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S1: Numerical Aspects - 3D model

S1.1: Surface area, cell volume and inner-cavity volume
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Figure S1: (A) Schematic representation of a ‘lampshade’ shaped 3D cell with distinct
apical, basal, and lateral surfaces. (B) Schematic of a representative surface of a 3D cell
showing triangular sub-elements as formed by surface nodes and surface centroid Cg;. The
surface area is defined as the sum of the areas of triangular sub-elements (discussed more in
S1.1). (C) Schematic illustrating the apical-out case, where the apical side forms the outer
surface of the epithelial shell. Apical constriction of a patch of cells leads to invagination.

(D) Schematic illustrating the apical-in case, where the apical side forms the inner surface
of the epithelial shell. Apical constriction of a patch of cells leads to evagination.

3D cells are modeled as ‘lampshade’ shaped prisms (Fig. S1(A)). Given the coordinates
and specific ordering of vertices (which we will explain more later), we can define edges,
surfaces, and the volume of the cell. In this section, we will describe how we define each of
these geometric features for numerical implementation.

The length of an edge, as formed by two neighboring vertices r;; and r;, is

le = ’riJrl - ri‘7 (1)
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where r; = :L‘ZI + yzj + zll;

The nodes that constitute a ‘surface’ (rg,ry,...,r,—1 where n is the number of vertices
in a surface) can be nonplanar. We build a surface from these nodes by defining triangular
sub-elements (as formed by r;, r;;; and Cy and for i € [0,n — 1], as shown in Fig. S1(B)).
C, is the centroid of the surface, which is defined as mean position of the nodes belonging
to the surface. The area of the surface A, is defined as the sum of the areas of traingular
sub-elements in the following way

n—1
Aa =) A,
i=0
1
A = §(I'i+1 —Cy) x (r; = Ca), (2)

n—1
1
Csl = — E r;.
n <
=0

We define the ordering of the vertices such that the surface area vector (as defined in Eq. 2)
points in the ‘outward’ direction with respect to the cell. The volume of a cell is defined in
the following way

ns—1

Vo=V
j=0

n—1 1 (3)
Vi=> 34 G,
=0

where n, is the number of surfaces in the cell, and V; is the (signed) volume of a pyramids
formed by triangular sub-elements of the surface j as the base and the reference origin as
the apex. The volume of the cell V. can be calculated by taking the sum of the (signed)
volume V; over all surfaces of the cell. A; is the area vector associated with the triangular
sub element 4, and C; is the centroid of surface j (as defined in Eq. 2).

We use similar ideas to calculate the volume of the inner cavity of the epithelial shell V4
and is defined in the following way

Ny—1
VY = Z ‘/;97
k=0

n—1

Vi=>_ %Ai - Cy,
=0

(4)

where N, is the number of cell surfaces on the inner side of the shell. Note that the inner
surface of the epithelial shell is formed by the apical side in the apical-in case and by the
basal side in the apical-out case (see main text for details).



S1.2: Numerical implementation of the energy gradient

To find equilibrium shapes, we find configurations with zero net force. In this section, we
will describe how we found analytical expressions for forces on each vertex. The net force
on a vertex r; is given as,

OE. OFE; 8ER

8xz~1 + 8}’[1 + 8zi )

This net force can be split into different terms corresponding to different energy contributions
due to apical edges, lateral surfaces, basal surfaces, and due to the volume incompressibility
term (eq. 1, main text).

The force on a vertex r; due to an apical edge el is

Ee =0l = U’ri+1 - I‘i’,
riy1—1; (6)

Fo=—-0———.
|1°i+1 - I‘i|

We get the net force due to apical edges on a given vertex by adding the contribution from
all three adjacent apical edges.
The force on a vertex r; due to a lateral surface sl is

Esl = aA517
_ (7)

F, = —-aV,;A,.
Neighboring vertices of r; in a surface sl (as defined before) are r;; and r;_;. We identify
two triangular sub-elements A; and As which have contributions from r;.

