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When Does Output Feedback Enlarge the

Capacity of the Interference Channel?

Victor Quintero, Samir M. Perlaza, Iñaki Esnaola, Jean-Marie Gorce

Abstract

In this paper, the benefits of channel-output feedback in the Gaussian interference channel (G-IC)

are studied under the effect of additive Gaussian noise. Using a linear deterministic (LD) model, the

signal to noise ratios (SNRs) in the feedback links beyond which feedback plays a significant role in

terms of increasing the individual rates or the sum-rate are approximated. The relevance of this work lies

on the fact that it identifies the feedback SNRs for which in any G-IC one of the following statements

is true: (a) Feedback does not enlarge the capacity region; (b) Feedback enlarges the capacity region

and the sum-rate is higher than the largest sum-rate without feedback; and (c) Feedback enlarges the

capacity region but no significant improvement is observed in the sum-rate.

Index Terms

Interference Channel, Noisy Channel-Output Feedback, Capacity Region.

I. INTRODUCTION

The two-user Gaussian interference channel (G-IC) is the simplest channel model that captures

the impairments brought by mutual interference into point-to-point communications subject to
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additive Gaussian noise. The interference channel (IC), in its most general form, was first

proposed by Claude E. Shannon in [2]. The G-IC is a particular case that has been studied

by several authors, see for instance [3]–[13] and references therein. However, despite this active

research, the capacity region of the G-IC is characterized only in some special cases [4]. In

general, the capacity region is not known exactly and only approximations to within a constant

number of bits per channel-use per user are known [9].

On the other hand, channel-output feedback, which consists in letting a transmitter observe

the channel-output at its intended receiver, was one of the first models for studying two-way

point-to-point communications [14]. A G-IC with channel-output feedback is a model in which

the backward direction (from receivers to transmitters) is exclusively used to let the transmitters

observe the channel-output at the receivers with the goal of increasing the information rate or

the reliability in the forward direction (from transmitters to receivers). Note that the backward

direction may also be an IC since the point-to-point feedback links might be subject to mutual

interference. There are several special cases of channel-output feedback in the G-IC. First, the

case in which the observation of the channel-output from the intended receiver is noiseless

corresponds to perfect channel-output feedback (POF) [15]. Second, the case in which such

observation is noisy corresponds to noisy channel-output feedback (NOF) [16], [17]. Third, the

case in which such observation is a linear combination of the channel-outputs from both receivers

subject to additive noise corresponds to wireless channel-output feedback (WOF) [18]. The most

general formulation is referred to as general channel-output feedback (GOF) [19]–[22]. Other

types of feedback, including a channel-output processing, e.g., signal decoding, are known as

rate-limited feedback (RLF) [23].

This work focuses in the case of G-IC with NOF (G-IC-NOF). One of the main motivations to

focus on the G-IC-NOF stems from the recent findings regarding the impact of additive noise in

the feedback links. In particular, in [16] and [17], it is shown that additive noise in the feedback

links can dramatically change the number of generalized degrees of freedom (G-DoF) of the

G-IC. In particular, one of the main benefits of feedback is that the number of G-DoF with

perfect feedback increases monotonically with the interference to noise ratio (INR) in the very

strong interference regime. However, in the presence of additive Gaussian noise in the feedback

links, the number of G-DoF is bounded [16], [17].
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A. Contributions

From the discussion above a relevant question arises: “When does channel-output feedback

enlarge the capacity region of the G-IC?” This paper provides the answer when feedback links

are impaired by noise and free of mutual interference, i.e., G-IC-NOF. The desired answer

is of the form: “Implementing channel-output feedback in transmitter-receiver i enlarges the

capacity region if the feedback SNR is bigger than SNR∗i ”, with i ∈ {1, 2} and fixed SNRs and

INRs in the forward G-IC. Note that the description of the capacity region of the G-IC-NOF

in [17] does not provide an answer of the form mentioned above. An answer in the desired

form requires some calculations that, despite the conceptual simplicity of this analysis, are long

and tedious. More specifically, the value SNR∗i is obtained by comparing the capacity region

of the linear deterministic IC (LD-IC) in [9] and the capacity region of the LD-IC with noisy

channel-output feedback (LD-IC-NOF) in [17] to identify the feedback parameters that ensure

strict inclusion of the former into the latter. After, using the fact that the capacity region of the

LD-IC-NOF approximates the capacity region of the G-IC-NOF, an approximation of SNR∗i is

obtained. Solving this problem leads to a handful of equally relevant byproducts to determine

whether or not implementing feedback in one of the transmitter-receiver pairs increases any of

the individual rates or the sum-rate. That is, answers to the following questions: When does

feedback in transmitter-receiver i allow achieving a rate R1, such that for at least one R2,

all rate pairs (R′1, R2) achievable without feedback satisfy R1 > R′1?; When does feedback in

transmitter-receiver i allow achieving a rate R2, such that for at least one R1, all rate pairs

(R1, R
′
2) achievable without feedback satisfies R2 > R′2?; or When does feedback in transmitter-

receiver i allow achieving a higher sum-rate than the maximum sum-rate achievable without

feedback?, with i ∈ {1, 2} and fixed SNRs and INRs in the forward G-IC.

The answers to the questions above provide a lot of engineering insights about the benefits of

feedback in the G-IC. For instance, all the cases in which feedback, even perfect channel-output

feedback, is useless for increasing an individual rate or the sum-rate are identified. Similarly,

this work provides guidelines for choosing in which of the point-to-point links feedback should

be implemented for increasing either an individual rate or the sum-rate. Interestingly, in some

cases, implementing feedback in only one of the transmitter-receiver pairs, despite the additive

noise, turns out to be as beneficial as perfect channel-output feedback in both links.
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Fig. 1. Gaussian interference channel with noisy channel-output feedback at channel use n.

B. Organization of the Paper

Section II introduces the G-IC and the linear deterministic IC (LD-IC). The capacity region

of the G-IC is shown to be approximated by the capacity region of an LD-IC, with a particular

choice of parameters. Section III presents the answers to the questions described above for the

LD-IC. Section IV presents some LD-IC examples. Section V presents the implications of the

conclusions obtained from the LD-IC (Section III) on the G-IC. The examples in Section IV are

revisited in the context of the G-IC. The paper closes with the conclusions in Section VII.

II. CHANNEL MODELS

A. Gaussian Interference Channels

Consider the two-user G-IC-NOF depicted in Figure 1. Transmitter i, with i ∈ {1, 2}, com-

municates with receiver i subject to the interference produced by transmitter j, with j ∈
{1, 2}\{i}. There are two independent and uniformly distributed messages, Wi ∈ Wi, with

Wi = {1, 2, . . . , 2NRi}, where N denotes the fixed block-length in channel uses and Ri is

the transmission rate in bits per channel use. At each block, transmitter i sends the codeword

X i = (Xi,1, Xi,2, . . . , Xi,N)T ∈ Ci ⊆ XN
i , where Xi and Ci are respectively the channel-input

alphabet and the codebook of transmitter i.

The channel coefficient from transmitter i to receiver i is denoted by
−→
h ii, the channel

coefficient from transmitter j to receiver i is denoted by hij; and the channel coefficient from

June 20, 2017 DRAFT
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channel-output i to transmitter i is denoted by
←−
h ii. All channel coefficients are assumed to be

non-negative real numbers. At a given channel use n ∈ {1, 2, . . . , N}, the channel output at

receiver i is denoted by
−→
Y i,n. During channel use n, the input-output relation of the channel

model is given by

−→
Y i,n=

−→
h iiXi,n + hijXj,n +

−→
Z i,n, (1)

where
−→
Z i,n is a real Gaussian random variable with zero mean and unit variance that represents

the noise at the input of receiver i. Let d > 0 be the finite feedback delay measured in channel

uses. At the end of channel use n, transmitter i observes
←−
Y i,n, which consists of a scaled and

noisy version of
−→
Y i,n−d. More specifically,

←−
Y i,n=





←−
Z i,n for n∈ {1,2, . . . , d}
←−
h ii
−→
Y i,n−d+

←−
Z i,n, for n∈ {d+1,d+2, . . . ,N},

(2)

where
←−
Z i,n is a real Gaussian random variable with zero mean and unit variance that represents

the noise in the feedback link of transmitter-receiver pair i. The random variables
−→
Z i,n and

