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Abstract

Computer simulation has emerged as a key tool for designing and assessing en-
gineering systems in the last two decades. Uncertainty quantification has become
popular more recently as a way to model all the uncertainties affecting the system
and their impact onto its performance.

In this respect meta-models (a.k.a. surrogate models) have gained interest. In-
deed dealing with uncertainties requires running the computer model many times,
which may not be affordable for complex models. Surrogate models mimic the be-
haviour of the original model while being cheap to evaluate.

Polynomial chaos expansion (PCE) and Kriging are two popular techniques, which
have been developed with very little interaction so far. In this report we present a new
approach, called PC-Kriging, that combines the two tools. The algorithm is based on
the universal Kriging model where the trend is represented by a set or orthonormal
polynomials.

Various aspects of the new metamodelling technique are presented and investi-
gated in details. The discussion starts with a survey on methods for generating an
optimal design of experiments (DOE). The PC-Kriging algorithm inherits many pa-
rameters and sub-methods such as the number of polynomial terms and the choice
of the autocorrelation kernel. A variety of kernels are presented and discussed.

The methods are compared on analytical benchmark functions. The conclusion
of this report is that PC-Kriging performs better or at least as well as PCE or Kriging
taken separately in terms of relative generalized error (L2-error).

Keywords: metamodelling, polynomial chaos expansions, Kriging, PC-Kriging,
experimental design
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Combining Polynomial Chaos Expansions and Kriging

1 Introduction

Executing physical experiments is time- and money consuming. Thus the number of

experiments is limited by the available resources. A similar phenomenon appears for

computational experiments. Up-to-date computer models of physical behaviours require

large computational power and execution time. In a practical case, the experiments are

used to understand the unknown behaviour of a system represented by a computational

model and finally to assess some kind of performance. Examples for problems in which

computational models are used are optimization (i.e. searching for minimum of a cost

function) Rackwitz (2001); Rasmussen and Williams (2006); Dubourg et al. (2011) and

reliability analysis (computing a probability that the model output exceeds a prescribed

threshold) (Kaymaz, 2005; Bect et al., 2012; Echard et al., 2011). Solving these problems

requires a large number of model evaluations (computer experiments) to assess the per-

formance with reasonable accuracy. The resources are often below the amount necessary

to reach an acceptable accuracy. Thus the idea of metamodels, also known as surrogate
models, has emerged in the past decade.

Metamodelling decreases the computational effort of time-consuming computational

simulations by approximating the underlying computational model with a simple and

easy-to-evaluate function. A small and carefully chosen design of experiments (DOE)

contains the support points of the metamodel. Under the assumption of smoothness of the

underlying model, a response surface is built up on the basis of the values of the original

model at the support points. The required data is the set of input/output values. Such

approaches are called non-intrusive since there is no need to know the machinery of the

model, i.e. it is considered as a black-box). The metamodel (also called response surface)

simplifies the prediction of the output value for samples which have not been considered

in the experimental design. The metamodel can then be used to predict system responses

at an affordable effort.

This report is based on two distinct non-intrusive metamodelling approaches. Polyno-

mial Chaos Expansions (PCE) approximates the underlying model by a set of orthonormal

polynomials in the input variables (Ghanem and Spanos, 2003). A sparse set of polyno-

mials may be determined by a selection algorithm (e.g. least-angle regression) and the

coefficients are obtained by least-square minimization (Blatman and Sudret, 2011).

A second metamodelling technique is Kriging. It originates from interpolating ge-

ographical data in mining (Krige, 1951) and is today also known as Gaussian process

regression (Santner et al., 2003; Rasmussen and Williams, 2006).

Based on these two approaches a new metamodelling technique is presented in this

report as a combination of both. The new approach is called Polynomial-Chaos-Kriging
(PC-Kriging) which combines the advantages of both approaches: the approximation of

the global behaviour of PCE and the local interpolating behaviour of Kriging, as described

below. As shown in this report, this hybrid modelling leads to an accuracy that is better

than or at least as good as either of the simple methods.
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This report is organized as follows. The two metamodelling approaches PCE and

Kriging are presented in Sections 2 and 3 respectively. Then the new metamodelling

approach called PC-Kriging is introduced in Section 4. In Section 5 different sampling

methods for the design of experiments are presented. Then the performance of the three

approaches are compared on analytical benchmark functions in Section 6. The report

ends with conclusions and an outlook to further research in Section 7.

2 Polynomial Chaos Expansion

2.1 Problem definition

Consider a system whose behaviour is represented by a computational model M : x ∈
DX ⊂ RM 7→ R. Due to uncertainties in the input parameters, the latter one is repre-

sented by a random vectorX whose components are assumed independent in this report.

The output is represented by the random variable Y such that:

Y =M(X) (1)

This random variable (or more generally, random vector in case of a vector-valued model)

is obtained by propagating the uncertainty in X through the computational model M.

The model M is a deterministic function which means that repeated evaluations with

the same realization of the input vector lead to the same output value. In this report,

the model M is assumed to be a black-box-type model, meaning that information is

available only about the input vector and output value: no knowledge is required on the

inner structure of the model. Assuming the output Y has a finite variance, the polynomial

chaos expansion of Y (PCE) represents the computational model by sums of orthonormal

polynomials in X:

Y ≡M(X) =
∑
α∈NM

aα ψα(X) (2)

where {aα,α ∈ NM} are coefficients to be determined, M is the number of input

variables in X, ψα(X) are multivariate orthonormal polynomials, α is the multi-index

{α1, . . . , αM}. Polynomial ψα(X) is built as a product of univariate polynomials:

ψα(X) =

M∏
i=1

ψ(i)
αi

(Xi) (3)

where ψ(i)
αi is the polynomial in the i-th variable of degree αi. The input random variables

X = {Xi, i = 1, . . . ,M} (supposed independent here for the clarity of the derivations)

may be modelled by different probability density functions (PDF). For each type of in-

put PDF there exists a set of orthogonal polynomials which can be transformed into an

orthonormal polynomial basis. To define the orthonormality of a polynomial basis, first

the functional inner product of two functions φ1(x), φ2(x) with respect to a prescribed
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probability density function fXi is defined:

〈φ1, φ2〉i =

∫
Di

φ1(x)φ2(x) fXi(x)dx (4)

In PCE, orthonormal polynomial bases have the property that the functional inner product

is equal to 1 for identical polynomials P (i)
j = P

(i)
k and is equal to zero for different

polynomials P (i)
j 6= P

(i)
k , for each variable i = 1, . . . ,M :

〈P (i)
j , P

(i)
k 〉 =

∫
Di

P
(i)
j (x)P

(i)
k (x) fXi(x) dx = δjk (5)

where Di is the support of the random variable Xi and δjk is the Kronecker delta which

is equal to 1 for j = k and equal to 0 otherwise. Some of the classical polynomial basis

are shown in Table 1 (Sudret, 2012).

Table 1: Classical Orthogonal Polynomials

Distr. PDF Orthogonal polynomials Orthonormal basis

Uniform 1]−1,1[(x)/2 Legendre Pk(x) Pk(x)/
√

1
2k+1

Gaussian 1√
2π
e−x

2/2 Hermite Hek(x) Hek(x)/
√
k!

Gamma xae−x1R+(x) Laguerre Lak(x) Lak(x)/
√

Γ(k+a+1)
k!

Beta 1]−1,1[(x) (1−x)a(1+x)b

B(a)B(b) Jacobi Ja,bk (x) Ja,bk (x)/Ja,b,k
J 2
a,b,k = 2a+b+1

2k+a+b+1
Γ(k+a+1)Γ(k+b+1)
Γ(k+a+b+1)Γ(k+1)

Eq. (2) shows that any second order vector Y = M(X) can be cast as an infinite

series. For practical purposes though, truncated series have to be handled. The goal is to

find a sparse set of multi-indexes α ∈ A ⊂ NM so that the model output is approximated

with sufficient accuracy.

Y ≈M(PCE)(X) =
∑
α∈A

aα ψα(X) (6)

where A is a finite set of multi-indices. There are several ways to select the number of

polynomials included in A. A simple truncation scheme that is commonly used consists

of limiting the total degree of polynomials with an upper bound. The total degree of a

polynomial is defined as (Blatman, 2009)

|α| =
M∑
i=1

αi (7)

The corresponding set of multi-indices is defined as AM,p = {α ∈ NM : |α| ≤ p} where

p is the maximal total polynomial degree. When the number of input variables is M , the

cardinal of this set A reads:

|AM,p| =
(M + p)!

