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Introduction

The one-dimensional porous-elastic model has the form ρ 0 u tt = µu xx + βϕ x ρ 0 κϕ tt = αϕ xx -βu x -τ ϕ t -ξϕ where u is the longitudinal displacement, ϕ is the volume fraction, ρ 0 > 0 is the mass density, κ > 0 is the equilibrated inertia, and µ, α, β, τ , and ξ are the constitutive constants which are positive and satisfy µξ > β 2 . The first contribution in this direction has been investigated in 2003 by Quintanilla [START_REF] Nunziato | A nonlinear theory of elastic materials with voids[END_REF]. The authors analyzed this model in a bounded domain with initial conditions and mixed boundary conditions and showed that the damping in the porous equation (-τ ϕ t ) is not strong enough to obtain an exponential decay. Only the slow decay has been proved. The case τ = 0 and with viscoelastic damping term of the form γu txx acting on the right-hand side of the first equation has been investigated by Rivera et al. [START_REF] Djebabla | Exponential stabilization of the Timoshenko system by a thermo-viscoelastic damping[END_REF], they proved that the decay rate of the solution is polynomial and cannot be exponential. Casas and Quintanilla [START_REF] Quintanilla | Slow decay in one-dimensional porous dissipation elasticity[END_REF] considered a system of the form

              
ρ 0 u tt -µu xx -bϕ x + βθ x = 0 in (0, ∞) × (0, π) ρ 0 κϕ tt -αϕ xx + bu x + ζϕ t -mθ = 0 in (0, ∞) × (0, π) cθ t -κθ xx + βu tx + mϕ t = 0 in (0, ∞) × (0, π), u (x, 0) = u 0 (x), ϕ(x, 0) = ϕ 0 (x), θ(x, 0) = θ 0 (x) in (0, π) u t (x, 0) = u 1 (x), ϕ t (x, 0) = ϕ 1 (x), in (0, π) u (x, t) = ϕ x (x, t) = θ x (x, t) = 0, x = 0, π, t ≥ 0 where θ denotes the temperature difference, they showed that the presence of the macrotemperature and the porous dissipations acting together stabilize the system exponentially. Soufyane [START_REF] Soufyane | Energy decay for porous-thermo-elasticity systems of memory type[END_REF] introduced a viscoelastic damping in the porous equation together with a macrotemperature effect and showed that the decay is exponential (resp. polynomial) when the relaxation function is of exponential (resp.polynomial) decay. A similar result was also obtained by Soufyane et al. [START_REF] Soufyane | Boundary stabilization of memory type for the porous-thermo-elasticity system[END_REF][START_REF] Soufyane | General decay of solutions of a linear one-dimensional porous-thermoelasticity system with a boundary control of memory type[END_REF], for the same system, with the frictional damping -τ ϕ t replaced by two boundary viscoelastic dissipations of the form

u(L, t) = - t 0 g 1 (t -s) [µu x (L, s) + bϕ(L, s)] ds, v(L, t) = -α t 0 g 2 (t -s) ϕ (L, s) ds.
where g 1 and g 2 are positive nonincreasing functions. Recently, Messaoudi and Apalara [START_REF] Messaoudi | General stability result in a memorytype porous thermoelasticity system of type III[END_REF] considered in a bounded domain a porous-thermoelastic system of type III with the presence of a viscoelastic damping

               ρ 1 ϕ tt -k (ϕ x + ψ) x + θ x = 0, ρ 2 ψ tt -αψ xx + k (ϕ x + ψ) -θ + t 0 g (t -s) ψ xx (x, s) ds = 0, ρ 3 θ tt -κθ xx -δθ txx + βϕ ttx + βψ tt = 0, ϕ (x, 0) = ϕ 0 (x) , ϕ t (x, 0) = ϕ 1 (x) , ψ (x, 0) = ψ 0 (x) , ψ t (x, 0) = ψ 1 (x) , θ (x, 0) = θ 0 (x) , θ t (x, 0) = θ 1 (x) , ϕ (0, t) = ϕ (1, t) = ψ (0, t) = ψ (1, t) = θ (0, t) = θ (1, t) = 0
where ϕ is the longitudinal displacement, ψ is the volume fraction, θ is the difference in temperature and the relaxation function g : R + → R is a nonincreasing function. They established a general decay result for the case of equal speeds k ρ 1 = α ρ 2 . Notice that the term δθ txx in the third equation represents a strong damping. The term βθ t provides a weaker damping (frictional damping) and so we consider with initial data and boundary conditions the following system