←−
Z i,n are independent and identically distributed. In the following, without loss of generality, the

feedback delay is assumed to be one channel use, i.e., d = 1. The encoder of transmitter i is

defined by a set of deterministic functions f (1)
i , f

(2)
i , . . . , f

(N)
i , with f

(1)
i : Wi → Xi and for all

n ∈ {2, 3, . . . , N}, f (n)
i :Wi ×Rn−1 → Xi, such that

Xi,1=f
(1)
i (Wi) , (3a)

and for all n ∈ {2, 3, . . . , N},

Xi,n=f
(n)
i

(
Wi,
←−
Y i,1,

←−
Y i,2, . . . ,

←−
Y i,n−1

)
. (3b)

The components of the input vector X i are real numbers subject to an average power con-

straint:
1

N

N∑

n=1

E
Ä
X2

i,n

ä
≤ 1, (4)

where the expectation is taken over the joint distribution of the message indices W1, W2, and the

noise terms, i.e.,
−→
Z 1,
−→
Z 2,
←−
Z 1, and

←−
Z 2. The dependence of Xi,n on W1, W2, and the previously

observed noise realizations is due to the effect of feedback as shown in (2) and (3).
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Hence, the decoder of receiver i is defined by a deterministic function ψi : RN
i →Wi. At

the end of the communication, receiver i uses the vector
Å−→
Y i,1,

−→
Y i,2, . . .,

−→
Y i,N

ãT
to obtain an

estimate of the message index:”Wi=ψi

(−→
Y i,1,

−→
Y i,2, . . . ,

−→
Y i,N

)
, (5)

where ”Wi is an estimate of the message index. The decoding error probability in the two-user

G-IC-NOF, denoted by Pe(N), is given by

Pe(N)=max

Ñ
Pr
Ä
Ŵ1 6= W1

ä
,Pr
Ä
Ŵ2 6= W2

äé
. (6)

The definition of an achievable rate pair (R1, R2) ∈ R2
+ follows:

Definition 1 (Achievable Rate Pairs): A rate pair (R1, R2) ∈ R2
+ is achievable if there exists at

least one pair of codebooks in XN
1 and in XN

2 with codewords of length N , the corresponding

encoding functions f (1)
1 , f

(2)
1 , . . . , f

(N)
1 and f

(1)
2 , f

(2)
2 , . . . , f

(N)
2 , and the decoding functions ψ1

and ψ2, such that the decoding error probability can be made arbitrarily small by letting the

block-length N grow to infinity.

The set of all achievable information rate pairs (R1, R2) is known as the information capacity

region. The capacity region of a G-IC-NOF is described by six parameters:
−−→
SNRi, INRij and

←−−
SNRi, with i ∈ {1, 2} and j ∈ {1, 2}\{i}, which are defined as follows:

−−→
SNRi=

−→
h 2

ii, (7)

INRij=h
2
ij, and (8)

←−−
SNRi=

←−
h 2

ii

(−→
h 2

ii + 2
−→
h iihij + h2ij + 1

)
. (9)

Given fixed parameters
−−→
SNR1,

−−→
SNR2, INR12, INR21,

←−−
SNR1, and

←−−
SNR2, the capacity region of

the G-IC-NOF is approximated to within a constant number of bits by Theorem 4 in [17].

B. Linear Deterministic Interference Channels

Consider the two-user LD-IC-NOF with parameters −→n 11, −→n 22, n12, n21,←−n 11 and←−n 22 depicted

in Fig. 2. Parameter −→n ii represents the number of bit-pipes between transmitter i and receiver

i; parameter nij represents the number of bit-pipes between transmitter j and receiver i; and

parameter←−n ii represents the number of bit-pipes between receiver i and transmitter i (feedback).
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Fig. 2. Two-user linear deterministic interference channel with noisy channel-output feedback. The bit-pipe line number 1

represents the most significant bit.

At transmitter i, the channel-input X i,n during channel use n, with n ∈ {1, 2, . . . , N}, is a

q-dimensional binary vector X i,n =
(
X

(1)
i,n , X

(2)
i,n , . . . , X

(q)
i,n

)T
, where

q = max (−→n 11,
−→n 22, n12, n21) , (10)

and N is the block-length. At receiver i, the channel-output
−→
Y i,n during channel use n is also

a q-dimensional binary vector
−→
Y i,n =

(−→
Y

(1)
i,n,
−→
Y

(2)
i,n, . . . ,

−→
Y

(q)
i,n

)T
. Let S be a q × q lower shift

matrix of the form:

S =




0 0 0 · · · 0

1 0 0 · · · 0

0 1 0 · · · ...
... . . . . . . . . . 0

0 · · · 0 1 0




. (11)

The input-output relation during channel use n is given by

−→
Y i,n=Sq−−→n iiX i,n + Sq−nijXj,n, (12)

and the feedback signal
←−
Y i,n available at transmitter i at the end of channel use n satisfies

←−
Y i,n=S(max(−→n ii,nij)−←−n ii)

+−→
Y i,n−d, (13)

June 20, 2017 DRAFT
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where d is a finite delay, additions and multiplications are defined over the Galois Field of two

elements GF(2), and (·)+ is the positive part operator.

Without any loss of generality, the feedback delay is assumed to be equal to one channel use.

LetWi be the set of message indices of transmitter i. Transmitter i sends the message index Wi ∈
Wi by sending the codeword X i = (X i,1,X i,2, . . . ,X i,N), which is a binary q×N matrix. The

encoder of transmitter i can be modeled as a set of deterministic mappings f (1)
i , f (2)

i , . . . , f
(N)
i ,

with f
(1)
i : Wi → {0, 1}q and for all n ∈ {2, 3, . . . , N}, f (n)

i : Wi × {0, 1}q×(n−1) → {0, 1}q,
such that

X i,1=f
(1)
i

Ä
Wi

ä
(14a)

and for all n ∈ {2, 3, . . . , N},

X i,n=f
(n)
i

Ä
Wi,
←−
Y i,1,

←−
Y i,2, . . . ,

←−
Y i,n−1

ä
. (14b)

The decoder of receiver i is defined by a deterministic function ψi : {0, 1}q×N →Wi. At the end

of the communication, receiver i uses the sequence
(−→
Y i,1,

−→
Y i,2, . . . ,

−→
Y i,N

)
to obtain an estimate”Wi of the message index Wi. The decoding error probability in the two-user LD-IC-NOF, denoted

by Pe(N), is given by (6).

A rate pair (R1, R2) ∈ R2
+ is said to be achievable if it satisfies Definition 1. The set of all

achievable information rate pairs (R1, R2) is known as the information capacity region and it is

characterized by Theorem 1 in [17].

C. Connections between Linear Deterministic and Gaussian Interference Channels

The capacity region of the G-IC-NOF with parameters
−−→
SNR1,

−−→
SNR2, INR12, INR21,

←−−
SNR1

and
←−−
SNR2 can be approximated by the capacity region of an LD-IC-NOF with parameters

−→n ii = b1
2

log2(
−−→
SNRi)c; nij = b1

2
log2(INRij)c; ←−n ii = b1

2
log2(

←−−
SNRi)c, with i ∈ {1, 2} and

j ∈ {1, 2} \ {i}. For instance, in the case without feedback, the capacity region of any G-IC

with parameters
−−→
SNR1 > 1,

−−→
SNR2 > 1, INR12 > 1 and INR21 > 1 is within 18.6 bits per

channel use per user of the capacity of an LD-IC with parameters −→n 11 = b1
2

log2(
−−→
SNR1)c,

−→n 22 = b1
2

log2(
−−→
SNR2)c, −→n 12 = b1

2
log2(

−−→
INR21)c, and −→n 21 = b1

2
log2(

−−→
INR21)c (Theorem 2 in

[24]). More specifically, if the capacity region of the G-IC and LD-IC without feedback are

June 20, 2017 DRAFT
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denoted by CG and CLD, respectively, the following holds:

CLD⊆CG + (5, 5), and (15a)

CG ⊆CLD + (13.6, 13.6). (15b)

In a more general setting, for instance in the case with noisy channel-output feedback, the LD-

IC is known to be a close approximation of the G-IC [17]. In Section V, this approximation is

used to simplify the identification of the cases in which channel-output feedback, even subject

to additive noise, enlarges the capacity region of the G-IC.