M ! p!
(8)

April 10th, 2014 - 3 -



Combining Polynomial Chaos Expansions and Kriging

which grows polynomially both in M and p. Such a truncation scheme would lead to non

tractable problems if the model response is highly nonlinear in its input parameters (need

for large p) and/or the size of the input vector X is large (say, M > 10). This problem is

known as the curse of dimensionality.

2.2 Determination of the coefficients

Having defined the polynomial set, the next step is to determine the expansion coeffi-

cients. Ghiocel and Ghanem (2002), Le Mâıtre et al. (2002), Keese and Matthies (2005)

use projection methods; Xiu and Hesthaven (2005), Xiu (2009) use stochastic colloca-

tion methods; and Berveiller et al. (2006), Blatman (2009), Blatman and Sudret (2010,

2011) use least-square-minimization methods. The least-square-minimization method

now presented in details: the expansion coefficients a = {aα,α ∈ A} are calculated by

minimizing the least square residual

a = arg min
a∈R|A|

E

(Y −∑
α∈A

aα ψα(X)

)2
 (9)

Given an experimental design X = {χ(1), . . . ,χ(N)} of N samples χ(i) ∈ RM and the

associated model output Y = {M(χ(1)), . . . ,M(χ(N))} ≡ {Y(1), . . . ,Y(N)}, Eq. (9) is

transformed into a discretized mean-square error problem:

â = arg min
a∈R|A|

1

N

N∑
i=1

(
Y(i) −

∑
α∈A

aα ψα(χ(i))

)2

(10)

Blatman (2009) shows that the optimal expansion coefficients â are determined as:

â = (F T F )−1 F T Y (11)

where F is the information matrix of size N × |A| whose generic term reads:

Fij = ψj(χ
(i)) (12)

In practice the set of polynomials obtained from the common truncation scheme (see

Eq. (8)) includes many elements with negligible influence on the resulting model. Blat-

man and Sudret (2008) proposed to use hyperbolic index sets to a priori neglect the poly-

nomials associated with a high degree of interaction. They observed that many real

systems tend to have low degree interaction predictors. Thus it is not necessary to com-

pute all interaction terms of higher total polynomial degree. The derived hyperbolic index
set is based on q-norms:

AM,p
q ≡ {α ∈ NM : ‖α‖q ≤ p} (13)
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where

‖α‖q ≡

(
M∑
i=1

αqi

) 1
q

(14)

where 0 < q < 1. Decreasing q leads to a smaller number of interactive predictors. In

the limit q → 0, only univariate polynomials would be retained in the expansion, what is

called an additive model.

The system behaviour usually depends only on a limited number of predictors in case

of a smooth function. Thus a further reduction in high-dimensional space of the set of

predictors is possible and suitable to better understand the system. Several approaches

are known for regression with a large set of predictors:

• Stepwise regression which is known in statistics to be greedy and unstable (Hester-

berg et al., 2008);

• All-subsets regression is a variation of the stepwise regression and is computationally

demanding as it considers a large amount of possible metamodels (Furnival and

Wilson, 1974);

• LASSO (Least Absolute Shrinkage and Selection Operator) (Tibshirani, 1996);

• Forward Stagewise Regression (Hastie et al., 2001) picks the predictor which is most

correlated with the output vector in each iteration;

• Least Angle Regression (LAR) (Efron et al., 2004) can be viewed as a modified For-

ward Stagewise Regression;

• Dantzig selector (Candes and Tao, 2007) transforms the setup into a constrained

optimization problem which can be solved by linear programming.

In this report, the LAR algorithm is implemented using hyperbolic index sets, follow-

ing the developments in Blatman (2009); Blatman and Sudret (2011).

2.3 Error estimation

The PCE predictions differ from the exact system response due to the truncation of the

expansion. Thus error measures are developed to quantify the deviation between model

output Y(PCE) = M(PCE)(χ) and the exact output Y = {Y(i), i = 1, . . . , N}. Computing

the expectation of the squared output residuals leads to the generalization error (also

called L2-error):

ErrL2 = E
[(
Y − Y (PCE)

)2]
(15)

The numerical formulation (based on a discrete number of samples n) of the latter error

estimate is:

ÊrrL2 ≡
1

n

n∑
i=1

(
yi −M(PCE)(xi)

)2
(16)
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where n is the number of elements in the validation set and its input vectors xi and

output values yi. The validation set is a large collection (n large) of input/ouput samples

which are different from the support points/experimental design of the metamodel.

This error is only affordable for analytical functions. In practice the latter error is not

accessible and may be estimated by the empirical error computed from the experimental

design:

Erremp ≡
1

N

N∑
i=1

(
Y(i) −M(PCE)(χ(i))

)2
(17)

where X = {χ(i), i = 1, . . . , N} is the set of input realizations and Y = {Y(i), i =

1, . . . , N} are the corresponding output values of the computational model. The relative
empirical error is a dimensionless version of the empirical error where the empirical error

is normalized by the output variance:

εemp ≡
∑N

i=1

(
Y(i) −M(PCE)(χ(i))

)2∑N
i=1

(
Y(i) − µY

)2 (18)

where µY is the mean value of the output values in Y.

The empirical error generally underpredicts the generalization error because of the

so-called overfitting. When increasing the number of polynomials in the PCE metamodel

M(PCE) in Eq. (17) the empirical error εemp decreases. In the extreme case of N = |A| the

predictors may interpolate the output values leading to εemp = 0. Thus a better estimate

for the global error is found in the leave-one-out (LOO) error (Stone, 1974; Geisser,

1975). The general formulation of the leave-one-out error is

ErrLOO ≡
1

N

N∑
i=1

(
Y(i) −M(PCE)

(−i) (χ(i)
)2

(19)

where M(PCE)
(−i) (·) is a PCE model built from the experimental design X (−i) = X\χ(i) ≡

{χ(j), j = 1, . . . , i − 1, i + 1, . . . , N}, and Y = {Y(i), i = 1, . . . , N} are the output values

of the original computational modelM. The leave-one-out error is a special case of the

ν-fold cross-validation error. In the leave-one-out error formulation each sample of the

experimental design is predicted using a model based on all other samples of the exper-

imental design what is denoted M(PCE)
(−i) (χ(i)). This may lead to a large computational

effort as N surrogate models are to be determined.

In the special case of linearly parameterized regression, it is possible to calculate the

leave-one-out error analytically without building explicitly the N models. The leave-one-

out error is then (Saporta, 2006):

ErrLOO =
1

N

N∑
i=1

(
Y(i) −M(PCE)(χ(i))

1− hi

)2

(20)

where hi is the ith diagonal term of the matrix F (F T F )−1F T and F defined in Eq. (12).
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The potential overfitting is still seizable. Thus there are empirical methods to decrease

the sensitivity to overfitting. One of the methods by Blatman (2009) takes into considera-

tion the number of samples and the number of predictors to produce an adjusted empirical
error of the form:

Err∗emp = Erremp × T (P,N) (21)

where N is the number of samples, P is the number of predictors, i.e. number of polyno-

mials and T (P,N) is the adjustment factor to the empirical error given by:

T (P,N) =
N − 1

N − P − 1
(22)

The adjusted empirical error increases with an increasing number of predictors P and

decreases with an increasing number of samples N . Another empirical rule is proposed

by Chapelle et al. (2002) and applied by Blatman (2009) which is valid for regressions

with a small experimental design. The correction factor is dependent on the number of

predictors and number of samples as well as on the information matrix (Eq. (12)):

T (P,N) ≡ N

N − P

(
1 +

tr(C−1emp)

N

)
(23)

Cemp ≡
1

N
FTF (24)

The same procedure can be used to adjust the leave-one-out error to a corrected

leave-one-out error.

Err∗LOO = ErrLOO × T (P,N) (25)

3 Kriging

3.1 Problem definition

Kriging (a.k.a. Gaussian process modelling) is a stochastic interpolation algorithm which

assumes that the model output M(x) is a realization of a Gaussian process indexed by

x ∈ DX ⊂ RM .

