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When Does Output Feedback Enlarge the

Capacity of the Interference Channel?

Victor Quintero, Samir M. Perlaza, Iñaki Esnaola, Jean-Marie Gorce

Abstract

In this paper, the impact of additive noise over the feedback links in the two-user interference

channel is studied using linear deterministic approximations. More specifically, only one transmitter-

receiver pair is let to use feedback. Under this condition, the exact value of the signal to noise ratio

(SNR) on the feedback link beyond which the capacity region of the linear deterministic approximation

is enlarged is fully described in terms of the forward SNRs and interference to noise ratios (INRs). In

general, three scenarios can be observed depending on the exact values of the forward SNRs and INRs.

In the first case, either individual information transmission rate can be improved; in the second case,

using feedback from receiver i to transmitter i exclusively increases the individual rate of transmitter-

receiver pair j, with i ∈ {1, 2} and j ∈ {1, 2} \ {i}. In the third case, implementing feedback turns out

to be useless for enlarging the capacity region. The same analysis is performed for the sum-rate and

the scenarios in which the sum-rate can be improved, as well as the corresponding minimum feedback

SNR, are fully described.

Index Terms

Linear Deterministic Interference Channel, Noisy Channel-Output Feedback, Capacity Region.
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I. INTRODUCTION

Channel-output feedback is an interference management technique that significantly increases

the number of generalized degrees of freedom (GDoF) [2] for the two-user Gaussian interference

channel (IC) in most of the interference regimes [3]. Essentially, in the very strong interference

regime, the GDoF gain provided by perfect-channel output feedback can be arbitrarily large

when the interference to noise ratios (INRs) and signal to noise ratios (SNRs) grow to infinity

at a constant rate α = log INR
log SNR

greater than 2. One of the reasons why feedback provides such

a surprising benefit stems from the fact that it uses interference to create alternative paths to

the existing point-to-point paths. For instance, in the two-user IC, feedback creates a path from

transmitter 1 (resp. transmitter 2) to receiver 1 (resp. receiver 2) in which symbols that are

received at receiver 2 (resp. receiver 1) are fed back to transmitter 2 (resp. transmitter 1), which

decodes the messages and retransmits them to receiver 1 (resp. receiver 2). The GDoF gain due to

feedback in the IC depends on the topology of the network and the number of transmitter-receiver

pairs in the network. For instance, in the symmetric K-user cyclic Z-interference channel, the

GDoF gain does not increase with K [4]. In particular, in the very strong interference regime,

the GDoF gain is shown to be monotonically decreasing with K. Alternatively, in the fully

connected symmetric K-user IC with perfect feedback, the number of GDoF per user is shown

to be identical to the one in the two-user case, with an exception in a particular singularity,

and totally independent of the exact number of transmitter-receiver pairs [5]. It is important to

highlight that the network topology, the number of transmitter-receiver pairs and the interference

regime are not the only parameters determining the effect of feedback. Indeed, the capacity of

the feedback links turns out to be another relevant factor [6]. As shown later in this paper, in the

case in which one transmitter-receiver pair is in a high interference regime (the interfering signal

is stronger than the intended signal) and the other is in a low interference regime (the interfering

signal is weaker than the intended signal), the use of feedback in the former does not enlarge

the capacity region, even in the case of perfect output feedback. Conversely, using feedback in

the latter might enlarge the capacity region depending on the SNR of the feedback link. In the

following the feedback links are assumed to be rate limited due to the action of additive noise.

The exact values of the feedback SNRs beyond which the capacity region is enlarged depend on

all the other channel parameters: two forward SNRs and two forward INRs. In [7], the capacity
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region of the two-user Gaussian IC (GIC) with noisy channel output feedback is approximated

to within a constant number of bits for the symmetric case. These results are generalized in [8]

for non-symmetric cases. However, from the available descriptions of the capacity regions with

and without feedback, identifying whether or not the existence of a feedback link with a given

SNR enlarges the capacity region is not a trivial task.