   ρ 1 ϕ tt -k (ϕ x + ψ) x + γθ x = 0, ρ 2 ψ tt -bψ xx + k (ϕ x + ψ) -γθ + t 0 g (t -s) ψ xx (x, s) ds = 0, ρ 3 θ tt -lθ xx + βθ t + γϕ ttx + γψ tt = 0,
in Ω × (0, +∞), where Ω = [0, L] and the coefficients ρ 1 , ρ 2 , ρ 3 , k, b, γ, β and l are positive constants. Our aim in this work is to prove the general decay of solutions in the energy norm. If we make the change of functions

ϕ t = χ ∈ H 1 0 (Ω) , ψ t = ξ ∈ H 1 0 (Ω) , we find    ρ 1 χ tt -k (χ x + ξ) x + γθ tx = 0, ρ 2 ξ tt -bψ xx + k (χ x + ψ) -γθ t + t 0 g (t -s) ξ xx (x, s) ds = 0, ρ 3 θ tt -lθ xx + βθ t + γχ tx + γξ t = 0, (1) 
to be considered with the following initial data and boundary conditions

χ (0, .) = χ 0 , χ t (0, .) = χ 1 , ψ (0, .) = ψ 0 , ψ t (0, .) = ψ 1 , θ (0, .) = θ 0 , θ t (0, .) = θ 1 , χ (t, 0.) = χ (t, L) , ξ (t, 0.) = ξ (t, L) , θ (t, 0.) = θ (t, L) = 0 , t ≥ 0. (2)
The plan of the paper is as follows: In the next section we prepare some material needed to prove our result. We present the different functionals by which we modify the classical energy to get an equivalent one. Section 3 is devoted mainly to the statement and proof the general decay result.

Preliminaries

In this section, we present our hypotheses, and state without proof a global existence result. First, we denote by * the usual convolution term

(f * h) (t) = t 0 f (t -s) h (s) ds (3) 
and the binary operators ♦ and o respectively, by

(f ♦h) (t) = t 0 f (t -s) (h (t) -h (s)) ds (4) and (f oh) (t) = t 0 f (t -s) (h (t) -h (s)) 2 ds. (5) 
For the relaxation function g we assume:

(H1) g : R + → R + is differentiable function such that

g (0) > 0, λ := b - ∞ 0 g (s) ds := b -ḡ > 0 (6) 
(H2) There exists a nonincreasing differentiable function ζ : R

+ → R + g (t) ≤ -ζ (t) g (t) , ∀ t ≥ 0. (7) 
Remark. There are many functions satisfying (H1) and (H2) (see [START_REF] Messaoudi | General stability result in a memorytype porous thermoelasticity system of type III[END_REF]).

Proposition 1 Let ((χ 0 , χ 1 ) , (ξ 0 , ξ 1 ) , (θ 0 , θ 1 )) ∈ (H 1 0 (0, L) × L 2 (0, L)) 3 be given and assume that g satisfied (H1) and (H2). Then, problem (1.2) has a unique global solution:

(χ, ξ, θ) ∈ (C (R + ; H 1 0 (0, L)) ∩ C 1 (R + ; L 2 (0, L))) 3 
Moreover, if

(χ 0 , ξ 0 , θ 0 ) ∈ (H 2 (0, L) ∩ H 1 0 (0, L)) 3 and (χ 1 , ξ 1 , θ 1 ) ∈ (H 1 0 (0, L))
then the solution satisfies

(χ, ξ, θ) ∈ (C (R + ; H 2 (0, L)) ∩ C 1 (R + ; H 1 0 (0, L)) ∩ C 2 (R + ; L 2 (0, L))) 3 .
Remark 1 Proposition 1 can be established using standard methods such as the Galerkin method (see [4] for example).

The first-order energy associated with problem (1-2) is given as

E(t) = 1 2 Ω ρ 2 1 χ 2 t + ρ 2 2 ξ 2 t + ρ 3 θ 2 t + k (χ x + ξ) 2 + lθ 2 x + b - t 0 g (s) ds ξ 2 x + goξ x dx, t ≥ 0. ( 8 
)
Lemma 1 Under assumptions (H1) and (H2), we have

Ω ξ t t 0 g(t -s)ξ xx (s) dsdx = 1 2 d dt (goξ x ) - t 0 g (s) ds Ω ξ 2 x dx -1 2 (g oξ x ) + 1 2 g(t) Ω ξ 2 x dx. t ≥ 0
Proof. Integrating by parts and using the boundary conditions, we get