M(x) ≈M(K)(x) = βT · f(x) + σ2 Z(x, ω) (26)

where βT ·f(x) =
∑P

j=1 βj fj(x) is the mean value of the Gaussian process (a.k.a. trend)

and Z(x, ω) is a zero mean, unit variance Gaussian process. The set of hyper-parameters

θ describes the autocorrelation R(x,x′;θ) between the two points x and x′. In this

notation, {fj(x), j = 1, . . . , P} is a set of predefined functions (e.g. polynomials), β

is a set of parameters to the computed and θ is the set of parameters describing the

autocorrelation function. Examples of autocorrelation functions are given in Section 3.2.

In the literature distinction is made between three different types of Kriging (Echard,

2012; Dubourg, 2011), namely:

• Simple Kriging: The simple Kriging assumes that the trend has a known constant
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value.

βT · f(x) ≡ β0

• Ordinary Kriging: The ordinary Kriging approach assumes that the trend is a con-

stant but has a unknown value. (P = 1; f1(x) = 1; β1 is unknown)

• Universal Kriging: The universal Kriging method is the most general and flexible

formulation and assumes that the trend is a linear combination of prescribed func-

tions, e.g. polynomials.

βT · f(x) =
P∑
j=1

βj fj(x)

where P is the number of polynomials in the trend part of the Kriging algorithm.

From the above it is clear that simple Kriging and ordinary Kriging are special cases of

universal Kriging.

3.2 Autocorrelation functions

The autocorrelation function describes the correlation between two points in the M -

dimensional space. Various formulations of autocorrelation functions can be found in the

literature. Some of the widely used autocorrelation functions in Kriging approaches are

listed here (Echard, 2012; Dubourg, 2011):

• Dirac (a.k.a. nugget) autocorrelation function:

R(x,x′) =
M∏
i=1

δ(xi − x′i), x,x′ ∈ DX (27)

where δ is the Dirac function which is 1 for xi = x′i and 0 otherwise;

• Linear autocorrelation function:

R(x,x′; l) =
M∏
i=1

max

(
0, 1− |xi − x

′
i|

li

)
(28)

where l : {li > 0, i = 1, . . . ,M} are the scale parameters. The correlation is limited

to a defined range described by the parameter l. This corresponds to the assumption

that there is no correlation beyond a distance li in each dimension;

• Exponential autocorrelation function:

R(x,x′; l) = exp

(
−

M∑
i=1

|xi − x′i|
li

)
(29)

where l : {li > 0, i = 1, . . . ,M} are the scale parameters;
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• Squared exponential autocorrelation function:

R(x,x′; l) = exp

(
−

M∑
i=1

(
xi − x′i
li

)2
)

(30)

where l : {li > 0, i = 1, . . . ,M} are the scale parameters. This autocorrelation

function is also called Gaussian autocorrelation function;

• Matérn autocorrelation function:

R(x,x′; l, ν) =

M∏
i=1

1

2ν−1 Γ(ν)

(√
2ν
|xi − x′i|

li

)ν
κν

(√
2ν
|xi − x′i|

li

)
(31)

where l : {li > 0, i = 1, . . . ,M} are the scale parameters, ν ≥ 1/2 is the shape pa-

rameter, Γ(·) is the Euler Gamma function and κν(·) is the modified Bessel function

of the second kind (also known as Bessel function of the third kind). In practice

the values ν = 3/2 and ν = 5/2 are the most popular forms. The formulation then

simplifies into (Roustant et al., 2012):

R(x,x′; l, ν = 3/2) =

M∏
i=1

(
1 +

√
3 |xi − x′i|

li

)
exp

(
−
√

3 |xi − x′i|
li

)
(32)

R(x,x′; l, ν = 5/2) =

M∏
i=1

(
1 +

√
5 |xi − x′i|

li
+

5 (xi − x′i)2

3 l2i

)
exp

(
−
√

5 |xi − x′i|
li

)
(33)

Graphs of the behaviour of the various autocorrelation functions can be found in Dubourg

(2011). The listed autocorrelation functions belong to the family of the separative func-

tions (i.e. products of univariate functions) which work well for low-dimensional prob-

lems. Recently, new additive autocorrelation functions were proposed (Ginsbourger et al.,

2013; Durrande et al., 2012, 2013; Duvenaud et al., 2012) which seem to be more suit-

able for high-dimensional problems. Additive kernels inherit a summation in the autocor-

relation function instead of a multiplication, i.e. for the linear autocorrelation function:

R(additive)(x,x′; l) =
1

M

M∑
i=1

max

(
0, 1− |xi − x

′
i|

li

)
(34)

By choosing adequate additive kernels, the behaviour of the Gaussian process is modelled

more accurately (Duvenaud et al., 2012).

For the benchmark problems in Section 6, the Matérn autocorrelation function is

implemented because the applications are low-dimensional. Additionally, the Matérn

kernel is a generalization of the Gaussian and the exponential kernel. The influence of

the function family is low, thus all benchmark applications in this report are computed

with the same autocorrelation function family, namely the Matérn with ν = 5/2.
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3.3 Estimation of the Kriging model parameters

The solution of Eq. (26) with respect to {β, σ2}may be obtained analytically conditionally

to the correlation parameter θ:

β(θ) =
(
F TR−1F

)−1
F R−1Y (35)

σ2y(θ) =
1

N
(Y − F β)TR−1 (Y − F β) (36)

where Rij = R(χ(i),χ(j);θ) is the correlation matrix of the points in the experimental

design, F ij = fj(χ
(i)) is the Vandermonde matrix and Y = {Y(i), i = 1, . . . , N} are the

model responses of the computational model on the experimental design X = {χ(i), i =

1, . . . , N}. The prediction of the Kriging model at a new sample x, denoted by Ŷ (x), is a

Gaussian variable defined by a mean value µŶ and a variance σ2
Ŷ

(Sudret, 2012):

µŶ (x) = f(x)Tβ + r(x)TR−1 (Y − F β) (37)

σ2
Ŷ

(x) = σ2y

(
1− 〈f(x)Tr(x)T〉

[
0 F T

F R

]−1 [
f(x)
r(x)

])
(38)

where ri(x) = R(x,χ(i);θ) is the correlation between the new sample x and the samples

points in the experimental design.

An important generalized case is when the correlation parameter θ are a priori un-

known. The optimal correlation parameters can either be obtained by a maximum likeli-

hood estimate (ML) (Marrel et al., 2008; Dubourg et al., 2011) or a leave-one-out cross-

validation estimate (CV) (Bachoc, 2013). The corresponding objective function to be

minimized for ML and CV respectively read:

fML(θ) =
1

N
log det(R(θ)) + log

(
YTR(θ)−1 Y

)
(39)

fCV (θ) = YTR(θ)−1diag
(
R(θ)−1

)−2
R(θ)−1 Y (40)

The derivations of equations (39) and (40) can be found in Bachoc (2013). The compar-

ison of the two approaches is carried out in Bachoc (2013) and the summarized results

are:

• ML is preferable to CV in well-specified cases, i.e. when the selected covariance

function family is the true one, a feature which is not known in many real problems;

• CV is preferable in misspecified cases and not too regular design of experiments

because of a smaller bias in the results;

• The estimation benefits from irregular sampling in general;

• The asymptotic variance of CV is higher than ML in all studied cases;
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• CV is less robust for regular designs with miss-specification of the autocorrelation

function.

The conclusion is that in the practical case where the correlation structure of the Gaussian

process is unknown, the use of the cross-validation leads to more robust results than the

maximum likelihood estimate.

3.4 Error estimation

The Kriging prediction is stochastic, i.e. the mean and variance of the prediction are

provided at any prediction point x. The prediction variance Eq. (38) is a local error mea-

sure. The local error estimate is useful when searching for regions of the input space with

low prediction accuracy. By placing new samples in these regions the overall accuracy of

the model can be increased in an iterative manner: this technique is often referred to as

adaptive metamodeling algorithms (Bichon et al., 2011; Echard et al., 2011).

When comparing different models a global error measure is needed. The empirical

error Eq. (18) cannot be used for a global error estimate because Kriging is an exact

interpolation algorithm in the experimental design samples. An approach is the leave-

one-out cross-validation which is described in Section 2.3 in the case of polynomial chaos

expansions. Dubrule (1983) derived an analytical formulation of the leave-one-out error

for universal Kriging:

ErrLOO =
1

N

N∑
i=1

(
Y(i) − µŶ(−i)

(χ(i))
)2

(41)

where µŶ(−i)
(χ(i)) is the mean prediction at sample point χ(i) on the modified experi-

mental design X (−i) = X\χ(i). Y(i) are the system response of the computational model.