III. MAIN RESULTS

A. Preliminaries

Let αi ∈ Q, with i ∈ {1, 2} and j ∈ {1, 2} \ {i} be defined as

αi =
nij
−→n ii

. (16)

For each transmitter-receiver pair i, there exist five possible interference regimes (IRs), as

suggested in [9]: the very weak IR (VWIR), i.e., αi 6 1
2
, the weak IR (WIR), i.e., 1

2
< αi 6 2

3
,

the moderate IR (MIR), i.e., 2
3
< αi < 1, the strong IR (SIR), i.e., 1 6 αi 6 2 and the very

strong IR (VSIR), i.e., αi > 2. The scenarios in which the desired signal is stronger than the

interference (αi < 1), namely the VWIR, the WIR, and the MIR, are referred to as the low-

interference regimes (LIRs). Conversely, the scenarios in which the desired signal is weaker

than or equal to the interference (αi > 1), namely the SIR and the VSIR, are referred to as the

high-interference regimes (HIRs).

The main results of this paper are presented using a set of events (Boolean variables) that are

determined by the parameters −→n 11,
−→n 22, n12, and n21. Given a fixed tuple (−→n 11, −→n 22, n12, n21),

the events are defined below:

E1 : α1 < 1 ∧ α2 < 1, (17)

E2,i : αi 6
1

2
∧ 1 6 αj 6 2, (18)

E3,i : αi 6
1

2
∧ αj > 2, (19)

E4,i :
1

2
< αi 6

2

3
∧ αj > 1, (20)

E5,i :
2

3
< αi < 1 ∧ αj > 1, (21)

June 20, 2017 DRAFT
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E6,i :
1

2
< αi 6 1 ∧ αj > 1, (22)

E7,i : αi > 1 ∧ αj 6 1, (23)

E8,i : −→n ii > nji, (24)

E9 : −→n 11 +−→n 22 > n12 + n21, (25)

E10,i : −→n ii +−→n jj > nij + 2nji, (26)

E11,i : −→n ii +−→n jj < nij. (27)

In the following, given an event, e.g. E8,i : −→n ii > nji, the notation ‹E8,i indicates −→n ii < nji;

the notation E8,i indicates −→n ii 6 nji (logical complement); and the notation Ě8,i indicates
−→n ii > nji.

Combining the events (17)-(27), five main scenarios are identified:

S1,i: (E1 ∧ E8,i)∨(E2,i ∧ E8,i)∨(E3,i ∧ E8,i ∧ E9)∨(E4,i ∧ E8,i ∧ E9)∨(E5,i ∧ E8,i ∧ E9) , (28)

S2,i:
Ä
E3,i ∧ ‹E8,j ∧ E9

ä
∨
Ä
E6,i ∧ ‹E8,j ∧ E9

ä
∨
Ä‹E1 ∧ ‹E8,j

ä
, (29)

S3,i:
Ä
E1 ∧ E8,i

ä
∨
Ä
E2,i ∧ E8,i

ä
∨
Ä
E3,i ∧ Ě8,j ∧ E8,i

ä
∨
Ä
E4,i ∧ Ě8,j ∧ E8,i

ä
∨
Ä
E5,i ∧ Ě8,j ∧ E8,i

ä
∨
Ä
E1 ∧ Ě8,j

ä
∨ (E7,i) , (30)

S4 : E1 ∧ E8,1 ∧ E8,2 ∧ E10,1 ∧ E10,2, (31)

S5 : E1 ∧ E11,1 ∧ E11,2. (32)

For all i ∈ {1, 2}, the events S1,i, S2,i, S3,i, S4 and S5 exhibit the properties stated by the

following corollaries.

Corollary 1: For all (−→n 11,
−→n 22, n12, n21) ∈ N4, given a fixed i ∈ {1, 2}, only one of the

events S1,i, S2,i and S3,i is true.

Corollary 2: For all (−→n 11,
−→n 22, n12, n21) ∈ N4, when one of the events S4 or S5 holds true,

then the other necessarily holds false.

Note that Corollary 2 does not exclude the case in which both S4 and S5 are simultaneously

false.

Corollary 3: For all (−→n 11,
−→n 22, n12, n21) ∈ N4, when S4 holds true, then both S1,1 and S1,2

hold true; and when S5 holds true, then both S2,1 and S2,2 hold true.
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B. Rate Improvement Metrics

Given a fixed tuple (−→n 11,
−→n 22, n12, n21), let C(←−n 11,

←−n 22) be the capacity region of an LD-IC

with noisy channel-output feedback with parameters ←−n 11 and ←−n 22. The maximum improvement

of the individual rates R1 and R2, denoted by ∆1(
←−n 11,

←−n 22) and ∆2(
←−n 11,

←−n 22), due to the

effect of channel-output feedback with respect to the case without feedback is

∆1(
←−n 11,

←−n 22)= max
0<R2<R∗2



 sup

(R1,R2)∈C(←−n 11,
←−n 22)

R1 − sup
(R†1,R2)∈C(0,0)

R†1



 and (33)

∆2(
←−n 11,

←−n 22)= max
0<R1<R∗1



 sup

(R1,R2)∈C(←−n 11,
←−n 22)

R2 − sup
(R1,R

†
2)∈C(0,0)

R†2



 , (34)

with

R∗1= sup
(r1,r2)∈C(0,0)

r1 and (35)

R∗2= sup
(r1,r2)∈C(0,0)

r2. (36)

Note that for a fixed i ∈ {1, 2}, ∆i(
←−n 11,

←−n 22) > 0 if and only if it is possible to achieve a

rate pair (R1, R2) with channel-output feedback such that Ri is higher than the maximum rate

achievable by transmitter-receiver i without feedback when the rate of transmitter-receiver pair

j is fixed at Rj . In the following, given fixed parameters ←−n 11 and ←−n 22, the statement “the rate

Ri is improved by using feedback” is used to indicate that ∆i(
←−n 11,

←−n 22) > 0.

Alternatively, the maximum improvement of the sum-rate Σ(←−n 11,
←−n 22) with respect to the

case without feedback is

Σ(←−n 11,
←−n 22)= sup

(R1,R2)∈C(←−n 11,
←−n 22)



R1 +R2



− sup

(R†1,R
†
2)∈C(0,0)



R

†
1 +R†2



. (37)

Note that Σ(←−n 11,
←−n 22) > 0 if and only if there exists a rate pair with feedback whose sum is

higher than the maximum sum-rate achievable without feedback. In the following, given fixed

parameters ←−n 11 and ←−n 22, the statement “the sum-rate is improved by using feedback” is used

to imply that Σ(←−n 11,
←−n 22) > 0.

In the following, when feedback is exclusively used by transmitter-receiver pair i, i.e.,←−n ii > 0

and ←−n jj = 0, then the maximum improvement of the individual rate of transmitter-receiver k,

with k ∈ {1, 2}, and the maximum improvement of the sum-rate are denoted by ∆k(←−n ii) and

Σ(←−n ii), respectively. Hence, this notation ∆k(←−n ii) replaces either ∆k(←−n 11, 0) or ∆k(0,←−n 22),
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when i = 1 or i = 2, respectively. The same holds for the notation Σ(←−n ii) that replaces

Σ(←−n 11, 0) or Σ(0,←−n 22), when i = 1 or i = 2, respectively.

C. Enlargement of the Capacity Region

Given fixed parameters (−→n 11,
−→n 22, n12, n21), i ∈ {1, 2}, and j ∈ {1, 2} \ {i}, the capacity

region of a two-user LD-IC, when feedback is available only at transmitter-receiver pair i, i.e.,
←−n ii > 0 and ←−n jj = 0, is denoted by C (←−n ii) instead of C (←−n 11, 0) or C (0,←−n 22), when i = 1

or i = 2, respectively. Following this notation, Theorem 1 identifies the exact values of ←−n ii for

which the strict inclusion C (0, 0) ⊂ C (←−n ii) holds for i ∈ {1, 2}.
Theorem 1: Let (−→n 11,

−→n 22, n12, n21) ∈ N4 be a fixed tuple. Let also i ∈ {1, 2}, j ∈ {1, 2}\{i}
and ←−n ∗ii ∈ N be fixed integers, with

←−n ∗ii =





max
Ä
nji, (

−→n ii − nij)
+ä if S1,i = True

−→n jj + (−→n ii − nij)
+ if S2,i = True.

