apical contractility as before (Fig. 3(A1,B1)) and found one 
continuous branch of stable steady states for the case of a patch of apically constricting 
cells in which the epithelial shell formed an invagination (Fig. 3(B4)). However, in the 
case of prepatterning with a contractile ring, we observed bistability in the shapes of 
shells (Fig 3(A4)). This shape bistability was not present in configurations with smaller 
shell curvature (Fig. S12) and with a one-cell wide ring (Fig. S11). We also considered a 
prepattern of line tension in the form of a two-cell wide ring of apically constricting cells, 
which was inspired by the pattern of actomyosin localization during primary invagination 
in the sea urchin embryo (24, 39). Here, as well, we found one continuous branch of 
stable invaginated shapes (Fig 3(C4)). 
  
To summarize, in response to most of the analyzed patterns of apical contractility, the 3D 
model predicts a smooth transition to the evaginated state when the apical surface forms 
the inner surface and to the invaginated states when the apical surface forms the outer 
surface of the shell.  
 
Naturally planar 2D vertex model 
  
Naturally planar 2D vertex models provide a computationally simpler framework to 
model epithelial deformations, while still incorporating the essential physical features of 
the apical surface of the epithelium that drive such transformations. In this section we 
determine what aspects of the 3D model can be captured with a naturally planar 2D 
vertex model.  We use the model presented by Murisic et al. (30) as our starting point. 
This model can be viewed as a special case of the 2D model introduced here (ℎ =
0; 𝑘!! = 0).  
 
Similar to our analysis of the model with 3D cells, we examined the case of a closed shell 
with different prepatterns of apical cell contractility. In contrast to the 3D model, the 
naturally planar model showed no out-of-plane deformations for a constricting patch 
prepattern. However, for a contractile ring, we found two disconnected branches of 
steady state solutions (Fig. 4). Equilibrium shapes with cells deflecting outward 
(evaginated state) formed a continuous branch of steady states from an initially 
homogeneous configuration, whereas solutions with cells deflecting inward (invaginated 
state) formed a disconnected branch (Fig. 4(E)).  
 
This steady state diagram can be traced back to the pitchfork bifurcation observed by 
Murisic et al. (30) in the presence of contour forces for flat configurations. However, the 
pitchfork bifurcation here is imperfect, as the sheet curvature breaks the symmetry 
present in the flat configuration case (Fig S5). We observed that the turning point of the 
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branch of invaginated states shifts to the right as the curvature of the initial homogeneous 
configuration is increased. This is consistent with the past analysis of buckling in Elastica 
(a thin strip of elastic material) with imperfections, such as preferred curvature or 
misaligned axial load (40-42).  
 
The presence of an outer membrane term tends to keep the configuration more spherical 
(Fig. S6A, B). As expected, increasing the inner-fluid compression modulus (𝐵!) and 
bending elasticity coefficient (𝛽) made it more difficult to bend the epithelium. It 
decreased the deflection of evaginated shapes for a given value of 𝛤 and shifted the limit 
point to the right (Fig S6D, E). We observed similar imperfect pitchfork bifurcations for 
different stretching moduli 𝜇. 
    
In sum, we observed a typical imperfect pitchfork bifurcation for the closed shell 
configuration. The addition of an inner fluid-filled cavity and outer membrane term does 
not affect the qualitative response of the naturally planar 2D vertex model, influencing 
only the domain of shape bistability. The results of the naturally planar 2D vertex model 
suggest that the initially curved and homogeneous epithelium can smoothly bend, due to 
contour forces, only in the outward direction, which is similar to the response of the 
apical-in case of the 3D model to a contractile ring. Thus, this model does not capture all 
of the effects predicted by the 3D model, particularly the deformations driven by an 
apically constricting patch.  
 
2D vertex model  
 
As noted above, the naturally planar 2D vertex model cannot capture different aspects of 
the 3D model, including apicobasal polarity, natural curvature of the sheet, and a smooth 
transition from homogeneous configuration to invaginated states in the presence of an 
apical constriction pattern. Here we show that the 2D model with natural curvature, as 
introduced in eqs. 3-5,	   is fully consistent with the 3D model responses to different 
prepatterns, while maintaining the simpler framework of the 2D model. The model 
includes additional terms making the sheet naturally curved and incorporates apicobasal 
polarity by offsetting the prepatterns away from the sheet's midsurface such that they lie 
on the apical side of the shell. 
 