The prediction mean and variance are given by:

µŶ(−i)
=

N∑
j=1,j 6=i

Bij
Bii
Y(j) =

N∑
j=1

Bij
Bii
Y(j) − Y(j) (42)

σ2
Ŷ(−i)

=
1

Bii
(43)

where B is a square matrix of size (N + P ), N being the number of samples in the

experimental design X , P the number of polynomials in the trend:

B =

[
σ2yR F

F T 0

]−1
(44)

where σ2y is the Kriging variance of the Kriging model involving the set of all sample

points X (Eq. (36)). Note that matrix B includes the information of the points of the

initial experimental design, namely N samples. The generalized formulation for k-fold

cross-validation can also be found in the referred paper (Dubrule, 1983).
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4 PC-Kriging

4.1 Idea

Polynomial Chaos Kriging (PC-Kriging) is a combination of the two metamodelling tech-

niques PCE and Kriging. PCE handles the global behaviour of the model using a set of

polynomials and Kriging interpolates local variations as a function of the nearby sample

points. The combination (PC-Kriging) behaves as an approximation on two levels: on the

global scale via PCE and on the local scale via Kriging.

Basis for the combination of both approaches is the universal Kriging which combines

a trend (regression) part and a correlation part as described in Eq. (26). The PC Kriging

metamodelM(PCK) reads as follows:

M(x) ≈M(PCK) =
∑
α∈A

aα ψα(x) + σ2 Z(x, ω) (45)

where aT · ψα(x) =
∑
α∈A aα ψα(x) is the mean value of the Gaussian process (a.k.a.

trend), P = |A| is the number of polynomials and Z(x, ω) is a zero mean, unit variance

Gaussian process with the set of hyper-parameters {σ2,θ}. The autocorrelation function

R(x,x′;θ) describes the correlation between two samples given the correlation parame-

ters θ. In this notion, {ψα(x), α ∈ A} is a set orthonormal polynomials indexed by the

hyper-indices α, a is a set of parameters and θ is the set of parameters describing the

autocorrelation function.

The new metamodelling algorithm consists of two parts:

• the determination of a set of polynomials for the trend part

• the determination of the optimal correlation parameter (σ2,θ) and trend parame-

ters {aα,α ∈ A}.

The set of polynomials is computed using the PCE framework, i.e. the LARS algorithm.

The computation of the parameters in the trend and in the correlation parts is carried out

as in the universal Kriging algorithm. The two tasks are processed in series because the

set of polynomials can be determined independently from the Kriging analysis.

Note that PCE can be interpreted as Kriging with uncorrelated samples, i.e. using a

correlation matrix which is the identity matrix (Dirac autocorrelation function).

4.2 Algorithm

The link between the two distinct frameworks can be achieved in various ways. Two

approaches are proposed here and validated on benchmark problems in Section 6.

• The sequential approach in a global sense: The first step is to find the optimal poly-

nomial set of predictors using the PCE framework, i.e. the polynomial set with the

smallest corrected leave-one-out error (Eq. (20)). Once the sparse PC basis is set,

the universal Kriging algorithm is used. The error is estimated once at the end of
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the algorithm where the performance is assessed using the leave-one-out error of

Eq. (41). The underlying assumption is that the optimal set of polynomials that

arises from the PCE algorithm is also the optimal (or close to optimal) set for the

combined algorithm. In the following examples this approach is denoted as FPC-
Kriging (Full-PC-Kriging);

• The sequential approach in an iterative sense: The second approach is used to test

the assumption of optimality in FPC-Kriging. The procedure starts identically: A

PCE algorithm selects the optimal set of polynomials. Inside PCE, the polynomi-

als are chosen with the LARS algorithm: the orthogonal polynomial that are most

correlated with the current residuals are chosen first. Then the computation of the

universal Kriging metamodel is carried out iteratively at each LARS step. The ini-

tialisation is a universal Kriging algorithm with one single polynomial in the trend

part. Iteratively, polynomials are added one-by-one according to the largest corre-

lation with the current residuals till the error estimate converges to a minimum.

The evolution of the metamodel accuracy is determined by using the leave-one-out

error in Eq. (41). This approach is denoted as OPC-Kriging (Optimal-PC-Kriging).

The accuracy of both approaches are compared in Section 6 to the disjoined algorithms,

namely PCE and Kriging.

4.3 Error estimation

PC-Kriging is a universal Kriging metamodel with an advanced trend part. Thus the error

estimates of Section 3.4 are valid. In particular, the leave-one-out error in Eq. (41) is

used to compare different PC-Kriging models and to compute the optimal metamodel in

OPC-Kriging.

4.4 Implementation

The main program used for this calculation is Matlab. In Matlab the sparse set of poly-

nomials is computed by the PCE method using the LARS algorithm described in Blatman

(2009). The results are reliable and fast and thus no alternative approach is used.

The Kriging problem with different trend parts is solved using two open-source tool-

boxes:

• DACE (Lophaven et al., 2002) is a rather old Matlab toolbox. It can handle user-

defined trend terms and uses a constrained optimization algorithm, called boxmin,

to find the optimal hyperparameters of the Kriging model. The accessibility and

adjustability is very user-friendly;

• DiceKriging (Roustant et al., 2013, 2012) is a toolbox written in the programming

language R. A Matlab-based interface for R is available, i.e. R can be executed via

Matlab. DiceKriging uses the BFGS-algorithm (Fletcher, 1970; Shanno, 1970) to
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optimize the hyperparameter values, which is a quasi-Newton method. For more

complex problems the optimization algorithm can be switched to a hybrid method

which combines the BFGS-algorithm with a genetic algorithm. The genetic algo-

rithm is used to search globally for the optimum whereas the BFGS-algorithm opti-

mizes locally to a local optimum.

Although handling the DiceKriging toolbox requires more attention than handling

DACE, DiceKriging outperforms DACE in terms of stability. DACE’s optimization algo-

rithm is weaker than DiceKriging’s optimization algorithm as it stops in local minima

or stops without convergence more often than DiceKriging. This becomes important

for high-dimensional problems where the search for optimal parameters becomes more

challenging. Moreover DiceKriging provides up-to-date Kriging features like correlation

functions such as the Matérn autocorrelation function or the inbuilt “nugget” option. The

nugget option may be used in order to regularize the problem in cases when the correla-

tion matrix of the experimental design is close to singularity.

As conclusion, the combination of the Matlab PCE algorithm and the DiceKriging

toolbox is implemented to calculate the optimal metamodels in Section 6.

5 Experimental design

In metamodelling the choice of the experimental design, i.e. the set of input samples, is

crucial for an accurate representation of the computational model. Various approaches

are available, from purely deterministic to fully stochastic sampling techniques. The key

point is that the behaviour of the computational model is estimated with only a few data

points, which are carefully chosen so that the experimental design covers the entire space

of input parameters.

5.1 Regular grid design

Intuitively, the regular grid is a good choice to cover the whole space of input variables

in a deterministic way. It is a full factorial design, i.e. all regions are covered regularly

with the same density of samples in each subdomain. The regular gird also includes

the boundary values at the limits of the space of input variables where the support is

bounded.

A drawback of the regular grid is that the design is full factorial. This implies that

there are a large number of samples involved, i.e. N = lM where l is the number of

levels along each dimension and M is the number of variables (dimensions).

Another issue is the handling of Gaussian variables. Modelling Gaussian variables as

the inverse Gaussian CDF of a uniform variable leads to samples located towards infinity.

This causes numerical issues in metamodelling and may decrease the accuracy of the

metamodel.

April 10th, 2014 - 14 -



Combining Polynomial Chaos Expansions and Kriging

5.2 Monte Carlo sampling

In theory, Monte Carlo sampling is a purely stochastic design of experiments. The values

of the samples are determined randomly according to an assumed probability density

function of the input variables. In practice, random number generators like the Mersenne

twister generate a sequence of pseudo-random numbers that resembles a set of random

numbers.

