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GeM Institute
GeM Institute UMR CNRS 6183
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SUMMARY

Using thin reinforcements is a common way to strengthen structures, as in reinforced concrete
for example. From a numerical point of view, dealing with these reinforcements is tedious,
because of their diameter which is usually small compared to the characteristic dimensions of
the structures, therefore requiring very fine meshes to represent them accurately. In this paper, a
new approach allowing to mix a volumic and a lineic modeling of the reinforcements is proposed.
Fine meshes with a volumic representation of the reinforcements are used in the zones of interest
of the structure, whereas coarser meshes associated to lineic elements are used in the rest of
the structure in order to decrease the computing times. A methodology to ensure the transition
between both modeling is proposed, so that the results in the zones of interest are similar to
the results that would be obtained with a full volumic representation of the reinforcements.
The efficiency of the method is illustrated on several examples, involving linear elasticity and
plasticity.
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1 Introduction

Including “almost-1D” reinforcements, that is to say elements with one dimension much
greater than the two others, is a common way to strengthen structures. A well-known
example is reinforced concrete structures, where steel reinforcements are used in the
zones where tensile stresses prevail, to make up for the low tensile strength of concrete.
Numerical simulation of such structures is quite challenging from a geometrical point
of view. Indeed, the diameter of the reinforcements is usually small compared to the
characteristic dimensions of the structures (at least one order of magnitude smaller in
the example of reinforced concrete structures), requiring very fine finite element meshes
to represent them accurately. As a result, the necessary CPU resources and computation
times can become very high.

In order to take into account these reinforcements with reasonable computing costs,
different approaches were developed in the literature. The smeared model [1] consists
in adding the stiffness of the reinforcements to the volumic elements containing them,
introducing orthotropy in the reinforcements direction. This approach is well suited for
structures were the reinforcements are perfectly bonded and are arranged in a regular
pattern. More recently, David [2] developed a membrane model for regularly spaced
reinforcements, based on asymptotic expansions, which is more accurate and allows to
take into account loss of bond. In the discrete model, 1D bar elements are added along
the edges of the volumic elements. It is more flexible than the smeared approach, since
the layout of the reinforcements does not need to be regular anymore, but their paths
still need to follow the nodes of the volumic mesh. Finally, the embedded approach [3, 4]
allows any reinforcements layout, independently of the volumic mesh.

These approaches give good global results, but are not designed to get accurate local
results around the reinforcements, as shown in [5] for instance. To sum up, there are two
possibilities to model the reinforcements: using a 3D volumic mesh, which would give
the most accurate results but is incompatible with industrial studies because of the too
large computing costs, or using a smeared or a 1D representation of the reinforcements,
decreasing the computing costs but leading to inaccurate local results. The approach
proposed in this paper rests upon the idea that, when performing the finite element anal-
ysis of any structure, it is often possible to identify zones of interest, that is to say, parts
of the structures where accurate results are wanted (because of stress concentrations,
or because these are critical parts for which one wants to know how it will deteriorate,
etc). Usually, fine meshes are used in such zones, whereas coarser meshes are used in the
rest of the structure to decrease computing costs. Now, applying this idea to reinforced
structures, we propose in this paper a method that allows to use a volumic representa-
tion of the reinforcements in the zone of interest, and a 1D representation in the rest
of the structure. The volumic representation in the zone of interest will allow to get
results as accurate as possible, especially close to the reinforcements, whereas the 1D
representation will allow to use coarser meshes away from the zone of interest, therefore
reducing computing times. The transition between both representations will ensure that
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the results in the fine zone will be close to the results that would have been obtained
with a full volumic representation of the reinforcements in the whole structure.

Combining 1D/2D and 3D models in the same computation has already been done, as
in [6, 7] where coupling 1D beams or 2D plates to 3D bodies was achieved by equating
the work at the interface between both representation, resulting in constraint equations
between 1D/2D and 3D degrees of freedom. In [8], Nitsche’s method [9] is applied to
the beam/solid and plate/solid coupling. However, the main difficulty with the exist-
ing methods is the need to ensure the compatibility between the beam/plate particular
kinematic and the volumic one. In this paper, we will consider structures where the re-
inforcements have a small enough diameter so that we can assume that they behave like
bar element, working in tension/compression. However the proposed approach would
still be useful if the bending energy was taken into account [10].

This paper is organized as follow: sections 2 and 3 introduce the numerical tools
involved in the proposed method, as well as their limitations. In section 4, the solution
to combine these tools in order to answer the issues raised above is explained. Some
results to illustrate this method are shown in section 5. Finally conclusions are drawn
in section 6.

2 Volumic model

The most direct approach to model reinforcements would be to mesh them using volu-
mic finite elements. This process may be complicated, considering their small diameter,
their number, and their path which may be complicated (intersecting or tangent rein-
forcements, curved paths, etc). However, the eXtended Finite Element Method (X-FEM)
can be used, as done in the work of [11]. This method was first introduced by Moës et al.
[12] to deal with crack propagation, with meshes independent of the crack path. Based
on the concept of Partition of Unity [13], it relies on the use of enrichment functions to
introduce discontinuities into the classical finite elements, as well as level-set functions to
locate these discontinuities. The enrichment strategy proposed in [14], dedicated to the
analysis of inclusions, is used in this paper for the volumic part of the reinforcements,
and will be reminded below.