An alternative for dealing with the challenges described above is to study the GIC via its

linear deterministic IC (LD-IC) approximation [9], for which the capacity region is perfectly

known [8], [10]. The two-user LD-IC with noisy channel output feedback (LD-IC-NOF) is

fully described by six parameters: (−→n 11,
−→n 22, n12, n21,

←−n 11,
←−n 22) ∈ N6. There exists a mapping

between the parameters describing the two-user LD-IC and the parameters describing the GIC.

More specifically, there are two forward SNRs (
−−→
SNRi > 1); two forward INRs (INRij > 1);

and two backward SNRs (
←−−
SNRi > 1), with i ∈ {1, 2} and j ∈ {1, 2} \ {i}. In the LD-IC,

the parameters of the GIC are mapped into the number of bit-pipes between each transmitter

and its corresponding intended receiver, i.e., −→n ii = b1
2

log2(
−−→
SNRi)c; between transmitter j

and receiver i i.e., nij = b1
2

log2(INRij)c; and between each receiver and its corresponding

transmitter, i.e., ←−n ii = b1
2

log2(
←−−
SNRi)c. An LD-IC without feedback corresponds to the case in

which ←−n 11 =←−n 22 = 0 and the capacity region is denoted by C(−→n 11,
−→n 22, n12, n21, 0, 0). In the

case in which feedback is available at both transmitters, ←−n 11 > 0 and ←−n 22 > 0, the capacity is

denoted by C(−→n 11,
−→n 22, n12, n21,

←−n 11,
←−n 22).

This paper presents the exact conditions on ←−n 11 (resp. ←−n 22) for observing an improvement

in the capacity region C(−→n 11,
−→n 22, n12, n21,

←−n 11, 0) (resp. C(−→n 11,
−→n 22, n12, n21, 0,

←−n 22)) when

compared to C(−→n 11,
−→n 22, n12, n21, 0, 0), for any 4-tuple (−→n 11, −→n 22, n12, n21) ∈ N4. More

specifically, it is shown that there exists a threshold for the number of bit-pipes in the feedback

link of transmitter-receiver pair 1 (resp. 2), beyond which the capacity region of the two-user

LD-IC-NOF can be enlarged, i.e., C(−→n 11,
−→n 22, n12, n21, 0, 0) ⊂ C(−→n 11, −→n 22, n12, n21, ←−n 11 ,

0) (resp. C(−→n 11,
−→n 22, n12, n21, 0, 0) ⊂ C(−→n 11,

−→n 22, n12, n21, 0,
←−n 22)), with strict inclusion. The

exact conditions on ←−n 11 (resp.←−n 22) to observe an improvement on a single rate or the sum-rate

capacity, for any 4-tuple (−→n 11,
−→n 22, n12, n21) ∈ N4 are also presented in this paper. Surprisingly,

these values can be expressed in closed-form using relatively simple expressions that depend on

some of the parameters −→n 11,
−→n 22, n12 and n21.

Based on these results, several relevant engineering questions arise in this setting. For instance,
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Fig. 1. Two-user linear deterministic interference channel with noisy channel-output feedback. The bit-pipe line number 1

represents the most significant bit.

in which of the two transmitter-receiver pairs must the feedback link be implemented if the

objective is to improve: (a) the individual rate of the transmitter-receiver pair in which feedback

is implemented; (b) the individual rate of the other transmitter-receiver pair; or (c) the sum-rate

of both transmitter-receiver pairs. In each of these scenarios, the feedback SNR, either ←−n 11 or
←−n 22, must be bigger than a given threshold for the improvement to be observed. Interestingly,

the answer is completely different for each of these scenarios. In addition to the results described

above, the exact values of ←−n 11 or ←−n 22 for which feedback does not enlarge the capacity region

are also identified.