The probability is high though that not the entire variable space is covered evenly

by the experimental design points. Especially for small sample sizes there is a bias on

the samples which may translate into an inaccurate metamodel. The bias reduces when

the number of samples is increased which results in higher computational cost and time.

Thus semi-random designs were created, i.e. designs which include randomness and

also a deterministic part. Some of the various methods are described in the following

Sections 5.3–5.6.

5.3 Latin-hypercube sampling

Latin-Hypercube sampling is the special case of an orthogonal array (presented more in

details in Section 5.5) with a strength equal to 1. We assume here uniformly distributed,

independent random variables for the sake of clarity. The property of this experimental

design is that the projection onto any axis in theM -dimensional space results in a uniform

distribution (McKay et al., 1979). In the 2-dimensional case the space of input parameters

is defined by a regular grid. The samples are then arranged so that there is one sample in

each column and in each row of the grid. Inside each square, the sample coordinates are

chosen randomly. The algorithm to determine the sample placement reads as follows:

1. Generate i = 1 . . . ,M random permutations s(i) of the integer series {1, . . . , N}
(N is the target number of samples). The matrix of the random permutations is

Sij = s
(i)
j where j = 1, . . . ,M .

2. Compute the lower left corner coordinate of each hypercube by Ŝij = (Sij − 1)/N .

3. Sample uniformly in each hypercube resulting in the experimental design X =

{χ(1), . . . ,χ(N)} = ŜT +U where U is a M ×N matrix containing uniform random

values over [0, 1
N ).

An illustrative sketch of a 2-dimensional sample space is shown in Figure 1 for a

experimental design of N = 10 samples. Each axis is divided into N = 10 equal intervals

which results in 100 subregions in the space of the input variables x1 and x2. The gray

subregions represent the determined regions for samples. The matrix of the random

permutations is in this case:

ST =

[
9 4 8 2 3 10 7 5 1 6
1 6 8 9 3 7 4 2 5 10

]
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The samples are then chosen randomly in each region of the sample space as shown in

Figure 1.
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Figure 1: Latin-hypercube experimental design in the 2-dimensional space using 10
samples

Latin-Hypercube sampling is implemented in Matlab under the function name lhsdesign.

5.4 Quasi-random sequences

Quasi-random sequences are an alternative to Monte Carlo sampling. Also known as low-

discrepancy sequences, they are deterministic sequences of points which cover almost

uniformly the unit hypercube. Popular quasi-random sequences are the Sobol’ sequences

(Sobol, 1967), the Faure sequences (Faure, 1982), the Halton series (Halton, 1960) and

the Niederreiter series (Niederreiter, 1988). The implementation of such sequences is

available on the internet in different formats. For the Sobol’ sequence is also implemented

in Matlab under the command sobolset.

5.5 Orthogonal arrays

An orthogonal array is an (N ×M)-array from the variable set S with s levels. The no-

tation for an orthogonal array A is given as OA(N,M, s, t). N is the number of samples,

M is the number of variables, s is the number of levels (different states), t is the strength

of the orthogonal array. For all sub-array of A consisting of all N samples and t ≤ M

variables (array of size N × t), each possible permutation of levels can be found equally

often, namely λ = N/st times.

A simple example is presented here to show how OAs work. Consider a problem with

M = 4 variables and two levels, namely 0 and 1 (e.g. on/off). Eight experiments are

planned. One possible OA is then given in Table 2.
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Table 2: Orthogonal array in four dimensions

Sample # x1 x2 x3 x4
1 0 0 0 0
2 0 0 1 1
3 0 1 0 1
4 0 1 1 0
5 1 0 0 1
6 1 0 1 0
7 1 1 0 0
8 1 1 1 1

The strength t of this OA is determined by checking the entries of the sub-arrays of

size N × t. Strength t = 1 means that for any variable xi each level appears the same

number of times, i.e. four times (0) and four times (1). For strength t = 2 the sub-

arrays of any two xi, xj(i 6= j) are checked (arrays of size N × 2). The number of each

possible combination of values appear the same number of times, i.e. the combinations

(0,0), (0,1), (1,0), and (1,1). Indeed for all possible sub-arrays each combination appears

twice. The array in Table 2 is of strength t = 3, since the combinations (0,0,0), (0,0,1),

(0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), and (1,1,1) appear equally often, i.e. they

appear once. Thus the sample array is called OA(8, 4, 2, 3).

This framework can be adapted to more levels and different strengths. For the appli-

cations in Section 6, OA’s of strength t = 2 are used. Each variable level s is interpreted

as an interval. The samples are chosen randomly within the interval in order to include

the idea of randomness in the designs.

Generating OAs is a complex topic. Computational approaches can be found in Zhang

(2007); Suen and Kuhfeld (2005); Suen (2006); Heydayat et al. (1999), to name a few.

5.6 K-means clustering

Clustering is a numerical technique which allows one to classify a large sample set (say n

samples) into k clusters. Monte Carlo sampling may be used to generate a large random

sample set. The samples are separated into a smaller number of clusters given an objec-

tive function. For k-means clustering, the objective function can be the distance between

the samples and their centroid. The algorithm iterates until the optimal centroids are

found and summarizes as follows:

1. Generate a large sample set via Monte Carlo sampling;

2. Choose randomly k centroids;

3. Compute the distance of each sample to the centroids and determine the closest

centroid of each sample;
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4. Each cluster is formed by the samples which are closest to the centroid of the clus-

ter;

5. Compute a new centroid point for each cluster (e.g. the nucleus of the subset);

6. Go back to step 3 unless the centroids do not change significantly anymore;

7. Finally, choose the centroids as the samples of the experimental design;

This simple clustering algorithm is available in Matlab called kmeans(X,k). In the litera-

ture this approach is also called Centroidal Voronoi Tessellation (Du et al., 1999) because

the result actually provides the centroids of a Voronoi tessellation.

The centroids are then taken as the samples of the experimental design. When as-

suming a uniform distribution for the underlying samples, the resulting centroids do not

cover properly the uniform input space. Indeed, the uniformity of the final design is de-

termined by projecting the centroids onto each dimension. Numerical experiments show

that there is a trend to having more centroids towards the limits of the interval [0, 1]

for small number of clusters. This behaviour is explained by the radial character of the

objective function (i.e. Euclidean distance). Considering for instance a 2-dimensional

problem with 5 clusters, the optimal solution will be a central cluster and one cluster in

each corner. Thus the bound values of the distribution are more represented than the

values inside the domain.

Figure 2 illustrates the clustering in two dimensions using 10 clusters out of 105 uni-

formly distributed samples. The resulting cluster resembles a Voronoi tessellation. Note

that when projecting the clusters to the horizontal axis, the clusters lie around the three

values 0.15, 0.5, 0.85, i.e. there is no uniformity in the distribution of the centroids.
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Figure 2: k-means clustering on 2-dimensional uniform variables (10 clusters, n = 105

samples): each cluster in a separate color, samples are marked with dots and centroids
are marked with circles
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In the case of Gaussian input variables, the centroids are distributed closer to the

original sampling distribution, i.e. the centroids are close to normally distributed. Fig-

ure 3(a) shows the same setting as in Figure 2 but with Gaussian variables and using

100 clusters. Additionally, the histograms of the projection onto the two axes are plotted

and compared to the theoretical optimal Gaussian PDF in Figure 3(b) and Figure 3(c)

respectively. The results are graphically much more satisfactory than in the uniform case.
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Figure 3: k-means clustering on 2-dimensional Gaussian variables (100 clusters, n = 105

samples): Fig. 3(a) shows the samples (dots) and the clusters centroids (circles), each
cluster in a different color; Fig. 3(b) and Fig. 3(c) show the histogram of the centroids
projected onto the coordinate axes and the theoretical Gaussian PDF
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6 Benchmark problems

6.1 Setup

The PC-Kriging approach is used to metamodel the following analytical functions which

are benchmark problems in the field of metamodelling. Four functions with uniformly

distributed input variables and two with Gaussian input are considered:

• Ishigami function: The input vector X contains 3 independent random variables

which are uniformly distributed over the interval [−π, π]:

f1(X) = sinX1 + 7 sin2X2 + 0.1X4
3 sinX1 (46)

• Sobol’ function: The input vectorX contains 8 independent random variables which

are uniformly distributed over the interval [0, 1]. The function parameter c is chosen

as c = (1, 2, 5, 10, 20, 50, 100, 500)T as in Sudret (2008).

f2(X) =

M∏
i=i

|4Xi − 2|+ ci
1 + ci

(47)

• Rosenbrock function: The input random variables X = {Xi, 1, . . . ,M} are indepen-

dent uniformly distributed variables over [−2, 2]. The size of X can be varied to

investigate the effect of the dimensionality M .

f3(X) =

M−1∑
i=1

[
100 (Xi+1 −X2

i )2 + (1−Xi)
2
]

(48)

In this report M is set equal to two:

f3(X) = 100
(
X2 −X2

1

)2
+ (1−X1)

2 (49)

• Morris function: X is a vector containing 20 independent variables, uniformly dis-

tributed over [0, 1].

f4(X) =
20∑
i=1

βiwi +
20∑
i<j

βij wiwj +
20∑

i<j<l

βijl wiwjwl + 5w1w2w3w4 (50)

where wi = 2 (Xi−1/2) for all i except for i = 3, 5, 7 where wi = 2 (
1.1Xi

Xi + 0.1
− 1/2).