Ω ξ t t 0 g(t -s)ξ xx (s) dsdx = - t 0 g(s)ds Ω ξ 2 x (t) dsdx -Ω t 0 g(t -s)ξ tx (t) [ξ x (s) -ξ x (t)] dsdx = 1 2 d dt Ω (goξ x ) dx - t 0 g(s)ds Ω ξ 2 x (t) dx -1 2 Ω (g oξ x ) dx + 1 2 g(t) Ω ξ 2 x (t) dx. Lemma 2 For any function g ∈ C ([0 ∞) , R) and for any h ∈ L 2 (Ω) we have that [(g♦h) (t)] 2 ≤ t 0 g(τ )dτ (goh) (t), t ≥ 0. Proof. By Cauchy-Schwarz inequality, we have [(g♦h) (t)] 2 ≤ t 0 g (t -s) (h (t) -h (s)) ds 2 = t 0 g 1 2 (t -s) g 1 2 (t -s) (h (t) -h (s)) ds 2 ≤ t 0 g (t -s) ds 1 2 t 0 g (t -s) (h (t) -h (s)) 2 ds 1 2 2 ,
which proves the assertion of the lemma.

Lemma 3 There exists a positive constant C 0 such that

Ω (bξ x -(g * ξ x )) 2 dx ≤ C 0 Ω ξ 2 x dx + 4g Ω (goξ x ) dx, t ≥ 0, with C 0 = (2b 2 + 4g 2 ) .
Proof. Using the fact that (a 2 + b 2 ) ≤ 2a 2 + 2b 2 and lemma 3, we get

Ω (bξ x -(g * ξ x )) 2 dx ≤ 2b 2 Ω ξ 2 x dx + 2 Ω (g * ξ x ) 2 dx ≤ 2b 2 Ω ξ 2 x dx + 2 Ω t 0 g(t -s) (ξ x (t) -ξ x (s) -ξ x (t)) 2 dsdx ≤ 2b 2 + 4 t 0 g(t -s)ds 2 Ω ξ 2 x dx + 4 Ω (g♦ξ x ) 2 dx ≤ (2b 2 + 4g 2 ) Ω ξ 2
x dx + 4g Ω (goξ x ) dx. Our result reads as follows.

Theorem 1 Let ((χ 0 , χ 1 ) , (ξ 0 , ξ 1 ) , (u 0 , u 1 )) ∈ (H 1 0 (0, 1) × L 2 (0, 1)) 3 be given, assume that g satisfies (H1) and (H2) and the coefficients of the system satisfy the condition

κ 0 = γ + bρ 1 k -ρ 2 = 0 and κ 1 = ρ 3 b ρ 2 + bγ k -l = 0. (9) 
Then, there exist two positive constants c 0 and c 1 such that

E (t) ≤ c 0 e -c 1 t 1 t 0 ζ(s)ds , ∀t ≥ t 0 .

Proof of the main result

The proof of our main result will be established through several lemmas.

Lemma 4 Let (ϕ, ψ, θ) be the solution of (1-2). Then the energy functional E, defined by (8) satisfies

d dt E(t) = -β Ω θ 2 t dx -1 2 g(t) Ω ξ 2 x dx + 1 2 Ω (g oξ x ) dx ≤ 0, t ≥ 0. ( 10 
)
Proof : Multiplying the first equation of (1-2) by χ t , the second by ξ t and the third by θ t then we integrate over (0, L) and using lemma 2, we get [START_REF] Ciarletta | Non-classical elastic solids[END_REF] for any regular solution. Next, we introduce the multiplier w given by the solution of the Dirichlet problem -w xx = ξ x , w(0) = w(L) = 0.

Lemma 5 Let (ϕ, ψ, θ) be the solution of (1-2). Then the functional

I 1 (t) = ρ 1 Ω χ t wdx + ρ 2 Ω ξ t ξdx, t ≥ 0. ( 11 
)
satisfies, for any positive constant ε 1 , the estimate

d dt I 1 (t) ≤ -λ 2 Ω ξ 2 x dx + ε 1 Ω χ 2 t dx + ρ 2 + ρ 2 1 Cp 4ε 1 Ω ξ 2 t dx 3γ 2 Cp λb Ω θ 2 t dx + 3g 2λ Ω (goξ x ) (t)dx, t ≥ 0. . ( 12 
)
where C p is the Poincaré constant and λ is defined in (H1).

Proof : Differentiating I 1 (t) in [START_REF] Magaña | On the time decay of solutions in onedimensional theories of porous materials[END_REF] and using the first and second equations of (1-2), we obtain

d dt I 1 (t) = ρ 1 Ω χ t w t dx + k Ω w 2 x dx + γ Ω θ t w x dx + ρ 2 Ω ξ 2 t dx -b Ω ξ 2 x dx -k Ω ξ 2 dx + γ Ω θ t ξdx + Ω (g * ξ x ) ξ x (t) dx. Hence, thanks to Ω w 2 t dx ≤ C p Ω w 2 tx dx ≤ C p Ω ψ 2 t dx,
and the Young inequality, we obtain, for all δ > 0,