2.1 The eXtended Finite Element Method (X-FEM)

Consider the bidimensional problem depicted in figure 1 a., a circular inclusion made
of a material A, in a rectangular plate made of a material B. The plate is meshed with
elements whose nodes do not coincide with the material interface. The set I denotes the
nodes of the mesh, whereas J is the set of the nodes which need to be enriched. J is
defined as the set of nodes belonging to the elements crossed by the material interface
(cf. figure 1 a). The X-FEM approximation consists in finding a displacement solution
of the form:
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a. b.

Figure 1: Representation of a circular inclusion in a square plate, using the X-FEM
method. a. Definition of the enriched nodes. b. Localization of the interface
using a level-set function

uh(x) =
∑
i∈I

Ni(x)ui +
∑
j∈J

Nj(x)F (x)aj ui,aj ∈ R2 (1)

Where (Nk)k=i,j are the classical finite element approximation functions of node k, ui
are the classical finite element degrees of freedom, ai are the enriched degrees of freedom
and F is the enrichment function. In this paper we consider that the two materials are
perfectly bonded: therefore, uh must be continuous over the domain. However, because
of the change of material properties, the strain will be discontinuous at the interface.
The enrichment function F is thus chosen continuous, but with a discontinuous deriva-
tive.

To define F , the position of the interface must be determined. A level-set function φ
is introduced to locate the interface Γ between material A and B so that:

Γ = {x ∈ R2 : φ(x) = 0} (2)

φ(x) is chosen to be positive if x is outside Γ, negative if x is inside Γ and equals zero
if x is on Γ. An example of level-set defining the inclusion of figure 1 a. is given in
figure 1 b. The main example of level-set function is the signed distance function to the
interface:

φ(x) = ± min
xΓ∈Γ

‖x− xΓ‖ (3)

In the particular case of a cylindrical reinforcement, we use the following level-set func-
tion:

φ(x) = min
xΛ∈Λ

‖x− xΛ‖ − r (4)
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Material A Material B

Interface

Figure 2: Ridge enrichment in 1D. The enriched nodes are the diamond nodes.

where r is the radius of the reinforcement and Λ is its center-line (the 1D curve defin-
ing the reinforcement path through its center). From a numerical point of view, φ is
discretized using the linear finite element shape functions Ni :

φ(x) =
∑
i∈I

Ni(x)φi (5)

where the φi are the nodal values of the level-set function. Now that the position of
the interface is known, the enrichment function can be defined. We consider the ridge
function from [14]:

F (x) =
∑
i∈I

Ni(x)|φi| −

∣∣∣∣∣∑
i∈I

Ni(x)φi

∣∣∣∣∣ (6)

F is shown in 1D on figure 2.
Some authors also proposed to treat material interfaces at the integration point level

[15]. However, as illustrated in appendix 7, this approach has a lower convergence rate
than the X-FEM. On the contrary, for a given mesh density, the X-FEM and conforming
FEM lead to similar results without meshing burden, which motivates the use of the X-
FEM here.

2.2 Numerical aspects

A first remark about the use of level-sets to implicitly represent interfaces is the fact
that they are linearly approximated (cf. figure 3) ; the value of φi is known at each
node i of the mesh. If node i is inside Γ, φi < 0, if node i is outside Γ, φi > 0. The
intersection of Γ with the edges of mesh can be easily computed using the linear inter-
polation on the triangular element (cf. equation (5)). This implies that the quality of
the geometries discretized using level-set functions will depend on their curvature (the
less the curvature, the better the approximation).

The second remark is about numerical integration. Since the derivative of uh is now
discontinuous inside the elements crossed by Γ, classical Gauss integration rules are not
accurate anymore. The elements which are crossed by Γ are divided into conforming
subcells (cf. figure 3), then Gauss integration is performed using the Gauss integration
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Material A

Material B

a. b.

Figure 3: Representation of an interface over a mesh using level-set functions. Black
thick lines: mesh edges. a. Blue dashed line: real interface b. Green tri-
angle nodes: φ(x) < 0. Red square nodes: φ(x) > 0. Blue dots: φ(x) = 0.
Green dashed line: approximate geometry represented with the level-set. Each
triangle appearing in b. will be used for the numerical integration

points of each subcell. Note that subcells do not bring any new degrees of freedom. The
only purpose is to reach a proper level of accuracy for the integration with a very limited
number of integration points.

2.3 Limitations of the 3D approach

Now we consider the 2D case of a rectangular plate, with a unique reinforcement (cf.
figure 4). Considering that it is perfectly linked to the plate material, it can be assimi-
lated to an inclusion and modeled using the X-FEM method, as presented above. The
level-set function is the one defined by equation (4). Following the idea presented in the
introduction, two meshes are considered: a fine mesh, and a second one where the right
part was derefined (assuming that it is out of the zone of interest). The approximated
geometry obtained by the level-set is given for both meshes in figure 4. With the fine
mesh, the reinforcement is correctly represented (in 2D it is a flatten rectangle with
width 2r). On the other hand, the reinforcement approximated on the second mesh
shows strong geometrical errors, almost disappearing where the mesh is really coarse.
The corresponding finite element computation will obviously give wrong results, both
locally and globally.