The coefficients are defined as:

βi = 20, i = 1, . . . , 10

βij = −15, i, j = 1, . . . , 6

βijl = −10, i, j, l = 1, . . . , 5

The remaining coefficients are set to βi = (−1)i and βij = (−1)i+j (Blatman, 2009),
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which is a slight modification of the original version by Morris (1991) with standard

Gaussian distributed parameters βi and βij .

• Rastrigin function: X is composed of 2 independent standard Gaussian variables.

f5(X) = 10−
2∑
i=1

(X2
i − 5 cos(2πXi)) (51)

• O’Hagan function: X is a vector of length 15 containing independent standard

Gaussian variables. The vectors a1,a2,a3 and the matrix Q are chosen as shown

in Oakley and O’Hagan (2004), see Appendix A for the values.

f6(X) = a1
TX + a2

T sin(X) + a3
T cos(X) +XTQX (52)

Note that the first four functions f1 – f4 use uniform random variables as input and

Legendre polynomials in the polynomial chaos expansions whereas the functions f5 and

f6 use Gaussian random variables as input and Hermite polynomials accordingly.

6.2 Analysis

As the analytical benchmark functions are fast to evaluate, the accuracy of the meta-

model can be assessed by the relative generalized error Eq. (18) is obtained from a large

validation set of size n = 105:

εgen ≡

∑n
i=1

(
M(x(i) − M̂(x(i)

)2
∑n

i=1

(
M(x(i) − µy

)2 (53)

where X = {x(1), . . . ,x(n)} contains the input sample values sampled according to the

variable’s input distributions and Y = {y(i), . . . , y(n)} contains the corresponding output

sample values. M̂(x(i)) is the metamodel evaluated on the sample x(i) and µy is the mean

value of the output over the validation set Y. This is the basis for comparing different

setups of the combination of PCE and Kriging. The surrogate models which are compared

in the following subsection are:

• PCE: The metamodel is based on the description in Section 2. A sparse predictor

set is determined using the LARS algorithm according to the smallest corrected

leave-one-out error (Eq. (25)).

M(PCE)(x) =
∑
α∈A

aα ψα(x) (54)

• Kriging: The metamodel consists of an ordinary Kriging model, where the regres-

sion part is a constant (unknown) value β0:

M(OK)(x) = β0 + σ2 Z(x, ω) (55)
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• FPC-Kriging: This is the first sequential procedure described in Section 4. First,

the optimal predictors are determined as in the classical PCE procedure. Then this

optimal set of predictors is taken as the trend (regression) component of a universal

Kriging metamodel;

• OPC-Kriging: This metamodel takes the set of predictors of the case PCE as input

set of possible regression terms of a universal Kriging model. The predictor terms

are added one-by-one, based on the most correlated predictor, as found by LARS. A

Kriging model is fitted for each different trend. The evolution of the leave-one-out

error (Eq. (41)) is monitored and the setup with the minimum error is eventually

selected.

The generalized empirical error Eq. (53) with a large number of Monte Carlo samples

is used to validate and compare the different approaches. This is reasonable for these

analytical functions as they are fast to evaluate. The leave-one-out cross-validation error

Eq. (41) is also provided because this error measure is based on the experimental design

points only. It would be the only measure of error available when dealing with expensive-

to-evaluate models. Note that it is also used in the OPC-Kriging case to choose the optimal

configuration (Section 4).

The comparison of the various approaches is carried out using a varying number of

samples in the experimental design. Latin-hypercube sampling (McKay et al., 1979) is

used to generate the experimental designs (Section 5.3). To ensure the statistical stability,

50 independent runs are carried out and the results are presented using box plots. In the

box plot the central mark is the median value (over the 50 independent runs), the edges

are the 25th and the 75th percentile. The whiskers describe the boundary to the outliers.

Outliers are defined as smaller than q25− 1.5 (q75− q25) or larger than q75 + 1.5 (q75− q25)
where q25 and q75 are the values of the 25th and 75th percentiles.

6.3 Results

6.3.1 Illustration of the behaviour of PC-Kriging

In Figure 4, the contour plot of the Rastrigin function (Eq. (51)) in two dimensions is

plotted. The plot compares the exact model to the three surrogate-modelling techniques,

namely PCE, ordinary Kriging and PC-Kriging (exactly FPC-Kriging). The Rastrigin func-

tion results in highly volatile output values over the entire variable space due to the

high-frequent cosine function inside the model. This behaviour is difficult to approxi-

mate with a small number of samples as many local extrema are missed out. The PCE

method manages to model only the global behaviour (quadratic function) which can be

seen in Fig 4(c).

On the other hand, the ordinary Kriging model (Fig. 4(b)) interpolates the exper-

imental design exactly and thus captures the volatile output well in the regions with

many samples. Note that the input variables are standard Gaussian random variables
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and thus most of the samples are located around the origin.

The combination of both approaches in PC-Kriging (Fig. 4(d)) leads to a better overall

surrogate model. The figure shows the combination of the characteristics of the PCE and

the ordinary Kriging model, i.e. the global behaviour is modelled by PCE and the local

variability by Kriging.
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Figure 4: Composition of the PC-Kriging on the Rastrigin function (N = 128 points in
the experimental design)

6.3.2 Comparing different surrogate-modelling techniques

The performance of the four surrogate-modelling approaches is illustrated on the six an-

alytical functions. The comparison is carried out via the relative generalized error in

Eq. (53) based on n = 105 random samples in the validation set. The experimental

designs are Latin-hypercube sampling designs of various sizes. Figures 5–10 show the

boxplots of the generalized errors representing 50 independent runs of the same algo-

rithm as a function of the number of samples in the experimental design. In each figure

(a) shows the ordinary Kriging model, (b) shows the PCE with the optimal maximum

degree of polynomials. The results of the new PC-Kriging approaches are reported in (c)

and (d). The number of samples in the experimental design is chosen in a way that a large

range of resulting relative generalized error is covered and focus on small experimental

designs.

In Figure 5 the generalized error estimate of the Ishigami function is plotted. For N =

20 samples ordinary Kriging performs the best in terms of median value. OPC-Kriging is

a little less accurate in the median but varies much more than the other methods. This

means that also for only 20 samples, very low errors may be achieved. When increasing
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the number of samples, PC-Kriging performs better than the distinct techniques on their

own. OPC-Kriging has slightly smaller error estimates as FPC-Kriging.

The Rosenbrock function (in Figure 6) results in low error estimates for small experi-

mental designs. Similarly to the Ishigami function, OPC-Kriging performs better than the

other methods, even for the smallest sample size (N = 8). N = 20 samples are sufficient

to metamodel this function with a high accuracy due to the polynomial formulation of

the function.

Figure 7 presents the Sobol’ function. Focusing on the very low sample size (N =

16, 32) OPC-Kriging performs best when comparing the median value of the 50 indepen-

dent runs. Ordinary Kriging and PCE perform very similar but worse than PC-Kriging.

For the Morris function in Figure 8 OPC-Kriging and ordinary Kriging behave similar,

though PC-Kriging has slightly smaller errors. PCE performs worse than the other tech-

niques in this setting. Considering that the Morris function has a 20-dimensional input

vector, the N = 256 samples result in a low error.