d dt I 1 (t) ≤ ε 1 Ω χ 2 t dx + ρ 2 1 Cp 4ε 1 Ω ξ 2 t dx + δ Ω ξ 2 x dx + γ 2 Cp 4δ Ω θ 2 t dx +ρ 2 Ω ξ 2 t dx -b Ω ξ 2 x dx + δ Ω ξ 2 x dx + γ 2 Cp 4δ Ω θ 2 t dx + t 0 g (τ ) dτ Ω ξ 2 x dx + Ω (g♦ξ x ) ξ x (t)dx. ( 13 
)
Next, exploiting the Young's inequality for the last term in [START_REF] Magaña | On the time decay of solutions in porouselasticity with quasi-static microvoids[END_REF], and lemma 3, we obtain, for all δ > 0,

Ω (g♦ξ x ) ξ x (t)dx ≤ δ Ω ξ 2 x dx + 1 4δ t 0 g(τ )dτ Ω (goξ x ) (t)dx.
The choice of δ = λ 6 gives the result. Lemma 6 Let (ϕ, ψ, θ) be the solution of (1-2). Then the functional

I 2 (t) := -ρ 1 L 0 χ t χdx -ρ 2 L 0 ξ t ξdx, t ≥ 0, (14) 
satisfies, the estimate

d dt I 2 (t) ≤ -ρ 1 Ω χ 2 t dx -ρ 2 Ω ξ 2 t dx + 3b 2 Ω ξ 2 x dx + γ 2 2k Ω θ 2 t dx + 3k 2 Ω (χ x + ξ) 2 dx + g 2b Ω (goξ x ) (t)dx. t ≥ 0. ( 15 
)
Proof. A Straightforward computation, using the .rst and the second equations in (1-2), yields

d dt I 2 (t) = -ρ 1 Ω χ 2 t dx -ρ 2 Ω ξ 2 t dx + k Ω (χ x + ξ) 2 dx +b Ω ξ 2 x dx -γ Ω θ t (χ x + ξ) dx - t 0 g(τ )dτ Ω ξ 2 x dx -Ω (g♦ξ x ) ξ x (t) dx.
Thanks to Young.s inequality, we get

-γ Ω θ t (χ x + ξ) dx ≤ γ 2 2k Ω θ 2 t dx + k 2 Ω (χ x + ξ) 2 dx -Ω (g♦ξ x ) ξ x (t) dx ≤ b 2 Ω ξ 2 x dx + 1 2b Ω (g♦ξ x ) 2 dx.
Finally, it remains to conclude by lemma 3.

Lemma 7 Let (ϕ, ψ, θ) be the solution of (1-2). Then the functional

I 3 (t) := -ρ 2 Ω ξ t (g♦ξ) (t) dx, t ≥ 0. ( 16 
)
satisfies, for any positive constant ε 2 and δ 1 > 0, the estimate

I 3 (t) ≤ -ρ 2 t 0 g (τ ) dτ -δ 1 L 0 ξ 2 t dx + ε 2 (1 + g) Ω ξ 2 x dx + γ 2 Ω θ 2 x dx + kε 2 Ω (χ x + ξ) 2 dx + C (ε 2 ) Ω (goξ x ) dx - ρ 2 2 4δ 1 g(0)C p Ω (g oξ x ) (t)dx, t ≥ 0. ( 17 
)
where

C(ε 2 ) = ε 2 + 1 2ε 2 + b 2 4ε 2 + kCp 4ε 2 + γCp 2 g .
Proof. Differentiating the functional I 3 (t) and using the second equation in (1-2), we get,

I 3 (t) = -ρ 2 Ω ξ t (g♦ψ) t (t) dx + b Ω ξ x (g♦ψ x ) (t)dx +k Ω (χ x + ξ) (g♦ξ) (t)dx -γ Ω θ t (g♦ξ) (t)dx -Ω t 0 g (t -s) (ξ x (s) ds) (g♦ξ x ) (t)dx = -ρ 2 t 0 g(τ )dτ Ω ξ 2 t dx -ρ 2 Ω ξ t (g ♦ξ) (t)dx +b Ω ξ x (g♦ξ x ) (t)dx + k Ω (χ x + ξ) (g♦ξ) (t)dx -γ Ω θ t (g♦ξ) (t)dx -Ω t 0 g (t -s) (ξ x (s) ds) (g♦ξ x ) (t)dx. 8
We now estimate the terms in this last identity, using Young's inequality and lemma 3, we obtain, for all δ 1 > 0,

-ρ 2 Ω ξ t (g ♦ξ) (t)dx ≤ δ 1 Ω ξ 2 t dx + ρ 2 2 4δ 1 t 0 (-g (τ ) dτ ) Ω (-g oξ) (t)dx ≤ δ 1 Ω ξ 2 t dx + ρ 2 2 4δ 1 g(0)C p Ω (-g oξ x ) (t)dx
Similary, we have for