n—1

A = |Aq |+ A+ Z |A;, (8)
jazij'(jd

where A1 = %(I‘Z — Csl) X (I‘Z‘,1 — Csl)7 A2 = %(riJrl - Csl) X (I‘i — 051)7 and A] =
%(I‘j — Csl) X (rj—l — Csl)'

Next, we show the terms involved in the definition of the derivative of the surface area
that are needed to calculate the surface force.

n—1

Vida = Vil A1 [+Vi] Az |+ Z VilAjl,
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Using the definition for the area (Eq. 2) and simple algebraic manipulations, we get the
expressions for the terms involved in the derivative of the surface area (Eq. 9, listed in Table
S1). Using these expressions, we can calculate the force due to the lateral surface sl (Eq.
7). We use similar ideas to calculate the force on a given node due to the basal surface. We
add the contributions from neighboring lateral and basal surfaces to find the net force on
the vertex r;.

Area 0/0x, 9/0y; 90z
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Table S1: Expressions for derivatives of surface area terms involved in calculation of force
terms (Eq. 9). n is the number of vertices in a surface and the surface centroid is denoted

by Cs1 = x4+ y.j + ZCR. See S1.2 for more details.

We use a similar approach to find the cell volume incompressibility force term. There
are three neighboring cells for vertex r;. For one cell vl containing vertex r;, we calculate

the derivative in the following way
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We already have the expressions for the surface area derivative terms (Table S1) needed
to calculate the cell volume incompressibility force term. The approach is extended to find
the expression for force corresponding to the internal fluid and to the outer membrane term.

S2: Modifications to the naturally planar 2D vertex model

Figure S2: 2D vertex model. (A) Schematic to explain offset contractile segment (shown
in red) in the 2D vertex model. The figure shows two adjacent cells S1 and S2 with shared
edge j, centers (Cgy, Cg2) and unit normals (Ng;, Ng2). u; is the unit vector joining the cell
centers. The red line highlights a contractile segment joining the cell centers that is offset
by a distance h from the surface along the cell normals. (B) Schematic of the configuration
shown in (A) as viewed in the plane perpendicular to the common edge. Here, for the sake
of illustration, we are assuming that each of the surface is planar or very close to planar.



S2.1 : Bending energy term with natural curvature

The naturally planar 2D vertex model has a bending energy term which corresponds to a
naturally flat sheet. We modify it to represent natural curvature of the sheet in the following
way

Ehpend = 52 ((1 — Ny - Neyyy) = Ky (= (Nga(ry = Ngy57)) - uj/) ' (10)
j/

The modified bending energy term defines an equilibrium value of the angle between the
adjacent normals of the interior edges. We define the normal of the cell S in the following
way

Ag
NS’ = TaA
|As|
1 ns—1
Ag = 3 ;(Ti X Tit1),

where n, is the number of vertices of the cell S. List of vertices are ordered in each cell
such that the normal vector points ‘outside’ the shell (Fig. S2, for further detail about the
implementation of the 2D model refer to (3)).

Consider the two cells S1 and S2 adjacent to a particular interior edge j  (Fig. S2).
Suppose that the normals Ng; and Ngy stay coplanar with the unit vector u;, as depicted in
Fig. S2(B). Let 6 be the angle between the normals Ng; and Ngy) and assume that the unit
vector u; is perpendicular to the average normal i.e. Ng; and Ngo make an angle (7 —6)/2
and (7 + 6)/2 with u;, respectively. In the modified bending energy term (eq. 10), the
contribution coming from this segment is proportional to

1 —cos — ky(—2sin(6/2)). (11)

The new term in the bending energy defines a rest value (i.e when the configuration is at
equilibrium) of the angle between adjacent normals . This implements the notion of natural
curvature precisely. Indeed, minimization of the bending energy in equation above with
respect to theta yields the rest value fqq of the angle 6 as a function of k. In the particular
case |#|< 1, the bending energy contribution can be approxiamted as

62 0+ ki) Ky
Y S P R S A 192
and the rest value of the angle between adjacent normals is given by 0., = —k;.