The first function with Gaussian input variables, namely the Rastrigin function, is

shown in Figure 9. Due to the nature of the function many samples are needed to obtain

a low error estimate (N = 32−256). Throughout the whole range presented in the figure,

OPC-Kriging outperforms the other three techniques. Ordinary Kriging performs worst in

this setting.

The sixth function is the O’Hagan function which is presented in Figure 10. The

performance of PC-Kriging resembles more the ordinary Kriging results than the PCE

results. The errors of ordinary Kriging and OPC-Kriging are comparable, though OPC-

Kriging performs slightly better.

Considering all six figures, the behaviour of the meta-modelling approaches differs in

the various analytical functions f1 − f6. Functions like O’Hagan and Morris are hard to

model with PCE. When summarizing the results of all six analytical functions, the gen-

eralized error is similar for the two simple approaches (for small experimental designs),

namely ordinary Kriging and PCE. The new PC-Kriging approaches are at least as good

as the PCE and the ordinary Kriging. In many cases the error obtained in the PC-Kriging

is smaller than in the simple approaches PCE and Kriging.

Within the PC-Kriging approaches ((c) and (d)), the OPC-Kriging appears to be more

accurate than the FPC-Kriging. This is explained by the setup of the two approaches.

OPC-Kriging takes the optimal set of polynomials of the combined calculation of PCE and

Kriging. This reduces the number of polynomials but also decreases the mean-square

error. FPC-Kriging optimizes the set of polynomials only once based on the information

of the sole LAR selection algorithm and thus cannot be optimal in all cases.

The increased accuracy comes with a higher computational cost. The single ap-

proaches PCE and Kriging have the lowest computational costs, FPC-Kriging has an inter-

mediate cost and OPC-Kriging has the highest cost. The high costs in OPC-Kriging results

from the iterative calculation of the optimal set of polynomials which implies the com-

putation of many PC-Kriging models. For a single run of the Ishigami-function and 128
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samples in the experimental design, the CPU times (using a 3.2GHz, 4-core computer) for

PCE, Kriging, FPC-Kriging and OPC-Kriging are 0.4 sec., 1.8 sec., 7.0 sec., and 120 sec.

respectively.

However it is intended to apply these techniques to real problems in which a sin-

gle evaluation of the original computational model may last minutes to hours. So the

apparent overload of OPC-Kriging is not an issue in practice.
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Figure 5: Ishigami function for the various meta-modelling approaches
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Figure 6: Rosenbrock function for the various meta-modelling approaches
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Figure 7: Sobol’ function for the various meta-modelling approaches
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Figure 8: Morris function for the various meta-modelling approaches
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Figure 9: Rastrigin function for the various meta-modelling approaches
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Figure 10: O’Hagan function for the various meta-modelling approaches
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6.3.3 Comparing different sampling techniques

In Figure 11 and Figure 12 the design of experiments is generated through various sam-

pling algorithms. The figures include the Monte Carlo sampling (denoted MC in the

figures), Latin-Hypercube sampling (LH), Niederreiter sequences (Ni), orthogonal arrays

of strength t = 2 (OA), and k-means clustering (kM). The experimental setup is similar

to the one previously mentioned: 50 independent runs of OPC-Kriging with n = 105

random samples to assess the relative generalized error Eq. (53) of each experimental

design. Figure 11 illustrates the behaviour of metamodelling the Ishigami function (Leg-

endre polynomials) whereas Figure 12 illustrates the Rastrigin function with Hermite

polynomials. The error estimate is calculated on a logarithmic scale (base 10) in order

to make the ranges of the error more visible. In Figure 11 and Figure 12 the error range

from 100 for N = 20 to 10−10 and 10−12 respectively for N = 64.

The functions have been chosen to present one example with uniform input variables

and one with Gaussian input variables. The corresponding set of orthonormal polynomi-

als used in the PC expansions are the Legendre polynomials and the Hermite polynomials

respectively. The sampling methods are compared to the random sampling method of

Monte Carlo sampling. The quasi-random sampling methods are in general better than

the Monte Carlo sampling comparing the median values of the relative generalized error

Eq. (53). LHS, Niederreiter sequences, and OA of strength 2 behave very similar. The

error is comparable and the ranking varies depending on the function and on the sample

size. None of the quasi-random approaches outperforms the others in this setting.

One special case is the k-means clustering algorithm though, which behaves differ-

ently for uniform and Gaussian random variables. When increasing the number of k-

means clustering samples in the Ishigami function the relative generalized error decreases

much more slowly than when using the other quasi-random sampling methods. The rea-

son is the effect described in Section 5.6, i.e. there are more clusters towards the bound-

aries of the sampling domain rather than inside the domain. For the case of Gaussian

random variables, this effect is reversed. The k-means clustering method leads to con-

siderably lower error estimates and thus to better metamodels than the other sampling

methods. Note that very low errors are more likely to appear in the k-means clustering

method than in the other methods.
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Figure 11: Ishigami function – Several experimental designs compared with respect to
the associated relative generalized error; MC stands for Monte Carlo sampling, LH for
Latin-Hypercube Sampling, Ni for Niederreiter sequences, OA for orthogonal arrays and
kM for k-means clustering sampling.
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Figure 12: Rastrigin function – Several experimental designs compared with respect to
the associated relative generalized error; MC stands for Monte Carlo sampling, LH for
Latin-Hypercube Sampling, Ni for Niederreiter sequences, OA for orthogonal arrays and
kM for k-means clustering sampling.
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6.3.4 Behaviour of large experimental designs

In the previous sections the focus was on small sample sets because this is an important

case for realistic problems. The behaviour for large sample sizes is shown in this section

to illustrate the convergence rate as a function of the number of samples. Figure 13

illustrates the evolution of the relative generalized error (on logarithmic scale, base 10)

from small to large sample sizes. Latin-hypercube sampling is used and the boxplots

inherit the information of 50 distinct, independent runs. The figure shows the evolution

of the four approaches, namely (a) ordinary Kriging, (b) PCE, (c) FPC-Kriging and (d)

OPC-Kriging.
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Figure 13: Ishigami function – large range of number of samples

The relative generalized error decreases fast with enlarging the sample set because

the Ishigami function is a rather smooth function. It consists of sine and cosine functions

(over a bounded domain) which can be approximated well by a sum of polynomials,

i.e. a Taylor expansion. Thus the PCE is the dominating effect in the PC-Kriging in this

example. The evolution of the error of the PC-Kriging approaches is very similar to the

evolution of the error in the pure PCE case. The Kriging algorithm has the same order

of magnitude of error for small sample sizes. For large sample sizes, PCE outperforms

Kriging though.

Kriging has an issue with large sample sizes as the interpolation algorithm is based

on the inversion of matrices. The size of these matrices is proportional to the squared

number of samples N × N . The more points added to the experimental design, the less

stable the inversion due to singularities and bad conditioning in the inversion matrix.

Thus Kriging is only suitable for rather small sample sizes. If a large sample size is

available, then regional Kriging models on a subset of samples (i.e. the neighbouring
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samples) are more suitable (Dubrule, 1983).

6.3.5 Evolution of the leave-one-out error in PC-Kriging

Figure 14 shows the evolution of the leave-one-out error in the case of a single run of

OPC-Kriging. The set of polynomials in the trend part of PC-Kriging increases starting

from the most correlated polynomial term towards the least correlated terms. The red,

dotted line represents the leave-one-out error calculated from Eq. (41) using only the

information in the experimental design. The black, solid line represents the empirical

validation error calculated with n = 105 independent random samples based on Eq. (53).

The end of the lines at 56 polynomials corresponds to the model which is chosen as the

optimal set of polynomials by the LARS algorithm in PCE, i.e. FPC-Kriging. Thus OPC-

Kriging is obviously not equivalent to the optimal model FPC-Kriging. The minimum error

is found when using 41 polynomials instead of 56 according to the respective relative

generalized errors. The leave-one-out error models nicely the evolution of the relative

generalized error for comparably small numbers of polynomials. At the stage where

the error becomes stable (number of polynomials larger than 28), the algorithm should

terminate with a stopping criterion.
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Figure 14: Evolution of the LOO and relative generalized error inside the OPC-Kriging
algorithm as a function of the number of polynomials in the regression part

A simple stopping criterion is to compute all PC-Kriging models possible in the OPC-

Kriging approach (here 56) and then choosing the set of polynomials with the minimal

relative generalized error. A different stopping criterion may identify the plateau and

return the last number of polynomials which significantly reduced the leave-one-out error.