These matter islands are due to the nodes whose support (set of elements connected
to a node) is cut twice by Γ, as illustrated in figure 5. The support of A is cut twice by Γ.
Let us have a closer look at the intersection between Γ and edges AB and AC of the mesh.
Because of equation (4), the value of φA is equal to the distance from A to the lower
part of Γ. The intersection between Γ and AB is correctly computed, but because the
value of φA underestimates the distance from A to the upper part of Γ, the intersection
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Figure 4: Using level-set to represent reinforcements. Left: with a fine mesh in the
whole structure. Right: with a coarse mesh in part of the structure. Top:
overview. Bottom: zoom in the transition between the fine and the coarse
mesh.
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A

B

C

Figure 5: Zoom on a node with a support cut twice by Γ. Red dashed lines: real
geometry of Γ. Full green lines: interpolated geometry of Γ

between Γ and AC is closer to A than it should be. It is important to emphasize that this
definition ensure that if there are some errors in the approximation of Γ, it will always
result in local underestimation of the volume of the reinforcement (some “matter” can
be removed, but not added). Finally, the elements where the reinforcement seems to
disappear are due do the fact that there is no node inside Γ, therefore the sign of φ does
not change, making it unable to locate the inner part of the reinforcement.

3 Linking truss and 3D model

Another way to model reinforcements without using a costly 3D representation is to use
bar elements. The reinforcements are meshed with lineic element, whose nodes are not
necessarily matching the nodes of the volumic mesh, cf. figure 6. A reinforcement node
a is inside a cubic volumic element whose nodes are called (bi)i=1,...,8. The position of a
inside the volumic element is xa. Considering perfect bond between both materials, the
reinforcement degrees of freedom are linked to the volumic degrees of freedom according
to equation (7):

ua =
8∑
i=1

Ni(xa)ubi (7)

In section 4.1 we will see that bar elements will be used with X-FEM in the same com-
putation. Therefore, in the case where a bar node is located inside an enriched volumic
element, (7) must be modified in order to take into account the X-FEM enrichment (1):
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Figure 6: Reinforcement node inside a volumic element

ua =

8∑
i=1

(Ni(xa)ubi +Ni(xa)F (xa)abi) (8)

The bar degrees of freedom are eliminated from the calculation through equation (7)
(or equation (8) if bar elements are used with the X-FEM enrichment), which is somehow
equivalent to considering that the stiffness of the bar elements is added to the stiffness
of the surrounding volumic elements (green elements on figure 7 b.). Besides allowing to
use coarser meshes around the reinforcements, using bar elements simplifies the meshing
procedure since the volumic and lineic meshes can be independent. This method allows
to get good global results (force-displacement curve for instance), but is obviously not
as accurate as a volumic representation of the reinforcements as shown by [5]. Indeed,
two drawbacks can be underlined:

• The overall stiffness of the structure is overestimated. Let us consider the exam-
ple of figure 7 a. A reinforcement, denoted Ωinclusion, is embedded in a matrix
called Ωmatrix. The structure is meshed using coarse 2D elements, not taking into
account the interface between Ωinclusion and Ωmatrix (cf. figure 7 b.). These 2D el-
ements have the material properties of the matrix material, and the reinforcement
is introduced with 1D bar elements having the material properties of the inclusion
material. The discretized stiffness of the geometrical domain Ωinclusion is the sum
of two terms: obviously, the stiffness of the reinforcements coming from the 1D
elements, and a second term which corresponds to the part of the 2D finite ele-
ments inside Ωinclusion, but have the material properties of the matrix (gray part
in figure 7 b.). Therefore the stiffness of Ωinclusion is overestimated. However, the
reinforcements are usually stiffer than the matrix and their diameter is small, so
the influence of this extra stiffness should remain small in most of the cases.

• One can see from figure 7 b. that if the size of the 2D elements around the bar
elements becomes small, the stiffness of the reinforcements is distributed over a
band of vanishing thickness, which may lead to non-physical stress concentrations
(see section 5.2.2).

It is also possible to consider that the link between bar and volumic elements is not
perfect, by allowing a slip between the bar nodes and the volumic ones [16], but in this
paper we will consider only perfect bond.
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a.

b.

Figure 7: Redistribution of the reinforcements stiffness in the volumic elements. a.
Domains definition. b. Mesh of the domains, using 1D bar elements.

4 Mixing lineic and volumic models

4.1 Correction scheme

It was shown in section 2 that X-FEM can be used to obtain a volumic representation
of the reinforcements with meshes which do not need to coincide with their boundaries.
However, if the mesh is too coarse, some geometrical errors can occur. The solution
proposed in this section is to keep the geometry of the reinforcements approximated
by X-FEM, which may be accurate in the zone of interest and potentially inaccurate
where the mesh is coarse, and to use bar elements as presented in section 3 at the same
time. Let us consider the example depicted in figure 8. A reinforcement is modeled using
both X-FEM and bar elements, placed along the reinforcement path. In some part of the
structure, the mesh is coarse enough so that at least one node has its support cut twice by
Γ. The volumic part approximated with X-FEM and the lineic part are both assembled,
but the stiffness of each bar element is weighted by a coefficient αe. Considering that
each bar element delimitates a segment of the reinforcement (red dashed line in figure
8) ; the real volume of this segment can be computed as:

Ωreal
e = Sle (9)

where S is the section of the reinforcement an le the length of the bar element. Then αe
is computed by:

αe = 1− Ωnum
e

Ωreal
e

(10)
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where Ωnum
e is the volume of the segment of the reinforcement that could be approxi-

mated using X-FEM (darken color part inside the red dashed line rectangle in figure 8).
Ωnum
e is computed as follow:

1. The volumic element around each bar element are divided into subelements, using
the level set φ, according to section 2.2

2. The subelements close to the extremities of the segment are cut once again by two
planes normal to the bar element at the bar nodes

3. Ωnum
e is then the sum of the volumes of all the subelements resulting from step

1 and 2 which are inside Ωreal
e . These elements can be found easily because the

value of φ is smaller or equal to zero at each of their nodes.