If k; is constant for all segments, the shell has homogeneous natural curvature. If k;; = 0,
bending energy corresponds to a naturally flat sheet. For the homogeneous shell configuration
analysis, we set k; as lc/R for all the edges where R is the radius of the initial spherical
configuration and [, is the approximate average distance between the cell centers (I. =
2a cos() where @ is the average edge length of the polygonal cells). As an example, for the
parameters listed in Table S4 (with ky = 0.19), the angle between normals for the adjacent
cells for the closed shell homogeneous equilibrium configuration (i.e. with no prepatterning)
is ¢ = 0.19 £ 0.02, which is very close to the value of k.

6



S2.2: Offset contractile segments

In the new implementation, contractile segments are introduced along the cell centers and
the additional energy of the prepatterning is defined as Er (main text Eq. 5). Er is the
linear truncation of Er. We define Er in the following way,

Er =T (I(Csi(5) + ANs1()) — (Csay) + hNgagy))|). (13)

j=1

Essentially, the offset contractile segments are the edges joining the points (Cg(;) + hNg(j)).
The vertices of this segment are obtained by offsetting the cell centers using the normals
with an offset length h (Fig. S2). This term does two things: it applies a line tension that
tries to bring the cell centers close together; additionally, when h # 0, it tries to bend the
surface so that the endpoints of the normal vectors move closer together (h > 0) or further
apart (h < 0), in such a way that the offset segment is as short as possible. The second effect
changes the rest angle between the normals of the cells joined by the contractile segment.
This term is similar to that of the modified bending energy term (Eq. 9), as both induce a
local change in the natural curvature of the shell.

S3: Initial configuration, continuation, and symmetry

In the main text, we discussed the construction of the initial configuration and the numer-
ical methods we used to find the equilibrium configuration. Here, we give further details
about the numerical aspects of the implementation, particularly on the role of the inherent
translational and rotational symmetry of the system.

Using the approach described in Section S6.1, we obtain the parameter values for which
a shell made up of identical ideal cells are at equilibrium. Then, we use DistMesh (1), a
meshing package that gives a triangular tessellation of a given edge length, to build a mesh
on the sphere that is close to an ideal case configuration. We use the dual mesh, which is
made up of the centers of the triangular elements, to construct polygonal cells. This forms
the initial configuration for the 2D model and the inner surface of the epithelial shell for
the 3D model. The vertices on the inner surface can then be extended radially to get an
epithelial shell made up of 3D cells with distinct top and bottom surfaces. Here, we want to
emphasize that not all apical and basal surfaces are hexagons in our initial spherical configu-
ration - some are pentagons and heptagons. For example, in the case of a 2D initial spherical
configuration with edge length = 0.55 and radius = 5.0, we have 346 hexagons, 40 pentagons
and 28 heptagons after meshing. Although configurations built using the meshing package
differ slightly from the ideal cases, where all cells should have same morphology, they still
provide a good initial guess for finding the homogeneous equilibrium configuration, which
then serves as the initial point for the prepatterning analysis.

To implement the Newton-Raphson method and pseudo-arclength continuation, we ap-
proximate the derivatives of the forcing function i.e. the Jacobian (or equivalently the
Hessian matrix in this case) by the first order forward finite-difference method (one could
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also use automatic differentiation). This complete Jacobian has six zero eigenvalues at a
steady state for systems with rotational and translational symmetry, for example a closed
shell in the absence of the outer shell term. We “pin” an appropriate number of vertices
to make the Jacobian non-singular and to remove neutral stability directions (i.e. transla-
tionally and rotationally invariant solutions). We fix the coordinates of one vertex to be the
origin, restrict the motion of a second vertex to only the radial direction, and restrict that
of a third vertex to the radial and azimuthal directions to account for the six degrees of
freedom. In the presence of the outer shell term, the system has only rotational symmetry,
and pinning of a vertex is relaxed in such cases.