6.3.6 Conclusion

The PC-Kriging model is at least as good as the single approaches PCE and ordinary

Kriging. In practice, as there is usually no prior knowledge of the underlying process, this
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leads to a metamodel with a performance close to the best model of either PCE or Kriging.

In reality, it is not known which approach (PCE or Kriging) models the hidden process

more accurately. Depending on the computational cost one wants to invest, either the

OPC-Kriging or the FPC-Kriging is appropriate for the analysis of the problem. Consider-

ing that the purpose of metamodelling is avoiding many computations of the expensive

real process and that the computational cost of the original computational model M is

usually orders of magnitude higher, the OPC-Kriging should be used in any case.

The use of quasi-random experimental designs is preferable to crude Monte Carlo

sampling. Dependent on the problem one or the other quasi-random sampling approach

performs slightly better, which in practical applications is not known in advance. As

illustrated for the Rastrigin function, the k-means clustering algorithm is preferred for

Gaussian input variables but not for uniform input variables.
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7 Conclusion and outlook

Polynomial chaos expansion (PCE) and Kriging are two distinct non-intrusive metamod-

elling techniques. In this report these approaches are discussed and a new technique

called PC-Kriging is proposed. PC-Kriging is based on the universal Kriging algorithm

where the trend is represented by a sum of orthonormal polynomials. The least-angle

regression algorithm, which is used in PCE algorithms, determines the optimal sparse set

of orthonormal polynomials in coherency with the input variables’ distributions.

The combination of PCE and Kriging opens new opportunities to better surrogate com-

putational models in a non-intrusive setup, as validated on several analytical benchmark

functions. PC-Kriging behaves better or at least as good as the single approaches PCE

and Kriging separately. In terms of prediction error, PC-Kriging provides a framework to

determine new sample points which opens the path to adaptive designs and to further

research in applying PC-Kriging in reliability analysis.

Thus the next issue is the validation of the theory on real engineering problems.

Engineering problems focus on different aspects compared to the aspects covered here,

e.g. on the reliability of structures. Reliability assessment is based on the evaluation

of a large number of virtual systems in order to estimate a probability of failure. As

failure probabilities are small in engineering practice, the generation and the prediction

accuracy of extreme events is crucial to the accuracy of the reliability. This leads to an

adaptive design of experiments. In this report, the experimental design is based on the

input distribution of the random variables. In reliability problems, the focus is on the

failure domain though. Adaptive designs generating additional samples in the region

of interest increase the predictability of the metamodel. Related topics in research are

importance sampling and subset simulation which might be incorporated into an adaptive

framework.
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A O’Hagan function

X is a standard Gaussian variables vector of dimension 15. Vectors a1,a2,a3 and the

matrix Q are chosen as shown in Oakley and O’Hagan (2004).

f(X) = a1
TX + a2

T sin(X) + a3
T cos(X) +XTQX (56)

In this paper the vectors a1,a2,a3 and the matrix Q are given by:

a1 =



0.0118
0.0456
0.2297
0.0393
0.1177
0.3865
0.3897
0.6061
0.6159
0.4005
1.0741
1.1474
0.7880
1.1242
1.1982



, a2 =



0.4341
0.0887
0.0512
0.3233
0.1489
1.0360
0.9892
0.9672
0.8977
0.8083
1.8426
2.4712
2.3946
2.0045
2.2621



, a3 =



0.1044
0.2057
0.0774
0.2730
0.1253
0.7526
0.8570
1.0331
0.8388
0.7970
2.2145
2.0382
2.4004
2.0541
1.9845


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Le Mâıtre, O., M. Reagan, H. Najm, R. Ghanem, and O. Knio (2002). A stochastic projec-

tion method for fluid flow – II. Random process. J. Comput. Phys. 181, 9–44.

Lophaven, S., H. Nielsen, and J. Søndergaard (2002). DACE, A Matlab Kriging Toolbox.

Technical University of Denmark.

Marrel, A., B. Iooss, F. Van Dorpe, and E. Volkova (2008). An efficient methodology

for modeling complex computer codes with Gaussian processes. Comput. Stat. Data
Anal. 52, 4731–4744.

McKay, M. D., R. J. Beckman, and W. J. Conover (1979). A comparison of three methods

for selecting values of input variables in the analysis of output from a computer code.

Technometrics 2, 239–245.

Morris, M. (1991). Factorial sampling plans for preliminary computational experiments.

Technometrics 33(2), 161–174.

Niederreiter, H. (1988). Low-discrepancy and low-dispersion sequences. J. Number The-
ory 30, 51–70.

Oakley, J. and A. O’Hagan (2004). Probabilistic sensitivity analysis of complex models: a

Bayesian approach. J. Royal Stat. Soc., Series B 66, 751–769.

Rackwitz, R. (2001). Reliability anaylsis - a review and some perspectives. Struct.
Saf. 23(4), 365 – 395.

April 10th, 2014 - 38 -



Combining Polynomial Chaos Expansions and Kriging

Rasmussen, C. and C. Williams (2006). Gaussian processes for machine learning (Internet

ed.). Adaptive computation and machine learning. Cambridge, Massachusetts: MIT

Press.

Roustant, O., D. Ginsbourger, and Y. Deville (2012). DiceKriging, DiceOptim: Two R

package for the analysis of computer experiments by Kriging-based metamodeling and

optimisation. J. Stat. Softw. 51, 1–55.

Roustant, O., D. Ginsbourger, and Y. Deville (2013). Package DiceKriging - Kriging methods
for computer experiments.

Santner, T., B. Williams, and W. Notz (2003). The Design and Analysis of Computer Exper-
iments. Springer, New York.

Saporta, G. (2006). Probabilités, analyse des données et statistique (2nd ed.). Editions

Technip.

Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimization.

Math. Comput. 24, 647–656.

Sobol, L. M. (1967). The distribution of point in a cube and the approximate evaluation

of integrals. USSR. Comput. Math. Math. Phys. 7(4), 86 – 112.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. J.
Royal Stat. Soc., Series B 36, 111–147.

Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reliab.
Eng. Sys. Safety 93, 964–979.

Sudret, B. (2012). Meta-models for structural reliability and uncertainty quantification.

In K. Phoon, M. Beer, S. Quek, and S. Pang (Eds.), Proc. 5th Asian-Pacific Symp. Struct.
Reliab. (APSSRA’2012), Singapore, pp. 53–76. Keynote lecture.

Suen, C. (2006). Some mixed orthogonal arrays obtained by orthogonal projection ma-

trices. J. Stat. Plan. Infer. 137, 1704–1710.

Suen, C. and W. F. Kuhfeld (2005). On the construction of mixed orthogonal arrays of

strength two. J. Stat. Plan. Infer. 133, 555–560.

Tibshirani, R. (1996). Regression shrinkage ans selection via LASSO. J. Roy. Stat. Soc.
B 58, 267 – 288.

Xiu, D. (2009). Fast numerical methods for stochastic computations: a review. Comm.
Comput. Phys. 5(2-4), 242–272.

Xiu, D. and J. Hesthaven (2005). High-order collocation methods for differential equa-

tions with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139.

April 10th, 2014 - 39 -



Combining Polynomial Chaos Expansions and Kriging

Zhang, Y. (2007). Orthogonal arrays obtained by repeating-column difference matrices.

Discrete Math. 307, 246–261.

April 10th, 2014 - 40 -


	Introduction
	Polynomial Chaos Expansion
	Problem definition
	Determination of the coefficients
	Error estimation

	Kriging
	Problem definition
	Autocorrelation functions
	Estimation of the Kriging model parameters
	Error estimation

	PC-Kriging
	Idea
	Algorithm
	Error estimation
	Implementation

	Experimental design
	Regular grid design
	Monte Carlo sampling
	Latin-hypercube sampling
	Quasi-random sequences
	Orthogonal arrays
	K-means clustering

	Benchmark problems
	Setup
	Analysis
	Results
	Illustration of the behaviour of PC-Kriging
	Comparing different surrogate-modelling techniques
	Comparing different sampling techniques
	Behaviour of large experimental designs
	Evolution of the leave-one-out error in PC-Kriging
	Conclusion


	Conclusion and outlook
	O'Hagan function