ε 2 > 0, b Ω ξ x (g♦ξ x ) (t)dx ≤ ε 2 Ω ξ 2 x dx + b 2 g 4ε 2 Ω (goξ x ) (t)dx, k Ω (χ x + ξ) (g♦ξ) (t)dx ≤ kε 2 Ω (χ x + ξ) 2 dx + kCpg 4ε 2 Ω (goξ x ) (t)dx, -γ Ω θ t (g♦ξ) (t)dx ≤ γ 2 Ω θ 2 x dx + γCpg 2 Ω (goξ x ) (t)dx, finally -Ω t 0 g (t -s) (ξ x (s) ds) (g♦ξ x ) (t)dx ≤ 1 2ε 2 Ω (g♦ξ x ) (t)dx + ε 2 2 Ω t 0 g (t -s) (ξ x (t) -ξ x (s) -ξ x (t) ds) 2 dx ≤ ε 2 t 0 g(τ )dτ Ω ξ 2 x (t) dx + ε 2 + 1 2ε 2 Ω (g♦ξ x ) (t)dx ≤ ε 2 t 0 g(τ )dτ Ω ξ 2 x (t) dx + ε 2 + 1 2ε 2 g Ω (goξ x ) (t)dx.
Combining all the above estimates, we prove the assertion of the lemma.

Lemma 8 Let (ϕ, ψ, θ) be the solution of (1-2). Then the functional

I 4 (t) := ρ 3 Ω θ t θdx + γ Ω (χ x + ξ) θdx + β 2 Ω θ 2 dx, (18) 
satisfies, for any positive constant ε 3 , the estimate

I 4 (t) ≤ -l L 0 θ 2 x dx + γ 2 4kε 3 + ρ 3 L 0 θ 2 t dx + kε 3 L 0 (χ x + ξ) 2 dx. ( 19 
)
Proof. Differentiating I 4 (t) and using the third equation in (1-2), we obtain

I 4 (t) = Ω θ [lθ xx -βθ t -γχ tx -γξ t ] dx + ρ 3 Ω θ 2 t dx +γ Ω (χ tx + ξ t ) θdx + γ Ω (χ x + ξ) θ t dx + β Ω θθ t dx = -l Ω θ 2 x dx + γ Ω (χ x + ξ) θ t dx + ρ 3 Ω θ 2 t dx
By using Young's inequality, we obtain for any ε 3 > 0, 2 dx, which is exactly [START_REF] Cowin | Linear elastic materials with voids[END_REF].

I 4 (t) ≤ -l Ω θ 2 x dx + γ 2 4kε 3 + ρ 3 Ω θ 2 t dx + kε 3 Ω (χ x + ξ)
Lemma 9 Assume that the coefficients ρ 1 , ρ 2 , ρ 3 , b, k and γ satisfy the relation [START_REF] Casas | Exponential stability in thermoelasticity with microtemperatures[END_REF]. Then the functional

I 5 (t) := ρ 2 Ω ξ t (χ x + ξ) dx + (ρ 2 -γ) Ω χ t ξ x dx -γ k + ρ 3 ρ 2 Ω θ x (g * ξ x ) (t) dx -ρ 1 k Ω χ t (g * ξ x ) (t) dx +ρ 3 Ω ξ t θ t dx + l Ω θ x ξ x dx, (20) 
satisfies, for any positive constant ε 3 , the estimate

I 5 (t) ≤ -k 2 Ω (χ x + ξ) 2 dx + ε 3 Ω χ 2 t dx + ε 3 Ω θ 2 x dx + ρ 2 Ω ξ 2 t dx + [χ x (bξ x -(g * ξ x ) (t))] x=L x=0 + C 1 (ε 3 ) Ω θ 2 t dx -g 2ε 3 C 2 Ω (g oξ x ) (t) dx + g 2 (0) 2ε 3 C 2 Ω ξ 2 x dx, ∀t ≥ 0, (21) 
where

C 1 (ε 3 ) = γ 2 k + β 2 4γ + ρ 3 γ ρ 2 + ρ 2 3 k ρ 2 2 and C 2 = γ k + ρ 3 ρ 2 2 + ρ 1 k 2 .
Proof. A straifhtfoward computation, using the second, the third equations in (1-2) and integrating by parts, yields