Figure 8: Computation of αe

To sum up, the bar elements can be seen as a correction to the X-FEM approximation,
through the use of coefficient αe computed by (10):

• αe = 0 if Ωnum
e = Ωreal

e : the segment of reinforcement is perfectly represented by
X-FEM, the bar element is not taken into account, no correction is needed

• αe = 1 if Ωnum
e = 0: the mesh is very coarse, no node is inside the reinforcement,

therefore it “disappears”: a classical bar element is assembled

• αe ∈]0; 1[ if 0 < Ωnum
e < Ωreal

e : the reinforcement is only partially represented by
the level-set, the bar element brings the missing stiffness as a correction

Note that using these modified bar elements does not solve the local issues of X-FEM
emphasized in section 2.3: in the coarse zone, the results around the reinforcements will
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still be inaccurate. However, from a global point of view, the stiffness of the structure
in the coarse zone will be sufficiently correct so that the local results in the fine zone are
almost identical to the results that would be obtained with a full volumic representation
of the reinforcements in the whole structure. The extra stiffness around bar element e
mentioned in section 3 is now equal to αek

matrix
e , where kmatrixe is the stiffness of Ωreal

e

assuming that it is made only of the matrix material. Since αe is smaller than 1, the
global stiffness of the structure should be better with the approach proposed in this
section than with only 1D bar elements. This will be shown in numerical examples in
section 5.

4.2 Flowchart

Here is the general procedure to perform the finite element computation of a reinforced
structure in linear elasticity with perfect bond, using the method presented in section
4.1:

1. Make a volumic mesh of the structure

2. Make a 1D mesh of the reinforcements

3. Compute the value of the level-set φ using equation (4). Note that the center-line
of the reinforcement Λ can be replaced by a 1D mesh. In this case the value of
the level-set at each node of the volumic mesh is computed by a direct distance
computation from this node to the 1D mesh, and by subtracting the radius of the
reinforcement. Provided that enough bar nodes are used, the discretization error
remains low, without influencing the computation times

4. Assemble the stiffness corresponding to the volumic part, according to the proce-
dure given in section 2.2

5. For each bar element, compute coefficient αe

6. Assemble the stiffness corresponding to the 1D part of the reinforcements, multi-
plying the stiffness of each bar element by αe and taking into account the relation
(7)

7. Finally, solve the linear system
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Matrix Reinforcements

Young modulus (Pa) 40.1011 200.1011

Poisson ratio 0.24 0.3

Yield stress (Pa) 4.106 -

Hardening modulus
(Pa)

−1006 -

Table 1: Material properties

5 Numerical examples

The approach proposed in section 4 is applied to several examples. To illustrate the
interest of the method, we consider structures with reinforcements stiffer than the sur-
rounding matrix. Perfect bond is considered between both materials. In section 5.1
the matrix and the reinforcements are made of linear elastic materials. For the exam-
ples of section 5.2, non-linear test cases are considered. Softening models like damage
mechanics would be a rather logical possibility as one of the main applications of the
proposed method is reinforced concrete. However, these models need some regularization
in order to avoid spurious mesh dependency [17], which is usually done by introducing
non-locality in the problem. Taking this non-locality into account close to the reinforce-
ments would require some developments which would be out of the scope of this paper.
Therefore, an elastoplastic material with a simple isotropic hardening (J2-flow theory
[18]) is considered for the matrix. This will not be representative of any particular kind of
physical phenomenon, but will allow to get qualitative non-linear results. The hardening
modulus is chosen negative (softening plasticity), to get a behaviour qualitatively simi-
lar to damage mechanics. The material properties of the matrix and the reinforcements
are summarized in table 1,and the behaviour at Gauss points for the matrix material is
shown is figure 9.

For each example, a zone of interest is identified. A mesh with elements fine enough
to correctly represent the reinforcements is used in this zone. This mesh will be called
the “computation mesh”. The method presented in section 4 will be called the “mixed”
method in what follows (mix between a volumic representation of the reinforcements
with X-FEM and a 1D representation with bar elements). Unless otherwise specified,
the obtained results are compared with two other methods:

• A computation performed with the same mesh, but using only truss elements in
the whole structure. This method will be called the “bar” method.

• A computation performed with a fine mesh in the whole structure. The element
size is the same as the the element size in the zone of interest of the computation
mesh. This mesh will be called the “reference mesh”. The reinforcements are
represented using X-FEM. As the mesh is fine everywhere, the reinforcements are
perfectly represented in 3D, therefore these results will be taken as references. This
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Figure 9: Behaviour at Gauss points of the matrix material

method will be called the “volumic” method.

All the meshes used in this section are made of linear elements.

5.1 Elastic test cases

5.1.1 Three points bending 2D elastic

The first example is a three points bending test in 2D, under plane strain assumption.
The geometrical characteristics of the test are given in figure 10: length L = 5.1 m,
height h = 0.8 m, thickness t = 1 m. The beam is strengthened with a reinforcement
of radius 0.016 m in the upper part, and a reinforcement of radius 0.02 m in the lower
part. The zone of interest is supposed to be at the center of the beam, and has a width
D.