(38)

Assume that S3,i = True. Then, for all ←−n ii ∈ N, C
Å

0, 0
ã

= C
Å←−n ii

ã
. Assume that either

S1,i = True or S2,i = True. Then, for all ←−n ii 6
←−n ∗ii, C

Å
0, 0
ã

= C
Å←−n ii

ã
and for all ←−n ii >

←−n ∗ii,
C
Å

0, 0
ã
⊂ C
Å←−n ii

ã
.

Proof: The proof of Theorem 1 is presented in Appendix A.

Theorem 1 shows that under event S3,i in (30), implementing feedback in transmitter-receiver

pair i, with any ←−n ii > 0 and ←−n jj = 0, does not enlarge the capacity region. Note that when

both E8,i and ‹E8,j hold false, then both S1,i and S2,i hold false, which implies that S3,i holds

true (Corollary 1). The following remark is a consequence of this observation.

Remark 1: A necessary but not sufficient condition for enlarging the capacity region by using

feedback in transmitter-receiver pair i is: there exists at least one transmitter able to send more

information bits to receiver i than to receiver j, i.e., −→n ii > nji (Event E8,i) or nij >
−→n jj (Event‹E8,j).

Alternatively, under events S1,i in (28) and S2,i in (29), the capacity region can be enlarged

when ←−n ii >
←−n ∗ii. It is important to highlight that in the cases in which feedback enlarges the

capacity region of the two-user LD-IC-NOF, that is, in events S1,1, S2,1, S1,2 or S2,2, for all

i ∈ {1, 2} and j ∈ {1, 2} \ {i}, the following is always true :

←−n ∗ii > (−→n ii − nij)
+. (39)
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Essentially, the inequality in (39) unveils a necessary but not sufficient condition to enlarge the

capacity region using channel-output feedback. This condition is that for at least one i ∈ {1, 2},
with j ∈ {1, 2} \ {i}, transmitter i decodes a subset of the information bits sent by transmitter

j at each channel use.

Another interesting observation is that the threshold ←−n ∗ii beyond which feedback is useful is

different under event S1,i in (28) and event S2,i in (29). In general when S1,i holds true, the

enlargement of the capacity region is due to the fact that feedback allows using interference as

side information [25]. Alternatively, when S2,i in (29) holds true, the enlargement of the capacity

region occurs as a consequence of the fact that some of the bits that cannot be transmitted directly

from transmitter j to receiver j, can arrive to receiver j via an alternative path: transmitter j

- receiver i - transmitter i - receiver j. Both scenarios, interference as side information and

alternative path, are extensively discussed in [15], [16], and [17].

D. Improvement of the Individual Rate Ri by Using Feedback in Link i

Given fixed parameters (−→n 11,
−→n 22, n12, n21), and i ∈ {1, 2}, implementing channel-output

feedback in transmitter-receiver pair i increases the individual rate Ri, i.e., ∆i(
←−n ii) > 0 for

some values of ←−n ii. Theorem 2 identifies the exact values of ←−n ii for which ∆i(
←−n ii) > 0.

Theorem 2: Let (−→n 11,
−→n 22, n12, n21) ∈ N4 be a fixed tuple. Let also i ∈ {1, 2}, j ∈ {1, 2}\{i}

and ←−n †ii ∈ N be fixed integers, with

←−n †ii = max
Ä
nji, (

−→n ii − nij)
+ä
. (40)

Assume that either S2,i = True or S3,i = True. Then, for all ←−n ii ∈ N, ∆i(
←−n ii) = 0. Assume

that S1,i = True. Then, when ←−n ii 6
←−n †ii, it holds that ∆i(

←−n ii) = 0; and when ←−n ii >
←−n †ii, it

holds that ∆i(
←−n ii) > 0.

Proof: The proof of Theorem 2 is presented in Appendix B.

Theorem 2 highlights that under events S2,i in (29) and S3,i in (30), the individual rate

Ri cannot be improved by using feedback in transmitter-receiver pair i, i.e., ∆i(
←−n ii) = 0.

Alternatively, under event S1,i in (28), the individual rate Ri can be improved, i.e., ∆i

Å←−n ii

ã
> 0,

whenever ←−n ii > max
Ä
nji, (

−→n ii − nij)
+ä. Hence, given the definition of S1,i, the following

remark is relevant.
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Remark 2: A necessary but not sufficient condition for ∆i

Å←−n ii

ã
> 0 is: the number of bit-

pipes from transmitter i to receiver i is higher than the number of bit-pipes from transmitter i

to receiver j, i.e., −→n ii > nji (Event E8,i)

E. Improvement of the Individual Rate Rj by Using Feedback in Link i

Given fixed parameters (−→n 11,
−→n 22, n12, n21), i ∈ {1, 2}, and j ∈ {1, 2} \ {i}, implementing

channel-output feedback in transmitter-receiver pair i increases the individual rate Rj , i.e.,

∆j(
←−n ii) > 0 for some values of ←−n ii. Theorem 3 identifies the exact values of ←−n ii for which

∆j(
←−n ii) > 0.

Theorem 3: Let (−→n 11,
−→n 22, n12, n21) ∈ N4 be a fixed tuple. Let also i ∈ {1, 2}, j ∈ {1, 2}\{i}

and ←−n ∗ii ∈ N given in (38), be fixed integers. Assume that S3,i = True. Then, for all ←−n ii ∈ N,

∆j(
←−n ii) = 0. Assume that either S1,i = True or S2,i = True. Then, when ←−n ii 6

←−n ∗ii, it holds

that ∆j(
←−n ii) = 0; and when ←−n ii >

←−n ∗ii, it holds that ∆j(
←−n ii) > 0.

Proof: The proof of Theorem 3 follows along the same lines of the proof of Theorem 2 in

Appendix B.

Theorem 3 shows that under event S3,i in (30), implementing feedback in transmitter-receiver

pair i does not bring any improvement on the rate Rj . This is in line with the results of Theorem

1. In contrast, under events S1,i in (28) and S2,i in (29), the individual rate Rj can be improved,

i.e., ∆j(
←−n ii) > 0 for all ←−n ii >

←−n ∗ii. From the definition of events S1,i and S2,i, the following

remark holds:

Remark 3: A necessary but not sufficient condition for ∆j

Å←−n ii

ã
> 0 is: there exists at least

one transmitter able to send more information bits to receiver i than to receiver j, i.e., −→n ii > nji

(Event E8,i) or nij >
−→n jj (Event ‹E8,j).

It is important to highlight that under event S1,i, the threshold on ←−n ii for increasing the

individual rate Ri i.e., ←−n †ii, and Rj i.e., ←−n ∗ii, are identical, see Theorem 2 and Theorem 3. This

implies that in this case, the use of feedback in transmitter-receiver pair i, with←−n ii >
←−n †ii =←−n ∗ii,

benefits both transmitter-receiver pairs, i.e., ∆i(
←−n ii) > 0 and ∆j(

←−n ii) > 0. Under event S2,i,

using feedback in transmitter-receiver pair i, with ←−n ii >
←−n ∗ii, exclusively benefits transmitter-

receiver pair j, i.e., ∆i(
←−n ii) = 0 and ∆j(

←−n ii) > 0.
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F. Improvement of the Sum-Rate

Given fixed parameters (−→n 11,
−→n 22, n12, n21), and i ∈ {1, 2}, implementing channel-output

feedback in transmitter-receiver pair i increases the sum-rate, i.e., Σ(←−n ii) > 0 for some values

of ←−n ii. Theorem 4 identifies the exact values of ←−n ii for which Σ(←−n ii) > 0.

Theorem 4: Let (−→n 11,
−→n 22, n12, n21) ∈ N4 be a fixed tuple. Let also i ∈ {1, 2}, j ∈ {1, 2}\{i}

and ←−n +
ii ∈ N be fixed integers, with

←−n +
ii =





max
Ä
nji, (

−→n ii − nij)
+ä if S4 = True

−→n jj + (−→n ii − nij)
+ if S5 = True.

(41)

Assume that S4 = False and S5 = False. Then, Σ(←−n ii) = 0 for all ←−n ii ∈ N. Assume that S4 =

True or S5 = True. Then, when ←−n ii 6
←−n +

ii , it holds that Σ(←−n ii) = 0; and when ←−n ii >
←−n +

ii , it

holds that Σ(←−n ii) > 0.

Proof: The proof of Theorem 4 is presented in Appendix C.

Theorem 4 highlights a necessary but not sufficient condition for improving the sum-rate by

implementing feedback in transmitter-receiver pair i.