S4: Parameters used in simulations

a=213,7v=0.98,0 =
1,B=100,By =0,e =
1071° R, = 6.025,n = 4

N, = 414,35 = 0.55,h =
1.0,R4=5

Figure 2 : apical-in
configuration

a=189,7v=0.94,0 =
1,B=100,By =0,e =
1071 R, = 6.025,n = 4

N, = 414,a5 = 0.55,h =
1.0,Rp =5

Figure 3 : apical-out
configuration

Table S2: Parameter values used for simulations for the 3D vertex model (main text Fig.
2 and 3), where V. is the total number of cells, @4 is the average length of apical edges, h
is the height of cells, ag is the average length of basal edges, R4 is the radius of the initial
spherical configuration that makes the apical surface for the apical-in case, and Rp is the
radius of the initial spherical configuration that makes the basal surface for the apical-out
case. Other parameters are defined in main text.

Figure 4 : embedded w=226,0=10=
contractile ring in a closed 0.005, By =0,e = N.=414,a=0.55 Ry =5
shell configuration 1071 R, =5.025,n = 4

Table S3: Parameter values used for simulations for the naturally planar 2D vertex model
(main text Fig. 4), where N, is the total number of cells, a is the edge length of hexagons that
constitute flat configurations, @ is the average edge length of polygonal cells that constitute
curved configurations, R; is the radius of the curved configuration, and Ry is the radius of
the initial spherical configuration. Other parameters are defined in main text.



h=—1,1u=226,0=
1,8=0.02k;s =
0.19,BY = 0,6 =
107 R, = 5.025,n = 4

Figure 5 : apical-in case N.=414,a=0.55, Ry =5

h=1u=226,0=1,0=
Figure 6 : apical-out case | 0.02, k:j/ =0.19,By =0,e=| N, =414,a=0.55 Ry =5
107 R, =5.025,n =4

Table S4: Parameter values used for simulations for the modified 2D vertex model (main
text Fig. 5 and 6). Initial spherical configuration is same as previous analysis with the
naturally planar 2D vertex model (Table S3). h,k; are defined in main text. Definition of
other variables are similar to Table S2.

S5: Definition of ¢

Figure S3: Defining ¢ to quantify bending of an epithelial shell due to the prepatterning of
the line tension. Cj is the center of the initial homogeneous configuration with no prepat-
terning (I' = 0). We use it as a reference center to define radial distance of the vertices. (A)
A configuration with a constricting patch prepattern, highlighting cell vertices on the patch
boundary (shown with red dots) and center of the patch (shown with a green dot). (B) For
the 2D vertex model, ¢ is defined as the difference between the radial distance, from Cj,
of the center of the patch (R.) and the average radial distance of the vertices on the patch
boundary (R,). (C) For the 3D vertex model, § is defined as the difference between the
radial distance of the center of the patch (R.) and the average radial distance of the vertices

on the patch boundary (R,) for the inner surface of the shell.
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Figure S4: Cell shape as a function of model parameters for a hexagonal prism shaped
and a lampshade shaped cell. (A) Hexagonal prism, part of a flat sheet, with height h and
hexagonal edge a. (B) Lampshade-shaped prism, part of a curved sheet, with height h, apical
edge a; and basal edge ay. (C) The minimal energy states of a hexagonal prism shaped cell
as a function of basal surface energy coefficient v for a given lateral surface energy coefficient
a. (D) The minimal energy states of a lampshade-shaped cell as a function of basal surface
energy coefficient v for a fixed basal edge length as. Schematics of the minimum energy
configurations are shown as insets.

S6: Effect of model parameters

S6.1: Stable homogeneous configuration for the 3D vertex model

To obtain a good guess for the geometric and material properties for a stable homogeneous
shell, we minimize the energy of a single cell in ideal cases. We consider two cases: hexagonal
prism-shaped and lampshade-shaped cells (Fig. S4(A,B)). Hexagonal prism-shaped cells
build a flat sheet whereas lampshade-shaped cells build a curved sheet.

In the case of hexagonal prism-shaped cells, both the basal and apical surfaces are rep-
resented by equivalent hexagons with edge length a and height h. We can write the non-
dimensionalized form of the energy for a single cell by scaling length by Vbl/ ? and energy

by JEVOI/ %, We obtain the following equation for a hexagonal prism-shaped cell with three

1/3 1/3
N : v, v,
re-scaled parameters (keeping similar nomenclature after renaming : =—¢— = o, 72— =
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5/3

v, 2 = B).