Figure 10: Geometry of the three points bending test and boundary conditions

For the computation mesh, the element size is 0.005 m in the zone of interest, and 0.05
m outside (cf. figure 11). For the reference mesh, the element size is 0.005 m in the whole
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Figure 11: Mesh used for the three points bending test in linear elasticity. In the zone
of interest, the elements are geometrically superimposed for the computation
mesh and the reference mesh.

beam. The width of the zone of interest is D = 0.06 m. Note that the element size does
not seem really fine in the zone of interest compared to the reinforcements radius. Since
in 2D, straight reinforcements are represented with flat rectangles, the mesh does not
need to be really fine, which is not the case in 3D as illustrated in section 5.2.2. It just
needs to ensure that no node has its support cut twice by the iso-zero of the level-set.
The mesh in the zone of interest is made of squares cut into triangles (see figure 11). This
is to ensure that the elements in this zone are exactly superimposed for the computation
and the reference meshes, something which is necessary for the comparison between the
different computations (cf. equation (14)). For this computation the mesh was also
refined around the boundary conditions, to account for the singularities resulting from
the imposition of a displacement on points.

The vertical displacement v and the normal stress σ along the upper reinforcement
are plotted in figure 14, as well as the relative error between the mixed/bar method and
the volumic method. For a 1D bar element, the computation of the normal stress is
reminded:

σij =
E

le
(uj − ui).v (11)

where ui and uj are the displacement of the bar nodes. v the unitary vector orienting
the bar element, going from node i to node j. The same expression is used for the
volumic and mixed methods (in the case of the volumic method, bar elements are used
in the computation but their stiffness is null, they are used only to compute (11)). The
relative error for the bar and the mixed method compared to the volumic method, are
also computed :

ηbar/mixv =
|vvoli − v

bar/mix
i |

|vvoli |
(12)

for the displacement error, computed at each node i, where the subscripts bar/mix/vol
refer to the bar, mixed and volumic method respectively, and
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Figure 12: Approximated geometry of the reinforcements for the three points bending
test (zoom on the center of the beam).

Figure 13: Coefficient αe along the reinforcements for the three points bending test.

ηbar/mixσ =
|σvolij − σ

bar/mix
ij |

|σvolij |
(13)

for the stress error, computed at each bar element, defined by nodes i and j.
The three methods give similar results. The effect of the extra-stiffness mentioned

in section 3 can be observed, with a vertical displacement with the bar method smaller
than the one obtained with the mixed method, which illustrates the fact that with the
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mixed method, this extra-stiffness is lower than with a pure bar method.. The error
compared to the volumic method are lower with the mixed method than with the bar
method, even if they are acceptable in both cases (less than 10%). It can be noticed
that in the fine zones around the boundary conditions, the bar method fails to capture
the displacement and normal stress, which is not the case for the mixed method. The
same conclusions can be drawn for the lower reinforcements.

To get local information about the mechanical field around the reinforcements in the
zone of interest, the error for each element e per unit volume is also computed:

ηbar/mixe =

√
|
∫

Ωe
ε(ubar/mix − uvol) : E : ε(ubar/mix − uvol)|

|
∫

Ωe
ε(uvol) : E : ε(uvol)|

(14)

η
bar/mix
e is computed on the reference mesh, by projecting the stress and strain fields

obtained with the bar and mixed methods. It must be noticed that this quantity does not
really make sense to compare results computed on different meshes, since the stress and
strain field are discontinuous at the boundaries between the finite elements. However for
this test the meshes are exactly the same in the zone of interest (cf. figure 11), ensuring
the relevance of (14) in this zone. The obtained errors are plotted in figure 15.

The most interesting observation is that the error in the zone of interest for the
mixed method remains low (under 1.0%). For the bar method, it is obviously high
around the truss elements, but it can also reach about 5.0% even near the center of the
beam. Outside of the zone of interest, the error is lower in the center of the beam for
the mixed method even if conclusions must be considered with care since the meshes
are not the same; in particular, some numerical artefacts can be observed. In both
cases, the errors are high around the reinforcements, which was to be expected since
(14) is not computed with the same Hooke tensor, depending on how the reinforcement
is represented. Promising conclusions can be drawn from this example: in the zone
of interest, the results obtained with the mixed method and the volumic method are
very close to each other. The importance of using a volumic representation of the
reinforcement (at least in the zone of interest) compared to a 1D representation was also
emphasized. As expected, in the rest of the structure, the results are not as accurate
as results that would be obtained with a fine mesh in the whole structure, however it
seems that some improvement can be observed compared to the bar method.

5.1.2 Bending of a 3D post

This example illustrates how the mixed method can handle many reinforcements with
complex geometries. The mesh of the post, the 1D mesh and the approximated geometry
of the reinforcements are shown in figure 16. It is reminded that the only necessary
information for the representation of the reinforcements is a 1D mesh and their radius,
which is particularly interesting in this test case with many reinforcements and complex
paths. Indeed, representing several 3D reinforcements which may be tangent to each
other as shown in figure 16 d. with a conforming mesh is very laborious. The lower
surface at the base of the post is clamped, whereas the top of the post is subjected
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Figure 14: Displacements, normal stresses and errors in the upper reinforcement. The
black dashed lines locate the limits of the zone of interest
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Bar method

Mixed method

Figure 15: Energy errors. The maximum value was set to 0.2 for visibility: the red
zones correspond to error greater than 0.2.

to a shearing load. The zone of interest is supposed to be at the base of the beam,
where the stress is expected to be the highest. To simplify the computations, only the
reinforcements crossing the zone of interest are modeled using the mixed method (that is
to say, the vertical reinforcements and two horizontal frames). The other reinforcements
are modeled by 1D truss elements. The results of this computation are still referred as the
“mixed” method (even if it is not true for all the reinforcements). The computational
cost for a volumic representation of the reinforcements would be too high, therefore
there is no reference computation for this example. Von Mises stresses in the zone of
interest, in several cross-sections of the post, are shown in figure 17. Far away from the
reinforcements, no significant differences can be observed between the bar and the mixed
method. However, with the mixed method, a slight decrease of the Von Mises stress can
be observed around the reinforcements boundaries (green dashed frames in figure 17).