Remark 4: A necessary but not sufficient condition for observing Σ(←−n ii) > 0 is to satisfy

one of the following conditions: (a) both transmitter-receiver pairs are in LIR (Event E1); or

(b) both transmitter-receiver pairs are in HIR (Event E1).

Finally, it follows from Corollary 3 that when S4 or S5 holds true, with i ∈ {1, 2} and
←−n ii >

←−n +
ii , aside from the fact that Σ(←−n ii) > 0, it also holds that ∆1(

←−n ii) > 0 and ∆2(
←−n ii) > 0.

IV. EXAMPLES

Example 1: Consider an LD-IC-NOF with parameters −→n 11 = 7, −→n 22 = 7, n12 = 3, and

n21 = 5.

In Example 1, both S1,1 and S1,2 hold true. Hence, from Theorem 1, when ←−n 11 > 5 or
←−n 22 > 3, there always exists an enlargement of the capacity region. More specifically, it follows

from Theorem 2 and Theorem 3 that using feedback in transmitter-receiver pair 1, with←−n 11 > 5

or using feedback in transmitter-receiver pair 2, with ←−n 22 > 3, both individual rates can be

simultaneously improved, i.e., ∆1(
←−n ii) > 0 and ∆2(

←−n ii) > 0 with i = 1 or i = 2 respectively.

Alternatively, note that S4 holds true. Hence, it follows from Theorem 4 that using feedback

in transmitter-receiver pair 1, with ←−n 11 > 5 or using feedback in transmitter-receiver pair 2,

June 20, 2017 DRAFT



16

Fig. 3. Capacity regions C(0, 0) (thick red line) and C(6, 0) (thin blue line), with −→n 11 = 7, −→n 22 = 7, n12 = 3, n21 = 5.

with ←−n 22 > 3, improves the sum-rate, i.e., Σ(←−n ii) > 0 with i = 1 or i = 2 respectively. These

conclusions are observed in Figure 3, for the case ←−n 11 = 6 and ←−n 22 = 0, where the capacity

regions C(0, 0) (thick red line) and C(6, 0) (thin blue line) are plotted. Note that, when←−n 11 = 6,

there always exist a rate pair (R′1, R
′
2) ∈ C (0, 0) and a rate pair (R1, R2) ∈ C(6, 0) \ C(0, 0)

such that R′1 < R1 and R′2 = R2 (Theorem 2). Simultaneously, there always exist a rate pair

(R′1, R
′
2) ∈ C (0, 0) and a rate pair (R1, R2) ∈ C(6, 0) \ C(0, 0) such that R′2 < R2 and R′1 = R1

(Theorem 3). Finally, note that for all rate pairs (R′1, R
′
2) ∈ C (0, 0) there always exists a rate

pair (R1, R2) ∈ C(6, 0), for which R1 +R2 > R′1 +R′2 (Theorem 4).

Example 2: Consider an LD-IC-NOF with parameters −→n 11 = 7, −→n 22 = 8, n12 = 6, and

n21 = 5.

In Example 2, the events S1,1 and S1,2 hold true; and the events S4 and S5 hold false. Hence, it

follows from Theorem 4 that using feedback in either transmitter-receiver pair does not improve

the sum-rate, i.e., for all i ∈ {1, 2} and for all ←−n ii > 0, Σ(←−n ii) = 0. These conclusions are

observed in Figure 4, for the case ←−n 11 = 0 and ←−n 22 = 7, where the capacity regions C(0, 0)

(thick red line) and C(0, 7) (thin blue line) are plotted. From Example 2, it becomes evident that

when S1,1 and S1,2 hold true, S4 and S5 do not necessarily hold true. That is, the improvements

on the individual rates, despite that they can be observed simultaneously, are not enough to
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Fig. 4. Capacity regions C(0, 0) (thick red line) and C(0, 7) (thin blue line), with −→n 11 = 7, −→n 22 = 8, n12 = 6, n21 = 5.

improve the sum-rate beyond what is already achievable without feedback.

Example 3: Consider an LD-IC-NOF with parameters −→n 11 = 5, −→n 22 = 1, n12 = 3, and

n21 = 4.

In Example 3, both S2,1 in (29) and S3,2 in (30) hold true. Hence, it follows from Theorem 1

that the capacity region can be enlarged by using feedback in transmitter-receiver pair 1 when
←−n 11 > 3, whereas using feedback in transmitter-receiver pair 2 is useless. More specifically,

it follows from Theorem 2 and Theorem 3 that using feedback in transmitter-receiver pair 1

does not improve the individual rate R1 but R2, i.e., ∆1(
←−n 11) = 0 and ∆2(

←−n 11) > 0. Note

also that S4 and S5 hold false. Hence, it follows from Theorem 4 that using feedback in either

transmitter-receiver pair does not improve the sum-rate, i.e., Σ(←−n 11) = 0 and Σ(←−n 22) = 0.

These conclusions are observed in Figure 5, for the case ←−n 11 = 4 and ←−n 22 = 0, where the

capacity regions C(0, 0) (thick red line) and C(4, 0) (thin blue line) are plotted.

V. IMPLICATIONS ON THE GAUSSIAN INTERFERENCE CHANNEL

Given a fixed tuple
(−−→
SNR1,

−−→
SNR2, INR12, INR21

)
, let R(

←−−
SNR1,

←−−
SNR2) be the achievable

region of the G-IC-NOF described by Theorem 2 in [17] with parameters
←−−
SNR1 and

←−−
SNR2;

let R(
←−−
SNR1,

←−−
SNR2) be the converse region of the G-IC-NOF described by Theorem 3 in [17]
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Fig. 5. Capacity regions C(0, 0) (thick red line) and C(4, 0) (thin blue line), with −→n 11 = 5, −→n 22 = 1, n12 = 3, n21 = 4.

with parameters
←−−
SNR1 and

←−−
SNR2; and let also C(←−−SNR1,

←−−
SNR2) be the capacity region of the

G-IC-NOF with parameters
←−−
SNR1 and

←−−
SNR2.

These regions satisfy the following inclusions:

R(
←−−
SNR1,

←−−
SNR2) ⊆ C(

←−−
SNR1,

←−−
SNR2) ⊆ R(

←−−
SNR1,

←−−
SNR2). (42)

A. Improvement Metrics

In order to quantify the benefits of channel-output feedback in enlarging the achievable region

R(
←−−
SNR1,

←−−
SNR2) or the converse region R(

←−−
SNR1,

←−−
SNR2), consider the following improvement

metrics, which are similar to those defined in Sec. III-B for the LD-IC-NOF. The improvement

metrics on the individual rates are defined as

∆A
1 (
←−−
SNR1,

←−−
SNR2)= max

0<R2<R∗2



 sup

(R1,R2)∈R(
←−−
SNR1,

←−−
SNR2)

{R1} − sup
(R†1,R2)∈R(0,0)

{R†1}


 , (43)

∆A
2 (
←−−
SNR1,

←−−
SNR2)= max

0<R1<R∗1



 sup

(R1,R2)∈R(
←−−
SNR1,

←−−
SNR2)

{R2} − sup
(R1,R

†
2)∈R(0,0)

{R†2}


 , (44)

∆C
1 (
←−−
SNR1,

←−−
SNR2)= max

0<R2<R†2



 sup

(R1,R2)∈R(
←−−
SNR1,

←−−
SNR2)

{R1} − sup
(R†1,R2)∈R(0,0)

{R†1}


 , and (45)
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∆C
2 (
←−−
SNR1,

←−−
SNR2)= max

0<R1<R†1



 sup

(R1,R2)∈R(
←−−
SNR1,

←−−
SNR2)

{R2} − sup
(R1,R

†
2)∈R(0,0)

{R†2}


 , (46)

with

R∗1= sup
(r1,r2)∈R(0,0)

r1, (47)

R∗2= sup
(r1,r2)∈R(0,0)

r2, (48)

R†1= sup
(r1,r2)∈R(0,0)

r1, and (49)

R†2= sup
(r1,r2)∈R(0,0)

r2. (50)

Alternatively, the maximum improvements of the sum-rate ΣA(
←−−
SNR1,

←−−
SNR2) and ΣC(

←−−
SNR1,

←−−
SNR2)

with respect to the case without feedback are

ΣA(
←−−
SNR1,

←−−
SNR2)= sup

(R1,R2)∈R(
←−−
SNR1,

←−−
SNR2)



R1 +R2



− sup

(R†1,R
†
2)∈R(0,0)



R

†
1 +R†2



, and (51)

ΣC(
←−−
SNR1,

←−−
SNR2)= sup

(R1,R2)∈R(
←−−
SNR1,

←−−
SNR2)



R1 +R2



− sup

(R†1,R
†
2)∈R(0,0)



R

†
1 +R†2



. (52)

B. Approximate Thresholds on the Feedback SNRs

In Sec. II-C, the connections between the LD-IC-NOF and the G-IC-NOF were discussed.