3v3 3v3
E. = 3a+ 3aah + ’yT\/_aQ + B(T\/_th —1)? (14)
If we take the cell volume compression modulus to be large (B — o0), we can assume that
Ve (cell volume) remains similar to V4 (initial cell volume). This assumption provides a
relationship between two geometric variables of the hexagonal prism, a and h (h = Mﬁ)
The non-dimensionalized energy equation for a single cell reduces to

E.=3a+ 3a

+72 " (15)

The minima of the energy function, (2= =0 , djﬁc > () give a relationship between the

material properties (o, ) and the geometric parameter (a) that we use to generate an initial
flat homogeneous configuration (Fig. S4(C)).

For lampshade-shaped cells, the edge lengths of the apical hexagonal face a; and the
basal hexagonal base ay are different (V. = \/75(@% + a2 + ayaz)h). Following the previous
analysis, the reduced energy expression for a lampshade-shaped cell is given by the following

expression

aj + ao 3\/§

E. = 3a; + 3« +
1 V3(a} + a3 + aya) 2

a3 (16)

This is a two variable minimization problem. The minima of this function ((gff = O,gf; =0

and positive definite Hessian matrix) give a relationship between the material properties and
the geometric parameters for the stable homogeneous shell (Fig. S4(D)).

In Fig. S4(C,D), we plot stable states for a single cell (solution for the minimization
problem) around parameter values that we have used for the numerical experiments. In the
case of hexagonal prism-shaped cells, if we decrease v at fixed «, cells become squamous
(smaller h). For lampshade-shaped cells with fixed basal surface edge length (ay = 0.5),
increasing v inverts the curvature. Above the value of v for which cells are flat (a1 = as),
the apical side becomes the inside of the shell (a1 > as), while below that value of 7 the
apical side becomes the outside of the shell (a; < ay). Hannezo et al. did a similar analysis
for their 3D model (2).
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S6.2: Effect of curvature on deformation - Naturally planar 2D ver-
tex model

We introduced a contractile ring (shown with red edges in Fig. S5(A) where I' > 0) in the
flat (Fig. S5(A)) and curved (Fig. S5(B)) configurations. Similar to Murisic et al. (3),
we observed a supercritical pitchfork bifurcation as we increased I" for the flat configuration
with fixed boundary vertices (Fig. S5(D)). For the slightly curved configuration, we found
a typical imperfect pitchfork bifurcation. Solutions with a patch of cells deflecting outward
(evaginated state) formed a continuous branch of steady states from an initially homogeneous
configuration, whereas solutions with a patch of cells deflecting inward (invaginated state)
formed an isolated branch (Fig. S5(D)). Parameter values used for the simulation are p =
2.45,0 =1, =0, Nc =217 and a = 0.55.

Figure S5: The effect of curvature on bending of the naturally planar 2D vertex model.
(A) Flat homogeneous equilibrium configuration, showing a contractile ring prepattern. (B)
Curved homogeneous configuration, which is a part of a shell (with radius = 20). (C) Repre-
sentative equilibrium configuration for the flat configuration with I' > 0 (where the enclosed
patch is bending ‘outward’). (D) Steady state diagram showing deflection d with increasing
parameter I' for flat (black curve) and curved (brown curve) initial configuration. Solid
(dashed) line:stable (unstable) steady states. Curvature results in an imperfect pitchfork bi-
furcation. Schematic cross-sections of representative states are shown as insets. Parameter
values are listed in section S6.2.
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S6.3: Effect of model parameters on deformations - Naturally planar
2D vertex model

We compared the equilibrium shapes of homogeneous shell (I' = 0) in the presence and
absence of the outer membrane term (Fig S6(A,B)). We found out that the outer membrane
term kept the closed surface more spherical. We also assessed the effect of inner-fluid com-
pression modulus (By) and bending elasticity coefficient (3) for the naturally planar 2D
vertex model. Increasing By or (3, while keeping the other parameters constant, increased
the threshold after which invaginated states arises for the contractile ring prepatterning (Fig.

36(D,E)).