5.2 Plastic test cases

In this section the mixed method is illustrated on non-linear examples. The matrix is
made of an elastoplastic material with isotropic hardening. To avoid spurious appearance
of plasticity around the part of the reinforcements which are only partially represented
by the level-set, the plasticity is restrained to the zone of interest whereas the rest of
the structure is assumed linear elastic. Usually the reinforcements are stronger than the
surrounding matrix and yield for much higher loading, in some applications they do not
yield at all; therefore they will be considered linear elastic in what follows.
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a. b.

c. d.

Figure 16: a. 3D mesh of the post. b. Overview of the 1D mesh and of the approximated
geometry of the reinforcements. The red lines correspond to the 1D mesh of
the reinforcements. c. Zoom around the zone of interest. d. Zoom around
the zone of interest, close to the 3D part of the reinforcements.
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Bar Mixed

Figure 17: Von Mises stress in several cross-section views for the bending of the 3D
post.
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Figure 18: Top: Mesh used for the three points bending test. Bottom: geometry of the
reinforcements approximated with level-set functions.

5.2.1 Three points bending 2D plastic

The test case of section 5.1.1 is considered with an elastoplastic matrix. The width of
the zone of interest is D = 0.3 m. The element size in the zone of interest is 0.005
m. Corresponding computation meshes are shown in figure 18. The geometry of the
reinforcements approximated with level-set functions on both meshes is represented as
well. The plastic strain at the end of each computation for the different meshes and
methods are given in figure 19.

In each computation, the plastic strain starts to develop under the loading zone, then
at the bottom of the beam. However, with the bar method, it tends to reach the middle
of the beam, whereas for the volumic method, the plasticity is confined around the
reinforcements. The volumic method and the volumic part of the reinforcements in the
mixed method introduce some heterogeneities, and therefore a stress field different from
the bar method, leading to these differences in the results. With the mixed method,
the plastic strain in the zone of interest is similar to the one obtained with the volumic
method.

5.2.2 3D Four points bending test

The next example is a 3D beam subjected to 4 points bending, with the following
dimensions: length L = 5 m, height h = 1 m, thickness t = 0.5 m. It is reinforced with
four reinforcements (cf. figure 20) of radius r = 2

9 t, placed at a distance cv = 0.25 m
from the upper and lower faces of the beam, and ch = 0.125 m from the lateral faces.
The distance between the middles of the two loading zones is b = 0.75 m and the width
of the zone of interest is D = 1 m .

Using symmetry conditions, only a quarter of the beam is modeled; the displacement
along the x-axis of the horizontal face located at x = 0 is blocked, as well as the
displacement along the z-axis of the horizontal face located at z = L/2. The element
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Figure 19: Plastic strain at the end of the computation. Top: Bar method. Middle:
Mixed method. Bottom: Volumic method.
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Figure 20: Geometry of the four points bending test and boundary conditions

size is 0.1 m, except in the zone of interest where it was reduced to 0.05 m to better
capture the non-linear effects. Note that this size is too large to represent correctly the
reinforcements, but in order to decrease the computing times, the mesh was refined only
around the reinforcements with a size of 0.005 m (cf. figure 21). For the computation
mesh, this local refinement is concentrated in the zone of interest.

The geometry approximated with the level-set function is represented in figure 22.
The plastic strains in the zone of interest in different cross-sections of the beam and in
the reinforcements plane, are given in figure 23. One can observe that when using the bar
method, the bar elements tend to concentrate the plastic strain, near the nodes of the 1D
mesh. This phenomenon was not observed in the example of the section 5.2.1. Indeed,
in two dimensions finite elements with a size with the same order of magnitude than
the reinforcements radius were enough to correctly represent them. In three dimensions,
the curvature due to the cylindrical geometry of the reinforcements requires smaller
elements (in this example the ratio between the elements size around the reinforcements
and their radius is around 1

20). This leads to stress concentrations around the 1D bars.
Here again, the absence of heterogeneity leads to a plastic strain which is higher with
the bar method, even far from the reinforcements. However, the results with the mixed
method are almost the same as the ones obtained with the volumic method, which were
the desired results.

Finally, to quantify the gain in CPU times, a sequential elastic computation was
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Figure 21: Meshes used for the four points bending test. Left: mesh used to test the
bar and mixed methods. Right: mesh used to test the volumic method.

Figure 22: Approximation of the reinforcements in the four points bending test, using
the mixed method

performed with each of the three methods. The number of degrees of freedom and the
duration of different steps of the computation are given in table 2. The “Pre-treatment”
step includes the definition of the X-FEM enrichment and the computation of coefficient
αe.