I 5 (t) = -b Ω ξ x (χ x + ξ) x dx -k Ω (χ x + ξ) 2 dx +γ Ω θ t (χ x + ξ) dx + Ω (g * ξ x ) (t) (χ x + ξ) x dx + [χ x (bξ x -(g * ξ x ) (t))] x=L x=0 + ρ 2 Ω ξ 2 t dx +ρ 2 Ω ξ t χ tx dx + (ρ 2 -γ) Ω χ tt ξ x dx + (ρ 2 -γ) Ω χ t ξ tx dx -γ k + ρ 3 ρ 2 Ω θ tx (g * ξ x ) (t) dx -γ k + ρ 3 ρ 2 Ω θ x (g * ξ x ) t (t) dx -ρ 1 k Ω χ tt (g * ξ x ) (t) dx -ρ 1 k Ω χ t (g * ξ x ) t (t) dx -ρ 3 b ρ 2 Ω ξ x θ tx dx -ρ 3 k ρ 2 Ω θ t (χ x + ξ) dx + ρ 3 γ ρ 3 Ω θ 2 t dx + ρ 3 ρ 2 Ω θ tx (g * ξ x ) (t) dx -l Ω θ x ξ tx dx -β Ω ξ t θ t dx -γ Ω ξ t χ tx dx -γ Ω ξ 2 t dx + l Ω θ tx ξ x dx + l Ω θ x ξ tx dx, from the first equation, we get I 5 (t) = -κ 0 Ω ξ x χ tt dx -κ 1 Ω ξ x θ tx dx -k Ω (χ x + ξ) 2 dx + γ Ω θ t (χ x + ξ) dx + (ρ 2 -γ) Ω ξ 2 t dx [χ x (bξ x -(g * ξ x ) (t))] x=L x=0 -β Ω ξ t θ t dx -γ k + ρ 3 ρ 2 Ω θ x (g(t)ξ x -g ♦ξ x ) dx + ρ 3 γ ρ 3 Ω θ 2 t dx -ρ 1 k Ω χ t (g(t)ξ x -g ♦ξ x ) dx -ρ 3 k ρ 2 Ω (χ x + ξ) θ t dx.
By using Young.s inequality, relation [START_REF] Casas | Exponential stability in thermoelasticity with microtemperatures[END_REF] and the properties of g, the result follows.

As in [START_REF] Magaña | On the exponential decay of solutions in one-dimensional generalized porous-thermo-elasticity[END_REF], to deal with the boundary terms appearing in [START_REF] Messaoudi | General stability result in a memorytype porous thermoelasticity system of type III[END_REF], we define the function q(x) = 2 -4x L , x ∈ Ω Lemma 10 Let (ϕ, Ψ, u) be the solution of (1-2). The functionals J 1 and J 2 defined by

J 1 (t) := ε 3 k ρ 1 Ω χ t q (x) χ x dx + ρ 3 Ω θ t q (x) θ x dx +γ Ω χ x q (x) θ x dx, (22) 
J 2 (t) := ρ 2 4ε 3 Ω ξ t q (x) bξ x - t 0 g (t -s) ξ x (s) ds dx, (23) 
satisfy, for any ε 3 > 0, the estimates

J 1 (t) ≤ -ε 3 [χ 2 x (L) + χ 2 x (0)] + 2ε 3 ρ 1 kL Ω χ 2 t dx +ε 3 2 L + 1 Ω χ 2 x dx + ε 3 k 2l L + β + γ Ω θ 2 x dx ε 3 Ω ξ 2 x dx + ε 3 k 2ρ 3 L + β Ω θ 2 t dx + ε 3 γ k Ω ξ 2 t dx (24) 
and

J 2 (t) ≤ -1 4ε 3 bξ x (L) - t 0 g (t -s) ξ x (L, s) ds 2 -1 4ε 3 bξ x (0) - t 0 g (t -s) ξ x (0, s) ds 2 C 3 (ε 3 ) Ω ξ 2 x dx + kε 3 Ω (χ x + ξ) 2 dx + ρ 2 2ε 3 1 + 1 L Ω ξ 2 t dx + γ 2 L 4ε 3 Ω θ 2 t dx + 3g Lε 3 + kg 4ε 3 3 Ω (goξ x ) dx -ρ 2 g(0) 4ε 3 Ω (g oξ x ) dx, (25) 
where

C 3 (ε 3 ) = 1 2Lε 3 + 1 Lε 3 + k 8ε 3 3 (b 2 + 2g 2 ) + ρ 2 4ε 3 g 2 (0). Proof.
Differentiating J 1 (t) and using the first and third equations in (1-2), we obtain