Using these connections, a G-IC with fixed parameters
(−−→
SNR1,

−−→
SNR2, INR12, INR21

)
is ap-

proximated by an LD-IC with parameters −→n 11 = b1
2

log2(
−−→
SNR1)c, −→n 22 = b1

2
log2(

−−→
SNR2)c,

−→n 12 = b1
2

log2(
−−→
INR21)c and −→n 21 = b1

2
log2(

−−→
INR21)c. From this observation, the results from

Theorem 1 - Theorem 4 can used to determine the feedback SNR thresholds beyond which either

an individual rate or the sum-rate is improved in the original G-IC-NOF. The procedure consists

on using the equalities ←−n ii = b1
2

log2

(←−−
SNRi

)
c, with i ∈ {1, 2}. Hence, the corresponding

thresholds in the G-IC can be approximated by:

←−−
SNR∗i =22←−n ∗ii (53a)
←−−
SNR†i =22←−n †ii and (53b)
←−−
SNR+

i =22←−n+
ii . (53c)

When the corresponding LD-IC-NOF is such that its capacity region can be improved when
←−n ii >

←−n ∗ii (Theorem 1), for a given i ∈ {1, 2}, it is expected that either the achievability

June 20, 2017 DRAFT



20

or converse regions of the original G-IC-NOF become larger when
←−−
SNRi >

←−−
SNR∗i . Similarly,

when the corresponding LD-IC-NOF is such that ∆i(
←−n ii) > 0 or ∆i(

←−n jj) > 0, it is expected

to observe an improvement on the individual rate Ri by either using feedback in transmitter-

receiver pair i, with
←−−
SNRi >

←−−
SNR†i or by using feedback in transmitter-receiver pair j, with

←−−
SNRj >

←−−
SNR∗j . In the case of the sum-rate, when the corresponding LD-IC-NOF is such that

Σ(←−n ii) > 0 using feedback in transmitter-receiver pair i, with ←−n ii >
←−n +

ii , (Theorem 4), it is

expected to observe an improvement on the sum-rate by using feedback in transmitter-receiver

pair i, with
←−−
SNRi >

←−−
SNR+

i . Finally, when no improvement in a given metric is observed in

the LD-IC-NOF, i.e., ∆1(
←−n 11) = 0, ∆1(

←−n 22) = 0, ∆2(
←−n 11) = 0, ∆2(

←−n 22) = 0, Σ(←−n 11) =

0, or Σ(←−n 22) = 0, only a negligible improvement (if any) is observed in the corresponding

metric of the G-IC-NOF. For instance, when ∆1(
←−n 11) = 0, it is expected that ∆C

1 (
←−−
SNR1, 0) <

ε and ∆A
1 (
←−−
SNR1, 0) < ε, with ε > 0 small. Similarly, when ∆2(

←−n 11) = 0, it is expected

that ∆C
2 (
←−−
SNR1, 0) < ε and ∆A

2 (
←−−
SNR1, 0) < ε. Finally, when Σ(←−n 11) = 0, it is expected that

ΣC(
←−−
SNR1, 0) < ε and ΣA(

←−−
SNR1, 0) < ε.

C. Examples

The following examples highlight the relevance of the approximations in (53).

Example 4: Consider a G-IC with parameters
−−→
SNR1 = 44dB,

−−→
SNR2 = 44dB, INR12 = 20dB,

and INR21 = 33dB .

The linear deterministic approximation to the G-IC in Example 4 is the one presented in

Example 1. Hence, ←−n ∗11 = ←−n †11 = ←−n +
11 = 5 and ←−n ∗22 = ←−n †22 = ←−n +

22 = 3. This implies that
←−−
SNR∗1 =

←−−
SNR†1 =

←−−
SNR+

1 = 30dB and
←−−
SNR∗2 =

←−−
SNR†2 =

←−−
SNR+

2 = 18dB.

Figure 6 shows that significant improvements on the metrics ∆A
i (
←−−
SNR1,

←−−
SNR2), ∆C

i (
←−−
SNR1,

←−−
SNR2), ΣA(

←−−
SNR1,

←−−
SNR2) and ΣC(

←−−
SNR1,

←−−
SNR2) are obtained when the feedback SNRs are

beyond the corresponding thresholds. More importantly, negligible effects are observed when
←−−
SNR1 <

←−−
SNR∗1 and

←−−
SNR2 <

←−−
SNR∗2.

Example 5: Consider a G-IC with parameters
−−→
SNR1 = 33dB,

−−→
SNR2 = 9dB, INR12 = 20dB,

and INR21 = 27dB.

The linear deterministic approximation to the G-IC in Example 5 is the one presented in

Example 3. Hence, ←−n ∗11 = 3, which implies that
←−−
SNR∗1 = 18dB. It follows from the LD-IC that

using feedback in transmitter-receiver pair 1 exclusively increases the individual rate R2. This is
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Fig. 6. Improvement metrics ∆A
i , ∆C

i , ΣA, and ΣC as functions of
←−−
SNR1 and

←−−
SNR2, with i ∈ {1, 2}, for Example 4.

observed in Figure 7c. Note that the improvement in the individual rate R2 for all
←−−
SNR1 <

←−−
SNR∗1

is negligible. Significant improvement is observed only beyond the threshold
←−−
SNR∗1.
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Fig. 7. Improvement metrics ∆A
i , ∆C

i , ΣA, and ΣC as functions of
←−−
SNR1 and

←−−
SNR2, with i ∈ {1, 2}, for Example 5.

Note also that using feedback in either transmitter-receiver pair does not improve the rate R1 in

the LD-IC-NOF, i.e., ∆1(
←−n 11) = ∆1(

←−n 22) = 0. This is also verified in the G-IC-NOF by Figure

7a, Figure 7b, and Figure 7d, where ∆A
1

(
−100dB,

←−−
SNR2

)
< 0.15 and ∆C

1

(
−100dB,

←−−
SNR2

)
<

0.1.
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Finally, note that using feedback in either transmitter-receiver pair does not increase the sum-

rate in the LD-IC-NOF, i.e., Σ(←−n 11) = Σ(←−n 22) = 0. This is also verified in the G-IC-NOF

by Figure 7e and Figure 7f, where ΣA
(←−−
SNR1,−100dB

)
< 0.15, ΣC

(←−−
SNR1,−100dB

)
< 0.05,

ΣA
(
−100dB,

←−−
SNR2

)
< 0.15, and ΣC

(
−100dB,

←−−
SNR2

)
< 0.05.
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VII. CONCLUSIONS

In this paper, for any 4-tuple (−→n 11,
−→n 22, n12, n21) ∈ N4, the exact values on the feedback

parameters ←−n 11 and ←−n 22 of the two-user LD-IC-NOF beyond which the capacity region can

be enlarged are characterized. That is, the exact values of ←−n 11 (resp. ←−n 22) for which C(0, 0) ⊂
C(←−n 11, 0)

Ä
resp. C(0, 0) ⊂ C(0,←−n 22)

ä
holds with strict inclusion. Using these results from the

LD approximation, the SNRs in the feedback links beyond which feedback plays a significant

role in terms of increasing the individual rates or the sum-rate in the G-IC are identified. The

relevance of this work lies on the fact that it allows identifying a number of scenarios in any G-

IC for which one of the following statements is true: (a) Feedback does not enlarge the capacity

region; (b) Feedback enlarges the capacity region and the sum-rate is higher than the largest

sum-rate without feedback; and (c) Feedback enlarges the capacity region but no significant

improvement is observed in the sum-rate.