Similar to previous sections, we considered two prepatterns of apical contractility: a 
contractile ring (Fig. 5(A1)) and a constricting patch (Fig. 5(B1)), now offset from the 2D 
sheet. We started with a homogeneous closed shell configuration at equilibrium, for 
which we set the value of 𝑘!! equal to the average angle between the normals of the 
adjacent cells (see Supporting Material Section S2.1 for details). We then introduced the 
prepatterns of constriction in two settings corresponding to apical-in (ℎ < 0) and apical-
out (ℎ > 0) cases (note that we defined the cell normals in both cases such that they 
always point ‘outwards’ with respect to the shell). For the apical-in case, we found that 
each prepattern produces a continuous branch of equilibrium shapes as we increased 𝛤 in 
which the epithelium bent in the ‘outward’ direction (evaginated state) (Fig. 5(A3), 
5(B3)). For the apical-out case, the constricting patch prepattern produces one continuous 
branch of equilibrium shapes with the epithelium bending in the ‘inward’ direction 
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(invaginated state) (Fig. 6(B3)). However, we observed bistability in the shapes of shells 
in the case of the contractile ring prepattern (Fig. 6(A3)). Increasing the inner-fluid 
compression modulus (𝐵!) decreased deflection without affecting the qualitative nature 
of steady state diagram (Fig S10). Thus, the results obtained with the 2D vertex model 
are qualitatively similar to results from the 3D vertex model, suggesting that the 
additional terms can effectively capture the features of the complete 3D description of the 
epithelial sheet and its responses to different patterns of apical cell contractility. 
 
Discussion 
 
We used vertex models to explore how the spatial patterns of cell contractility lead to 3D 
deformations of epithelial shells. Previous studies of such deformations used 
appropriately modified elastic shell theories to make connections between biophysical 
descriptions of epithelia and a large body of tools and ideas from continuum mechanics 
(15, 17, 43, 44). Although these studies can mimic a number of canonical processes, 
including vertebrate neurulation, they are difficult to adapt to different biological systems, 
such as morphogenesis driven by cell rearrangements, directed migration, or cell 
proliferation (36). Furthermore, the spatial patterns of apical contractility that drive 3D 
epithelial deformations are commonly fine grained. For instance, the early stages of sea 
urchin gastrulation are triggered by a contractile ring that is only two cells wide (24). 
These observations provide a clear motivation for models that can resolve individual cells.  
 
A number of cell-based models, similar to the vertex models used in our work, have been 
used to describe deformations in 2D cross-sections of epithelial tissues (6, 7, 29, 30). The 
most extensive work has been done to model the formation of the ventral furrow in the 
early Drosophila embryo (10, 37). We extended these models to three dimensions, 
making it possible to investigate deformations induced by a broader class of spatial 
patterns of apical contractility. Our results can be summarized as follows. Model epithelia 
constructed from 3D cells, with distinct apical and basal properties, can readily generate 
both invaginated and evaginated shapes. The direction of bending is dictated by the 
apicobasal orientation of the epithelium: cells with increased apical contractility bend out 
of the sheet in the apical-to-basal direction. In contrast, naturally planar 2D vertex models 
predict that two different equilibrium shapes (invaginated and evaginated) coexist for the 
same set of parameters. The invaginated state exists as an isolated branch, which cannot 
be reached by continuous changes in the parameters of the spatial prepatterns; this is in 
contrast to the predictions of the 3D model. It also lacks the ability to include the 
apicobasal polarity or the natural curvature of the epithelial monolayer.  
 
To address these issues, we proposed a modified 2D vertex model that better accounts for 
the 3D nature of the epithelium. This was accomplished by incorporating additional terms 
in the energy function. These terms effectively offset contractile patterns from the sheet 
and include the natural curvature of the epithelium. The modified model can readily 
capture the full effects of the 3D model. Most importantly, it can generate both 
evaginated and invaginated shapes depending on the apicobasal polarity of the epithelial 
shell. This suggests that the modified 2D vertex model can be used to describe shape 
transformations in a broader class of systems, especially those in which 3D deformations 