J 1 (t) := ε 3 k Ω [k (χ x + ξ) x -γθ tx ] q (x) χ x dx + ε 3 k Ω [lθ xx -βθ t -γχ tx -γξ t ] q (x) θ x dx + ε 3 ρ 1 k Ω χ t q (x) χ tx dx + ε 3 ρ 3 k Ω θ t q (x) θ xt dx + ε 3 γ k Ω χ tx q (x) θ x dx + ε 3 γ k Ω χ x q (x) θ tx dx ≤ -ε 3 [χ 2 x (L) + χ 2 x (0)] + 2ε 3 L Ω χ 2 x dx +ε 3 Ω ξ x q (x) χ x dx + 2ε 3 ρ 1 kL Ω χ 2 t dx + 2ε 3 l Lk Ω θ 2 x dx -ε 3 β k Ω θ t q (x) θ x dx -ε 3 γ k Ω ξ t q (x) θ x dx + 2ε 3 ρ 3 Lk Ω θ 2 t dx.
Thanks to Young's inequality, we obtain the desired result. Next, from the second equation in (1-2) and integrating by parts, we get

J 2 (t) := 1 2Lε 3 Ω bξ x - t 0 g (t -s) ξ x (s) ds 2 dx -1 4ε 3 bξ x (L) - t 0 g (t -s) ξ x (L, s) ds 2 -1 4ε 3 bξ x (0) - t 0 g (t -s) ξ x (0, s) ds 2 + γ 4ε 3 Ω θ t q (x) bξ x - t 0 g (t -s) ξ x (s) ds dx -k 4ε 3 Ω (ϕ x + ξ) q (x) bξ x - t 0 g (t -s) ξ x (s) ds dx + ρ 2 4ε 3 Ω ξ t q (x) bξ x - t 0 g (t -s) ξ x (s) ds t dx. (26) 
Next, by using Young's inequality, lemma 3, lemma 4 and the fact that q 2 (x) ≤ 4, ∀x ∈ [0, L] , we estimate the terms in (26) as follows,

γ 4ε 3 Ω θ t q (x) bξ x - t 0 g (t -s) ξ x (s) ds dx ≤ + γ 2 L 4ε 3 Ω θ 2 t dx + 1 4Lε 3 Ω bξ x - t 0 g (t -s) ξ x (s) ds 2 dx ≤ + γ 2 L 4ε 3 Ω θ 2 t dx + 1 2Lε 3 (b 2 + 2g 2 ) Ω ξ 2
x dx + g Lε 3 Ω (goξ x ) dx, and similary

-k 4ε 3 Ω (χ x + ξ) q (x) bξ x - t 0 g (t -s) ξ x (s) ds dx ≤ kε 3 Ω (χ x + ξ) 2 dx + k 16ε 3 3 Ω bξ x - t 0 g (t -s) ξ x (s) ds 2 dx ≤ kε 3 Ω (χ x + ξ) 2 dx + k 8ε 3 3 (b 2 + 2g 2 ) Ω ξ 2 x dx + kg 4ε 3 3 Ω (goξ x ) dx, finally, ρ 2 4ε 3 Ω ξ t q (x) bξ x - t 0 g (t -s) ξ x (s) ds t dx = ρ 2 4ε 3 Ω ξ t q (x) (g(t)ξ x -g ♦ξ x ) dx + ρ 2 4ε 3 Ω ξ t q (x) bξ xt dx = -ρ 2 8ε 3 Ω q (x) bξ 2 t dx + ρ 2 4ε 3 Ω ξ t q (x) g(t)ξ x dx -ρ 2 4ε 3 Ω ξ t q (x) (g ♦ξ x ) dx ≤ ρ 2 2ε 3 1 + 1 L Ω ξ 2 t dx + ρ 2 4ε 3 g 2 (0) Ω ξ 2 x dx -ρ 2 g(0) 4ε 3 Ω (g oξ x ) dx.
By combining all the above estimates, we estabilish the assertion of the lemma. Proof of Theorem. For some positive constants; N , N 1 , N 2 , to be chosen appropriately later. We define the Lyapunov functional by

£ (t) = N E + N 1 I 1 (t) + 1 4 I 2 (t) + N 2 I 3 (t) +N 3 I 4 (t) + I 5 (t) + J 1 (t) + J 2 (t) , ∀t > 0. (27) 
Next, taking into account ( 10), ( 12), ( 15), ( 17), ( 19), ( 21), ( 24), ( 25) and the following relations