The additional cost of the mixed method is quite low compared to the bar method,
which is interesting considering that in the zone of interest, the obtained results are the
same than the one obtained with the volumic method.
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Bar Mixed Volumic

Figure 23: Plastic strain at the end of the computation in several cross-section views.
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Number of de-
grees of freedom

Pre-
treatment

Assembling Solving

Bar 117909 2.68 s 14.63 s 11.06 s

Mixed 155190 36.96 s 141.90 s 36.96 s

Volumic 482677 142.01 s 262.57 s 50.97 s

Table 2: Number of degrees of freedom and computing times.

5.2.3 Punching of a 3D slab

The last example is a 3D slab. It is reinforced with two layers of perpendicularly and
regularly spaced reinforcements of radius 0.015 m. Each layer is made of 21 reinforce-
ments in the x-axis direction and 21 reinforcements in the y-axis direction (for a total of
84 reinforcements). The upper layer of reinforcement is located 0.032 m from the upper
boundary of the slab, and the lower layer is located 0.04 m from the lower boundary of
the slab (distances measured from the center-line of the reinforcements). The dimensions
of the slab are 3 × 3 × 0.25 m (cf. figure 24). The zone of interest is a parallelepiped with
dimensions 0.3 × 0.3 × 0.25 m located at the middle of the slab, under the loading zone.
The element size is 0.01 m in the zone of interest, and 0.15 m in the rest of the structure.

To decrease the computing time due to the treatment of the level-set and enrichment,
the reinforcements crossing the zone of interest are modeled using the mixed method
as described in section 4 (that is to say, 3 reinforcements by layer, in each direction),
whereas the others are represented using only 1D bar elements. The geometry of these
reinforcements approximated by X-FEM is shown in figure 25. For this test case, the
number of degrees of freedom would be too high for a volumic representation, so there
will be no reference computation. The lateral sides of the slab are clamped, and a vertical
loading is applied at the center, on a square surface of dimensions 0.15 × 0.15 m.

The plastic strain in different planes (two horizontal planes crossing the upper and
lower layer of reinforcements, and one vertical plane with a normal oriented along the
x-axis, crossing the slab at x = 1.5) is shown in figure 26 for the bar and mixed methods.

In this case, the element size and the reinforcements radius are close to each other,
which explains why plastic strain concentration is not observed around the reinforce-
ments for the bar method. However, differences can still be observed between the results
obtained with the mixed and bar methods, showing the importance between a volumic
and a 1D representation of the reinforcements.

5.3 Toward a coupling with mesh adaptation methods

The potential of the proposed approach is finally illustrated on a last example. Indeed,
the coupling of this mixed dimensional model with mesh adaptation strategies is very
appealing, as the scale of representation of the reinforcements changes dynamically with
element size. Consider the three point bending test presented in section 5.1 in which
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Figure 24: Geometry of the slab test

damaged zones are introduced thanks to the Thick Level Set (TLS) method [19]. The
TLS approach is a method to regularize damage models, which allows a natural transition
to discontinuous failure, relying on several key elements:

• A representation of the damage variable d through an auxiliary field φ, which is a
level-set function. d is written as a known function (parameter of the model) d(φ),
usually called the damage profile

• A characteristic length `c, corresponding to the regularization length as in most of
the non-local damage models [17]

• An enrichment with the ramped Heaviside function of the iso-`c of φ which corre-
sponds to the position of the cracks, to introduce discontinuities of the displacement
field [20]

Note that no damage evolution is considered here: the damage zone is fixed (and
frozen) at a given state of φ and the mechanical fields arising from this state are com-
puted. φ is chosen in order to avoid fully damaged zone (corresponding to d = 1), which
would involve the treatment of the coupling between the enrichment representing the
material interface (see section 2.1) and the ramped Heaviside enrichment (which will be
the topic of further investigations). The quadratic damage profile proposed by [21] is
used. Adapted meshes (see figure 27) are considered in order to track the damaged zone
during its evolution and show the influence of this refinement on the representation of
the mechanical fields. The resulting axial strain fields εxx along the axis of the beam
are given, both for a standard 1D representation of the reinforcements and for the pro-
posed mixed-dimensional method. Comparing those fields for different damaged states
highlights the benefits of the proposed approach over classical bar models: mechanical
fields are improved in the damaged area (i.e. where the accuracy of the model is of prime
importance), especially around the reinforcements. The switch between bar and volumic
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Figure 25: Geometry of the reinforcements approximated by level-set functions

models is handled automatically during the evolution of the damaged zone. Note also
that, like in the previous examples, the length of the bar elements has to be carefully
chosen as it can lead to stress concentration spots when this size is too large with respect
to the elements.

6 Conclusion

A new approach to study reinforced structures is proposed, based on the idea that when
performing a finite element analysis, it is most of the time possible to identify zones of
interest. Fine meshes are used in these zones to get accurate results, whereas coarser
elements are used in the rest of the structure to decrease computation times. In this
framework, X-FEM is used to model the reinforcements, simplifying the meshing process.
X-FEM alone would give inaccurate results, because the geometry of the reinforcements
would not be correctly represented in the coarse zone. The proposed solution consists
in assembling simultaneously 1D truss elements, multiplying their elementary stiffness
matrix by a coefficient depending on the local accuracy of the representation of the
reinforcements by the level-set functions. This approach was validated through several
examples, where the same results were obtained in the zone of interest, whether this
approach or a full volumic representation of the reinforcements on a fine mesh is used.

The proposed method allows to combine a volumic and a lineic representation of the

30



Figure 26: Plastic strain at the end of the computation in several cross-section views.
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a.

b.

c.

d.

e.