A C
1
0.5/
o o
-0.5 r—{
-1 \
=15 0.2 0.4 0.6
I
D E
Bistable 05 Bistable
0.7
0.7
Fc:r r|c:r‘3-51"
0.6 0.5
0. Monostable
0% 001, 002 0.03 0 2 4 6 8
B By x10?

Figure S6: Effect of the outer membrane term and inner fluid incompressibility term on
bending for the naturally planar 2D vertex model. (A,B) Initial homogeneous stable con-
figuration: (A) In the presence of the outer membrane term (e = 107!°); (B) In the absence
of the outer membrane term (¢ = 0). The shape is more spherical in presence of the outer
membrane term. Parameters used for the simulation are p = 2.26, R. = 5.025,n = 4,0 =
1,By = 0,8 = 0 and the geometric parameters of the shell are same as main text anal-
ysis.(C) Steady state diagram showing deflection § with increasing parameter I'.  Other
parameters are as in (A). I, is the limit point after which invaginated equilibrium shapes
arises. (D,E) Region of bistability for the parameters: (D) bending elasticity coefficient
(B) (for fixed By = 0.001) and (E) Inner-fluid compression modulus (By) (for fixed 5 = 0).

Other parameters are same as (A).
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S6.4: Effect of model parameters on deformations - 3D vertex model

We used the non-dimensionalized energy equation (Vy = 1,0 = 1) for the following analysis.
We kept o = 4 fixed and the values of v for which different aspect ratios of the homoge-
neous sheet (made up of hexagonal prisms) were at equilibrium and used them as the initial
conditions. We considered three different cases here, a = 0.5,y = 5.96, a = 0.7,y = 1.77
and a = 0.8,7 = 0.58. Other parameters used were ¢ = 1, B = 100. We observed more
deflection for the same force heterogeneity for thinner sheets, while the qualitative nature of
the steady state diagram remains similar (Fig. S7).

We compared equilibrium shapes of homogeneous shell (I' = 0) in the presence and ab-
sence of the outer membrane term for both cases: apical-in (Fig. S8(A-B)) and apical-out
(Fig. S8(C-D)). Similar to the naturally planar 2D vertex model, we observed that the outer
membrane term kept the closed surface more spherical. We also assessed the effect of inner-
fluid compression modulus (By) for both the apical-in (Fig. S9(C,D)) and apical-out (Fig.
S9(A,B)) cases. If we increased By, keeping other parameters constant, we saw a decrease
in the deflection (Fig. S9).

— a=0.8

Figure S7: Effect of cell aspect ratio on bending for the 3D vertex model due to an apically
embedded contractile ring. (A-C) Initial configurations with edge length 0.5, 0.7 and 0.8,
respectively. Red edges I' > 0; other edges I' = 0. (A’-C’) Cross-sections of invaginated
steady states. (D) Steady state diagram showing deflection § with increasing I'. Parameter
values are discussed in the Section S6.4.
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Figure S8: Effect of the outer membrane term for the 3D vertex model. (A,B) Initial
homogeneous stable configuration for the apical-in case (see main text for details). (A) In
the presence of the outer membrane term (e = 107'%). (B) In the absence of the outer
membrane term (e = 0).(C,D) Initial homogeneous stable configuration for the apical-out
case (see main text for details). (C) In the presence of the outer membrane term (e = 1071°)
(D) In the absence of the outer membrane term (e = 0).(E-H) Cross-section of (A-D)
respectively. The shape is more spherical in the presence of the outer membrane term in
both cases. Parameter values used and geometry of the epithelial shell are the same as in
the main text analysis (Table S2).
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Figure S9: The effect of the inner fluid incompressibility term on deflection for the 3D vertex
model. (A-D) Steady state diagrams showing deflection ¢ for different heterogeneities. (A)
Contractile ring for the apical-out case. (B) Patch of apically constricting cells for the apical-
out case. (C) Contractile ring for the apical-in case. (D) Patch of apically constricting cells
for the apical-in case. Black curve: By = 0; Brown curve: By = 0.001. Solid (dashed) line:
stable (unstable) steady states.Schematic cross-sections of representative states are shown as
insets. Deflection is typically less for increased inner-fluid compression modulus. Parameter
values used and geometry of the epithelial shell are same as main text analysis (Table S2).
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S6.5: Effect of model parameters on deformations - 2D vertex model