APPENDIX A

PROOF OF THEOREM 1: ENLARGEMENT OF THE CAPACITY REGION BY USING FEEDBACK IN

ONE TRANSMITTER-RECEIVER PAIR

The proof of Theorem 1 is obtained by comparing C(←−n 11, 0)
Ä
resp. C(0,←−n 22)

ä
and C(0, 0),

with fixed parameters −→n 11, −→n 22, n12, and n21. More specifically, for each tuple
Ä−→n 11, −→n 22, n12,

n21

ä
, the exact value ←−n ∗11 (resp ←−n ∗22) for which any ←−n 11 >

←−n ∗11 (resp ←−n 22 >
←−n ∗22) ensures

C(0, 0) ⊂ C(←−n 11, 0) (resp. C(0, 0) ⊂ C(0,←−n 22)) is calculated. This procedure is tedious and

repetitive, and thus, in this appendix only one combination of interference regimes is studied,

e.g., VWIR - VWIR.
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Proof:

Consider that both transmitter-receiver pairs are in VWIR, that is,

α1 =
n12
−→n 11

6
1

2
and α2 =

n21
−→n 22

6
1

2
. (54)

Under conditions (54), it follows from Theorem 1 in [17] that C(0, 0) is the set of non-negative

rate pairs (R1, R2) that satisfy

R16
−→n 11 , θ1, (55a)

R26
−→n 22 , θ2, (55b)

R1 +R26min (max (−→n 22, n12) +−→n 11 − n12,max (−→n 11, n21) +−→n 22 − n21) , θ3, (55c)

R1 +R26max (−→n 11 − n12, n21) + max (−→n 22 − n21, n12) , θ4, (55d)

2R1 +R26max (−→n 11, n21) +−→n 11 − n12 + max (−→n 22 − n21, n12) , θ5, (55e)

R1 + 2R26max (−→n 22, n12) +−→n 22 − n21 + max (n21,
−→n 11 − n12) , θ6. (55f)

Note that for all (−→n 11,
−→n 22, n12, n21,

←−n 22) ∈ N5 and ←−n 11 > max (−→n 11, n12), it follows that

C(←−n 11,
←−n 22) = C(max(−→n 11, n12),

←−n 22). Hence, in the following, the analysis is restricted to the

following condition:
←−n 11 6 max (−→n 11, n12) . (56)

Under conditions (54) and (56), it follows from Theorem 1 in [17] that C(←−n 11, 0) is the set

of non-negative rate pairs (R1, R2) that satisfy

R16
−→n 11, (57a)

R26
−→n 22, (57b)

R1 +R26min (max (−→n 22, n12) +−→n 11 − n12,max (−→n 11, n21) +−→n 22 − n21) , (57c)

R1 +R26max (−→n 11 − n12, n21,
←−n 11) + max (−→n 22 − n21, n12) , θ7, (57d)

2R1 +R26max (−→n 11, n21) +−→n 11 − n12 + max (−→n 22 − n21, n12) , (57e)

R1 + 2R26max (−→n 22, n12) +−→n 22 − n21 + max (−→n 11 − n12, n21,
←−n 11) , θ8. (57f)

When comparing C(0, 0) and C(←−n 11, 0), note that (55a), (55b), (55c), and (55e) are equivalent

to (57a), (57b), (57c), and (57e), respectively. Under these observations, the region C(←−n 11, 0) is
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greater than the region C(0, 0) if at least one of the following conditions is true:

min(θ3, θ4, θ1 + θ2, θ5, θ6)<θ7<min(θ3, θ1 + θ2, θ5, θ8), (58a)

min(θ6, θ1 + 2θ2, θ2 + θ3, θ4 + θ2)<θ8<min (θ1 + 2θ2, θ2 + θ3, θ2 + θ7) . (58b)

Condition (58a) implies that the active sum-rate bound in C(←−n 11, 0) is greater than the active

sum-rate bound in C(0, 0). Condition (58b) implies that the active weighted sum-rate bound on

R1+2R2 in C(←−n 11, 0) is greater than the active weighted sum-rate bound on R1+2R2 in C(0, 0).

To simplify the inequalities containing the operator max(·, ·) in (57) and (55), the following

4 cases are identified:

Case 1 :−→n 11 − n12 < n21 and −→n 22 − n21 < n12; (59)

Case 2 :−→n 11 − n12 < n21 and −→n 22 − n21 > n12; (60)

Case 3: −→n 11 − n12 >21 and −→n 22 − n21 < n12; and (61)

Case 4: −→n 11 − n12 > n21 and −→n 22 − n21 > n12. (62)

Case 1: Under assumptions (54) and (59), this case is not possible.

Case 2: Under assumptions (54) and (60), this case is possible.

Plugging (60) into (57) yields:

R1 +R26min (−→n 22 +−→n 11 − n12,max (−→n 11, n21) +−→n 22 − n21) , (63a)

R1 +R26max (n21,
←−n 11) +−→n 22 − n21, (63b)

R1 + 2R262−→n 22 − n21 + max (n21,
←−n 11) . (63c)

Plugging (60) into (55) yields:

R1 +R26
−→n 22, (64a)

R1 + 2R262−→n 22. (64b)

To simplify the inequalities containing the operator max(·, ·) in (63), the following 2 cases are

identified:

Case 2a :−→n 11 > n21; and (65)

Case 2b :−→n 11 6 n21. (66)
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Case 2a: Plugging (65) into (63) yields:

R1 +R26
−→n 11 +−→n 22 − n21, (67a)

R1 +R26max (n21,
←−n 11) +−→n 22 − n21, (67b)

R1 + 2R262−→n 22 − n21 + max (n21,
←−n 11) . (67c)

Comparing inequalities (67a) and (67b) with inequality (64a), it can be verified that min
Å−→n 11 +

−→n 22− n21, max
Ä
n21, ←−n 11

ä
+−→n 22− n21

ã
> −→n 22, i.e., condition (58a) holds, when ←−n 11 > n21.

Comparing inequalities (67c) and (64b), it can be verified that 2−→n 22 − n21 + max (n21,
←−n 11) >

2−→n 22, i.e., condition (58b) holds, when ←−n 11 > n21. Therefore, ←−n ∗11 = n21 under assumptions

(54), (56), (60), and (65).

Case 2b: Plugging (66) into (63) yields:

R1 +R26
−→n 22, (68a)

R1 +R26max (n21,
←−n 11) +−→n 22 − n21, (68b)

R1 + 2R262−→n 22 − n21 + max (n21,
←−n 11) . (68c)

Comparing inequalities (68a) and (68b) with inequality (64a), it can be verified that min
Å−→n 22,

max
Ä
n21,←−n 11

ä
+−→n 22−n21

ã
= −→n 22, i.e., condition (58a) does not hold, for all←−n 11 ∈ N. Com-

paring inequalities (68c) and (64b) it can be verified that 2−→n 22−n21 + max (n21,
←−n 11) > 2−→n 22,

when ←−n 11 > n21, which implies that ←−n 11 > max (−→n 11, n12). However, under the assumptions

(54), (56), (60), and (66), the bounds (64b) and (68c) are not active. Hence, condition (58b) does

not hold. Therefore, for all ←−n 11 ∈ N, the capacity region cannot be enlarged under assumptions

(54), (56), (60), and (66).

Case 3: Under assumptions (54) and (61), this case is possible.

Plugging (61) into (57) yields:

R1 +R26min (max (−→n 22, n12) +−→n 11 − n12,
−→n 11 +−→n 22 − n21) , (69a)

R1 +R26max (−→n 11 − n12,
←−n 11) + n12, (69b)

R1 + 2R26max (−→n 22, n12) +−→n 22 − n21 + max (−→n 11 − n12,
←−n 11) . (69c)
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Plugging (61) into (55) yields:

R1 +R26
−→n 11, (70a)

R1 + 2R26max (−→n 22, n12) +−→n 22 − n21 +−→n 11 − n12. (70b)

To simplify the inequalities containing the operator max(·, ·) in (69) and (70), the following 2

cases are identified:

Case 3a :−→n 22 > n12; and (71)

Case 3b :−→n 22 6 n12. (72)

Case 3a: Plugging (71) into (69) yields:

R1 +R26
−→n 22 +−→n 11 − n12, (73a)

R1 +R26max (−→n 11 − n12,
←−n 11) + n12, (73b)

R1 + 2R262−→n 22 − n21 + max (−→n 11 − n12,
←−n 11) . (73c)

Plugging (71) into (70) yields:

R1 +R26
−→n 11, (74a)

R1 + 2R262−→n 22 − n21 +−→n 11 − n12. (74b)

Comparing inequalities (73a) and (73b) with inequality (74a), it can be verified that min
Å−→n 22 +

−→n 11−n12, max
Ä−→n 11−n12,←−n 11

ä
+n12

ã
> −→n 11, i.e., condition (58a) holds, when←−n 11 >

−→n 11−
n12. Comparing inequalities (73c) and (74b), it can be verified that 2−→n 22−n21+max

Ä−→n 11−n12,
←−n 11

ä
> 2−→n 22−n21 +−→n 11−n12, i.e., condition (58b) holds, when←−n 11 >

−→n 11−n12. Therefore,
←−n ∗11 = −→n 11 − n12 under assumptions (54), (56), (61), and (71).