	   11	  

are driven by asymmetric apical contractility patterns, while maintaining the 
computational simplicity of the 2D framework. In our current work, we are using these 
models to explore shape transformations that include cell rearrangements and directed 
cell migration. 
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Figure 1:  Schematic representation of our vertex models. (A-B) Schematic 
representation of the 3D model. (A) A model 3D cell with distinct apical, basal, and 
lateral surfaces. (B) Schematic highlighting different tension terms in the 3D vertex 
model. (C) Schematic explanation of the modified 2D vertex model. The modified 2D 
model ‘idealizes’ the epithelial sheet as the midsurface (shown in black) of an epithelial 
monolayer with finite thickness ‘2h’ and assumes that a contractile segment (shown in 
red) joins the centers of the apical faces. (D) The figure shows two adjacent 2D cells S1 
and S2 with shared edge j, cell centers (CS1, CS2) and unit ‘outward’ normals (NS1, NS2), 
pointing towards the outer shell. uj is the unit vector joining the cell centers and h is the 
offset parameter. See text for more details. The red line highlights a contractile segment 
that is offset by a distance h from the surface along the cell normals.. 
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Figure 2: 3D deformations induced by prepatterns of line tension in a model with 3D 
cells for the apical-in case; see text for details. (A1-B1) Initial configurations, showing 
the inner surface (i.e. apical side and omitting the outer basal surface) of the shell, with 
different heterogeneities: (A1) Contractile ring. (B1) Patch of apically constricting cells. 
(A2-B2) Representative evaginated states, showing the inner surface, where the enclosed 
patch bends outward (positive deflection, 𝛿 > 0, as defined in Fig. S3). (A3-B3) Cross-
section representation of equilibrium shapes (A2-B2) respectively. (A4-B4) Steady state 
diagrams showing deflection 𝛿 with increasing parameter 𝛤. Solid line: stable steady 
states. Cross-sections of representative steady states (A1-B1, A2-B2) are shown as insets. 
Parameter values are listed in Table S2 in the Supporting Material. 
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Figure 3: 3D deformations induced by prepatterns of line tension in a model with 3D 
cells for the apical-out case; see text for details. (A1-C1) Initial configurations, showing 
the outer surface (i.e. apical side) of the shell, with different heterogeneities: (A1) 
Contractile ring. (B1) Patch of apically constricting cells. (C1) A ring of apically 
constricting cells, two cells wide. (A2-C2) Representative invaginated states, showing the 
outer surface, where the enclosed patch bends inward (negative deflection, 𝛿 < 0 as 
defined in Fig. S3). (A3-C3) Cross-section representation of equilibrium shapes (A2-C2) 
respectively. (A4-C4) Steady state diagrams showing deflection   𝛿  with increasing 
parameter 𝛤 . Solid (dashed) line: stable (unstable) steady states. Cross-sections of 
representative steady states (A1-C1, A2-C2) are shown as insets. Parameter values are 
listed in Table S2 in the Supporting Material. 
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Figure 4: 3D bending of closed epithelial shells in the naturally planar 2D vertex model 
due to the embedded contractile ring. (A) Initial equilibrium configuration with the 
contractile ring (shown in red). (B) Representative invaginated state, where the enclosed 
patch bends inward (negative deflection, 𝛿 < 0). (C) Representative evaginated state, 
where the enclosed patch bends outward (positive deflection, 𝛿 > 0). Dashed red line 
represents patterned edges that lie behind the evaginated patch. (D) Representative 
unstable equilibrium configuration. (E) Steady state diagram showing deflection 𝛿 with 
increasing parameter 𝛤. Solid (dashed) line: stable (unstable) steady states. Insets (I) and 
(II) highlights the breakup of the pitchfork bifurcation in the naturally planar 2D vertex 
model due to curvature (discussed more in Fig. S1). Cross-sections of representative 
steady states (A-D) are shown as insets. Parameter values are listed in Table S3 in the 
Supporting Material. 
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Figure 5: 3D deformations induced by prepatterns of line tension in a model with 2D 
cells for the apical-in case; see text for details. (A1-B1) Initial configurations with 
different heterogeneities: (A1) Contractile ring. (B1) Constricting patch. Both are 
implemented as subsets of the dual mesh, which is used to offset contractile patterns; see 
text for details. (A2-B2) Representative evaginated states. (A3-B3) Steady state diagrams 
showing deflection 𝛿  with increasing parameter 𝛤  corresponding to the prepatterning 
defined in (A1-B1) respectively. Solid line: stable steady states. Cross-sections of 
representative steady states (A1-B1, A2-B2) are shown as insets. Parameter values are 
listed in Table S4 in the Supporting Material. 
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Figure 6: 3D deformations induced by prepatterns of line tension in a model with 2D 
cells for the apical-out case; see text for details. (A1-B1) Initial configurations with 
different heterogeneities: (A1) Contractile ring. (B1) Constricting patch. (A2-B2) 
Representative invaginated states. (A3-B3) Steady state diagrams showing deflection 𝛿 
with increasing parameter 𝛤 . Solid (dashed) line: stable (unstable) steady states. 
Schematic cross-sections of representative steady states (A1-B1, A2-B2) are shown as 
insets. Parameter values are listed in Table S4 in the Supporting Material. 
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