Figure 27: Axial strain εxx for different “remeshing” steps. From a. to d. : mixed
method. e. bar method at the step corresponding to d.
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reinforcements in the same computation. In the zone of interest, where the meshes are
fine, a 3D representation of the reinforcements guarantees accurate results. In the rest
of the structures, the use of coarser meshes associated with lineic elements decreases
the computing times. The transition between the 3D and the 1D representation is such
that the results in the zone of interest are almost identical to the results that would be
obtained with a full volumic representation. Besides, several other advantages can be
underlined:

• It is easy to implement, provided that one has a basic X-FEM library (enrichment
functions and level-set, as well a element cutting for numerical integration). It can
also be noticed that compared to most of the approach coupling 1D/2D model to
3D model, it is not necessary to know exactly the interface between the 1D and
the 3D zones; here both 1D and 3D models coexists, the transition between both
is insured by the coefficients αe.

• The computational costs remain low: the computation of the coefficients αe needs
to be done only once, at the beginning of the analysis, therefore the computing
costs related to this step are low, even in the case of a non linear analysis (unless
some remeshing is involved).

• It is simple to use. One just needs to know the zones of interest, which is a
common issue when performing a finite element analysis, and the 1D path of the
reinforcements. The 3D part of the reinforcements is represented implicitly by X-
FEM, simplifying the meshing process, whereas the 1D mesh is independent from
the volumic mesh.

It must be emphasized that the efficiency of the proposed approach is strongly depen-
dent on the common sense of the user. For instance, one should should ensure that the
mesh is fine enough in the zones of interest, and should not have a transition between
1D and 3D representation in these zones (as a reminder, the coefficients αe corrects the
global stiffness in the areas where X-FEM fails to represent the reinforcements, but does
not provide accurate local results in these zones). As the geometry approximated by
level-sets is piecewise linear 2.2, the density of the mesh in the zones of interest should
be the same as the one that should be used to represent the reinforcements with a classi-
cal 3D mesh (that is to say, with nodes coinciding with the material interface). At least
one order of magnitude between the reinforcement radius and the size of the elements
in the fine zones seems to be a minimum in 3D.

This approach was developed considering perfect bond between the reinforcements
and the surrounding matrix, however it is often not the case, as in reinforced concrete
for instance where the steel-concrete interface is not perfect. If the reinforcements are
represented using X-FEM, an approach similar to what is done in [22] for cohesive
crack growth could be considered. The Ridge enrichment function could be replaced by
a Heaviside enrichment function, to get a discontinuous displacement at the interface
but with “cohesive” forces representing the bond between the reinforcements and the
matrix. For reinforcements represented using bar elements, it is possible to consider
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a slip between the bar nodes and the surrounding volumic elements, and to introduce
bond forces as in [16]. Future work will focus on how to deal with bond slip in the zones
where both X-FEM and bar representation are superimposed (0 < αe < 1).

7 Appendix

In order to illustrate the interest of using the eXtended Finite Element Method, a con-
vergence test is performed on the bidimensional problem of a circular inclusion in a
rectangular plate similar to the one depicted on figure 1. The error is defined by

η =

√
|
∫

Ω ε(u
h − uex) : E : ε(uh − uex)|
|
∫

Ω ε(u
ex) : E : ε(uex)|

(15)

where uex is the exact solution and uh an approximate solution. uh is calculated with
three different methods:

• The classical finite element method (FEM) with a mesh conforming to the material
interface.

• A finite element computation with an arbitrary mesh, not conforming to the ma-
terial interface. The numerical integration is performed using the procedure de-
scribed in section 2.2, i.e. with subcells but no enrichment.

• A computation with the same non-conforming mesh, using the X-FEM.

The error is plotted for the three methods on figure 28. It can be observed that the
X-FEM allows to recover a convergence rate which is close to the conforming FEM,
whereas the non-conforming FEM gives a poor convergence rate. For a given element
size, the non-conforming FEM is always the less accurate method.

In order to get information about the local accuracy of each method, the local error
for each element of the mesh e is defined:

ηe =

√
|
∫

Ωe
ε(uh − uex) : E : ε(uh − uex)|
|
∫

Ωe
ε(uex) : E : ε(uex)|

(16)

The local error for each method, for a ratio h
r = 1

4 where h is the element size and r
the radius of the inclusion, is shown on figure 29. For the three methods, the local error
is concentrated around the material interface. However, the error obtained with the
X-FEM is of the same order of magnitude than the error obtained with the conforming
FEM, which is of course lower than the error obtained with the non-conforming FEM.
Note that the chosen ratio h

4 = 1
r is quite representative of a typical element size re-

quired to study a circular inclusion (good compromise between the approximation of the
curvature of the geometry and a reasonable mesh refinement). One could have imagined
that for a fine enough mesh, the error committed with the non-conforming FEM would
be small, which is not the case here. This example shows that, for a practical element
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Figure 28: Convergence rates for the 2D inclusion problem.

size, the non-conforming FEM is not as accurate as the conforming FEM, which is not
the case of the X-FEM.
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Figure 29: Local error for the 2D inclusion problem for a ratio h
4 = 1

4 . a. FEM. b. FEM
non-conforming. c. X-FEM
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[11] N. Sukumar, D. L. Chopp, N. Moës, T. Belytschko, Modeling holes and inclusions
by level sets in the extended finite-element method, Computer Methods in Applied
Mechanics and Engineering 190 (2001) 6183–6200.
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