Similar to the 3D vertex model, we observed that increasing inner-fluid compression modulus

By, while keeping other parameters constant, caused a decrease in the deflection for both
apical-in and apical-out case (Fig. S10).
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Figure S10: The effect of the inner fluid incompressibility term on bending for the 2D vertex
model. (A-D) Steady state diagrams showing deflection § for different heterogeneities. (A)
Contractile ring for the apical-out case. (B) Patch of constricting cells for the apical-out
case. (C) Contractile ring patterning for the apical-in case. (D) Patch of constricting cells
for the apical-in case. Black curve: By = 0; Brown curve: By = 0.001. Solid (dashed) line:
stable (unstable) steady states.Schematic cross-sections of representative states are shown
as insets. Deflection is less for increased inner-fluid compression modulus. Parameter values
used and geometry of the epithelial shell are same as main text analysis (Table S4).
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Figure S11: 3D deformations induced by a ring of apically constricting cells, one-cell wide,
with 3D cells for the apical-out case. (A) Initial configuration showing the outer surface (i.e.
apical side) of the shell. (B) Representative invaginated state. (C) Steady state diagram
showing deflection d with increasing parameter I'. Cross-sections of representative steady
states (A,B) are shown as insets. Parameter values are listed in Table S2 (simialr to Fig. 3
in main text).

S6.6: Effect of curvature on deformations - 3D vertex model

We analyzed the effect of prepatterning and curvature on the equilibrium shapes of epithelial
shells made up of 3D cells. We considered shells of four different curvatures C' (= inverse
of the radius of spherical shells from which the system is initialized, Fig. S11(A)). We used
epithelial cells with the following geometric and model parameters for all cases discussed
here: ag = 0.55,h = 1.0,y = 0.95,a = 1.9,0 = 1. The approximate nature of meshing
on the spherical surface caused the number of cells (210 + 10) and the basal edge length
(@pasar = 0.55 £ 0.01) to be slightly different for different shell configurations (see Materials
and Methods section for details). We kept the boundaries of the shells fixed for both apical
and basal surfaces.

We found a single continuous branch of stable steady states for apical constriction of
a patch of cells. In this case, deflection monotonically increases with increasing I' (Fig.
S11(G)). On the other hand, we observed bistability in the shapes of shells for the contractile
ring prepattern in shells above a certain curvature (Fig. S11(H)). There were two stable
shapes for the same value of T', one with a slightly evaginating patch of cells (deflecting
outward) and one with an invaginating patch of cells (delfecting inward). The upper limit
point in the branch of steady states defined a threshold for the heterogeneity parameter,
after which we observed a sudden bending of the sheet.
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Figure S12: The effect of curvature on bending for the 3D vertex model. (A) Four different
initial configurations with curvatures C' = 0.2, 0.15, 0.1, and 0, respectively. (B) Contractile
ring heterogeneity, highlighted on the initial configuration with C=0.2. The number of cells
enclosed by the cable or included in the patch were similar for all initial curvatures. (D,E)
Cross-sections of B and C respectively. (F-G) Steady state diagram showing deflection &
with increasing parameter I'. Solid (dashed) line: stable (unstable) steady states. Color-
coding of curves according to initial configuration matches color coding in A. Cross sections
of representative steady states are shown as insets. Paramter values are listed in Section
S6.6.

19



Supporting References

1. Persson, P. O., and G. Strang. 2004. A simple mesh generator in MATLAB. SIAM
Rev. 46:329-345.

2. Hannezo, E., J. Prost, and J. F. Joanny. 2014. Theory of epithelial sheet morphology
in three dimensions. Proc. Natl. Acad. Sci. USA. 111:27-32.

3. Murisic, N., V. Hakim, I. G. Kevrekidis, S. Y. Shvartsman, and B. Audoly. 2015.
From Discrete to Continuum Models of Three-Dimensional Deformations in Epithelial
Sheets. Biophys. J. 109:154-163.

20