Case 3b: Plugging (72) into (69) yields:

R1 +R26
−→n 11, (75a)

R1 +R26max (−→n 11 − n12,
←−n 11) + n12, (75b)

R1 + 2R26n12 +−→n 22 − n21 + max (−→n 11 − n12,
←−n 11) . (75c)

Plugging (71) into (70) yields:

R1 +R26
−→n 11, (76a)

R1 + 2R26
−→n 22 − n21 +−→n 11. (76b)
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Comparing inequalities (75a) and (75b) with inequality (76a), it can be verified that min
Å−→n 11,

max
Ä−→n 11 − n12, ←−n 11

ä
+ n12

ã
= −→n 11, i.e., condition (58a) does not hold, for all ←−n 11 ∈ N.

Comparing inequalities (75c) and (76b), it can be verified that n12+−→n 22−n21+max
Ä−→n 11−n12,

←−n 11

ä
> −→n 22 − n21 + −→n 11, i.e., condition (58b) holds, when ←−n 11 >

−→n 11 − n12. Therefore,
←−n ∗11 = −→n 11 − n12 under conditions (54), (56), (61), and (72).

Case 4: Under conditions (54) and (62), this case is possible.

Plugging (62) into (57) yields:

R1 +R26min (−→n 22 +−→n 11 − n12,
−→n 11 +−→n 22 − n21) , (77a)

R1 +R26max (−→n 11 − n12,
←−n 11) +−→n 22 − n21, (77b)

R1 + 2R262−→n 22 − n21 + max (−→n 11 − n12,
←−n 11) . (77c)

Plugging (62) into (55) yields:

R1 +R26
−→n 11 − n12 +−→n 22 − n21, (78a)

R1 + 2R262−→n 22 − n21 +−→n 11 − n12. (78b)

Comparing inequalities (77a) and (77b) with inequality (78a), it can be verified that min
Å

min
Ä−→n 22

+−→n 11−n12, −→n 11 +−→n 22−n21

ä
, max

Ä−→n 11−n12, ←−n 11

ä
+−→n 22−n21

ã
> −→n 11−n12 +−→n 22−n21,

i.e., condition (58a) holds, when ←−n 11 >
−→n 11 − n12. Comparing inequalities (77c) and (78b),

it can be verified that: 2−→n 22 − n21 + max
Ä−→n 11 − n12, ←−n 11

ä
> 2−→n 22 − n21 + −→n 11 − n12, i.e.,

condition (58b) holds, when ←−n 11 >
−→n 11 − n12.

Therefore, ←−n ∗11 = −→n 11 − n12 under conditions (54), (56), and (62).

From all the observations above, when both transmitter-receiver pairs are in VWIR (event

E1 is True), it follows that when ←−n 11 >
←−n ∗11 and −→n 11 > n21 (event E8,1 is True) with with

←−n ∗11 = max (−→n 11 − n12, n21), then C(0, 0) ⊂ C(←−n 11, 0). Otherwise C(0, 0) = C(←−n 11, 0). Note

that when events E1 and E8,1 hold simultaneously true, then the event S1,1 is true, which verifies

the statement of Theorem 1. The same procedure can be applied for all the other combinations

of interference regimes. This completes the proof.
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APPENDIX B

PROOF OF THEOREM 2: IMPROVEMENT OF THE INDIVIDUAL RATE Ri BY USING FEEDBACK

IN LINK i

The proof of Theorem 2 is obtained by comparing C(←−n 11, 0)
Ä
resp. C(0,←−n 22)

ä
and C(0, 0),

for all possible parameters −→n 11, −→n 22, n12, n21, and ←−n 11 (resp. −→n 11, −→n 22, n12, n21, and ←−n 22).

More specifically, for each tuple
Ä−→n 11, −→n 22, n12, n21

ä
, the exact value ←−n †11 (resp ←−n †22) for

which any ←−n 11 >
←−n †11 (resp ←−n 22 >

←−n †22) ensures an improvement on R1 (resp. R2) , i.e.,

∆1(
←−n 11, 0) > 0 (resp. ∆2(

−→n 11, −→n 22, n12, n21, 0, ←−n 22) > 0), is calculated. This procedure is

tedious and repetitive, and thus, in this appendix only one combination of interference regimes

is studied, e.g., VWIR - VWIR.

Proof:

Consider that both transmitter-receiver pairs are in VWIR, i.e., conditions (54) hold. Under

these conditions, the capacity regions C(0, 0) and C(←−n 11, 0) are given by (55) and (57), res-

pectively. When comparing C(0, 0) and C(←−n 11, 0), note that (55a), (55b), (55c), and (55e) are

equivalent to (57a), (57b), (57c), and (57e), respectively. In this case any improvement on R1 is

produced by an improvement on R1 +R2 (condition (58a)) or 2R1 +R2 (condition (58a)), and

thus, the proof of Theorem 2 in these particular interference regimes follows exactly the same

steps in Theorem 1. This completes the proof.

APPENDIX C

PROOF OF THEOREM 4: IMPROVEMENT OF THE SUM-RATE CAPACITY BY USING FEEDBACK

IN ONE TRANSMITTER-RECEIVER PAIR

The proof of Theorem 4 is obtained by comparing C(←−n 11, 0)
Ä
resp. C(0,←−n 22)

ä
and C(0, 0),

for all possible parameters −→n 11, −→n 22, n12, n21, and ←−n 11 (resp. −→n 11, −→n 22, n12, n21, and ←−n 22).

More specifically, for each tuple
Ä−→n 11, −→n 22, n12, n21

ä
, the exact value←−n +

11 (resp←−n +
22) for which

any ←−n 11 >
←−n +

11 (resp ←−n 22 >
←−n +

22) ensures an improvement on R1 + R2, i.e., Σ(←−n 11, 0) > 0

(resp. Σ(0,←−n 22) > 0), is calculated. This procedure is tedious and repetitive, and thus, in this

appendix only one combination of interference regimes is studied, e.g., VWIR - VWIR.

Proof:

Consider that both transmitter-receiver pairs are in VWIR, i.e., conditions (54) hold. Under

these conditions, the capacity regions C(0, 0) and C(←−n 11, 0) are given by (55) and (57), res-
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pectively. When comparing C(0, 0) and C(←−n 11, 0), note that (55a), (55b), (55c), and (55e) are

equivalent to (57a), (57b), (57c), and (57e), respectively.

In this case, the proof is focused on any improvement on R1 +R2 (condition (58a)), and thus,

the proof of Theorem 4 in these particular interference regimes follows exactly the same steps

in Theorem 1.

From the analysis presented in Appendix A, it follows that:

Case 2a: condition (58a) holds true, when ←−n 11 > n21 under assumptions (54), (56), (60), and

(65).

Case 2b: condition (58a) does not hold true, under assumptions (54), (60), and (66).

Case 3a: condition (58a) holds true, when ←−n 11 >
−→n 11−n12 under assumptions (54), (56), (61),

and (71).

Case 3b: condition (58a) does not hold true, when ←−n 11 >
−→n 11 − n12 under assumptions (54),

(56), (61), and (72).

Case 4: condition (58a) holds true, when ←−n 11 >
−→n 11 − n12 under assumptions (54), (56), and

(62).

From all the observations above, when both transmitter-receiver pairs are in VWIR (event E1

is True), it follows that when ←−n 11 >
←−n +

11,
−→n 11 > n21 (event E8,1 is True), −→n 22 > n12 (event

E8,2 is True), −→n 11+−→n 22 > n12+2n21 (event E10,1 is True), and −→n 11+−→n 22 > n21+2n12 (event

E10,2 is True) with←−n +
11 = max (−→n 11 − n12, n21), then Σ(←−n 11, 0) > 0. Otherwise Σ(←−n 11, 0) = 0.

Note that when events E1, E8,1, E8,2, E10,1, and E10,2 hold simultaneously true, then the event

S4 is true, which verifies the statement of Theorem 4. The same procedure can be applied for

all the other combinations of interference regimes. This completes the proof.
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