L 0 χ 2 x dx ≤ 2 L 0 (χ x + ξ) 2 dx + 2C p L 0 ξ 2 x dx, χ x bξ x - t 0 g (t -s) ξ x (x, s) ds x=L x=0 ≤ ε 3 [χ 2 x (L) + χ 2 x (0)] + 1 4ε 3 bξ x (L) - t 0 g (t -s) ξ x (L, s) ds 2 + 1 4ε 3 bξ x (0) - t 0 g (t -s) ξ x (0, s) ds 2 , we obtain 
£ (t) ≤ -λN 1 2 -3b 8 -N 2 ε 2 (1 + g) -g 2 (0) 2ε 3 C 2 -ε 3 -C 3 (ε 3 ) -2ε 3 2 L + 1 C p Ω ξ 2 x dx -N 2 ρ 2 t 0 g (τ ) dτ -δ 1 -5ρ 2 4 -N 1 ρ 2 + ρ 2 1 Cp 4ε 1 -ε 3 γ k -ρ 2 2ε 3 1 + 1 L L 0 ξ 2 t dx -N β -γ 2 8k -N 3 γ 2 4kε 3 + ρ 3 -3N 1 γ 2 Cp λb -C 1 (ε 3 ) -ε 3 k 2ρ 3 L + β -γ 2 L 4ε 3 Ω θ 2 t dx -k 8 -kε 2 N 2 -ε 3 N 3 k + k + 2 2 L + 1 Ω (χ x + ξ) 2 dx -ρ 1 4 -N 1 ε 1 -ε 3 1 + 2ρ 1 kL Ω χ 2 t dx -N 3 l -γ 2 N 2 -ε 3 k 2l L + β + γ + 1 L 0 θ 2 x dx + 3gN 1 2λ + g 8b + N 2 C (ε 2 ) + 3g Lε 3 + kg 4ε 3 3 Ω (goξ x ) (t)dx + N 2 -N 2 ρ 2 2 4δ 1 g(0)C p -ρ 2 g(0) 4ε 3 -g 2ε 3 C 2 Ω (g oξ x ) dx ( 
28) Since g is continuous, positive and g (0) > 0, then for any t 0 > 0, we have

t 0 g (s) ds ≥ t 0 0 g (s) ds = g 0 , ∀t ≥ t 0 .
Now all the terms in the right-hand side of (28) become negative if we select carefully our constants. First, let us take δ 1 = k 4N 2 , Next, we choose ε 1 small enough so that

ε 1 ≤ ρ 1 8N 1 ,
Second, by we select N 1 large enough so that

λN 1 4 - 3b 8 - g 2 (0) 2ε 3 C 2 -C 3 (ε 3 ) -2ε 3 2 L + 1 + 1 2C p C p > 0,
then select ε 3 so small so that

ε 3 ≤ min ρ 1 8 1 + 2ρ 1 kL -1 , k 16 
N 3 k + k + 2 2 L + 1 -1
.

Next, we pick N 3 large enough so that

N 3 l - γ 2 N 2 - ε 3 k 2l L + β + γ + 1 > 0,
and we choose N 2 large enough so that

N 2 g 0 - 1 4 - 5ρ 2 4 -N 1 ρ 2 + ρ 2 1 C p 4ε 1 - ε 3 γ k - ρ 2 2ε 3 1 + 1 L > 0
and ε 2 so small so that

ε 2 < min 1 8N 2 , λN 1 4N 2 (1 + g)
Finally, we choose N large enough so that we obtain for some positive constant α, R (t) ≤ -αζ (t) R (t) , ∀t ≥ t 0 .

N β - γ 2 8k -N 3 γ 2 4kε 3 + ρ 3 - 3N 1 γ 2 C p λb -C 1 (ε 3 ) - ε 3 k 2ρ 3 L + β - γ 2 L 4ε 3 > 0,
A simple integration of (30) over (t 0 , t) leads to

R (t) ≤ R (0) e -c 1 t 1 t 0 ζ(s)ds , ∀t ≥ t 0 . (31) 
Finally, the assertion of Theorem 11 is then obtained by virtue of the boundedness of E and ζ and the fact that R ∼ E.

  ≤ -k 0 E (t) + c (goξ x ) (t) , ∀t ≥ t 0 ,(29)for two positive constants k 0 and c. By multiplying (29) by ζ (t) and using (H 1 ) and (H2), we arrive atζ (t) £ (t) ≤ -k 0 ζ (t) E (t) + cζ (t) (goψ x ) (t) ≤ -k 0 ζ (t) E (t) -c 1 (g oξ x ) (t) ≤ -k 0 ζ (t) E (t) -c 1 E (t) [ζ (t) £ (t) + cE (t)] -ζ (t) E (t) ≤ -k 0 ζ (t) E (t) , ∀t ≥ t 0 .Using the fact that ζ (t) ≤ 0, we have(ζ (t) £ (t) + cE (t)) ≤ -k 0 ζ (t) E (t) , ∀t ≥ t 0 .

	and Therefore, (28) takes the form N 2 -N 2 ρ 2 2 4δ 1 g(0)C p -£ (t) Again, by noting that	ρ 2 g(0) 4ε 3	-	g 2ε 3	C 2 > 0

R (t) = ζ (t) £ (t) + cE (t) ∼ E (t) .
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