II. LINEAR DETERMINISTIC INTERFERENCE CHANNEL WITH NOISY CHANNEL-OUTPUT

FEEDBACK

Consider the two-user LD-IC-NOF, with parameters −→n 11, −→n 22, n12, n21, ←−n 11 and ←−n 22

described in Fig. 1. The parameters −→n ii, nij and←−n ii with i ∈ {1, 2} and j ∈ {1, 2}\{i}, are non-
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negative integers. Parameter −→n ii represents the number of bit-pipes between transmitter i and

receiver i; parameter nij represents the number of bit-pipes between transmitter j and receiver

i; and parameter ←−n ii represents the number of bit-pipes between receiver i and transmitter i

(feedback). At transmitter i, the channel-input X i,n during channel use n, with n ∈ {1, 2, . . . , N},
is a q-dimensional binary vector X i,n =

(
X

(1)
i,n , X

(2)
i,n , . . . , X

(q)
i,n

)T
, with

q = max (−→n 11,
−→n 22, n12, n21) , (1)

and N the block-length. At receiver i, the channel-output
−→
Y i,n during channel use n is also a

q-dimensional binary vector
−→
Y i,n =

(−→
Y

(1)
i,n,
−→
Y

(2)
i,n, . . . ,

−→
Y

(q)
i,n

)T
. The input-output relation during

channel use n is given by

−→
Y i,n=Sq−−→n iiX i,n + Sq−nijXj,n, (2)

and the feedback signal
←−
Y i,n available at transmitter i at the end of channel use n satisfiesÅ

(0, . . . , 0) ,
←−
Y

T

i,n

ãT
=S(max(−→n ii,nij)−←−n ii)

+−→
Y i,n−d, (3)

where d is a finite delay, additions and multiplications are defined over the binary field, and S

is a q × q lower shift matrix of the form:

S =




0 0 0 · · · 0

1 0 0 · · · 0

0 1 0 · · · ...
... . . . . . . . . . 0

0 · · · 0 1 0




. (4)

The dimension of the vector (0, . . . , 0) in (3) is q−min
Ä←−n ii,max(−→n ii, nij)

ä
and the vector

←−
Y i,n

represents the min
Ä←−n ii,max(−→n ii, nij)

ä
least significant bits of S(max(−→n ii,nij)−←−n ii)

+−→
Y i,n−d.

Without any loss of generality, the feedback delay is assumed to be equal to 1 channel use. Trans-

mitter i sends the message index Wi by sending the codeword X i = (X i,1,X i,2, . . . ,X i,N) ∈
XN

i . The encoder of transmitter i can be modeled as a set of deterministic mappings f
(1)
i ,

f
(2)
i , . . . , f

(N)
i , with f (1)

i :Wi → {0, 1}q and for all n ∈ {2, 3, . . . , N}, f (n)
i :Wi×{0, 1}q(n−1) →

{0, 1}q, such that

X i,1=f
(1)
i

Ä
Wi

ä
and (5)

X i,n=f
(n)
i

Ä
Wi,
←−
Y i,1,

←−
Y i,2, . . . ,

←−
Y i,n−1

ä
. (6)
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Assume that during a given communication, T blocks are transmitted. Hence, the decoder of

receiver i is defined by a deterministic function ψi : {0, 1}q×N×T → WT
i . At the end of the

communication, receiver i uses the sequence
(−→
Y i,1,

−→
Y i,2, . . . ,

−→
Y i,N T

)
to obtain an estimation of

the message indices. The decoding error probability in the two-user LD-IC-NOF during block

t, denoted by P (t)
e (N), is given by

P (t)
e (N)=max

Ñ
Pr
Å
Ŵ1

(t) 6= W
(t)
1

ã
,Pr
Å
Ŵ2

(t) 6= W
(t)
2

ãé
. (7)

A rate pair (R1, R2) ∈ R2
+ is said to be achievable if it satisfies the following definition.

Definition 1 (Achievable Rate Pairs): The rate pair (R1, R2) ∈ R2
+ is achievable if there exists

at least one pair of codebooks XN
1 and XN

2 with codewords of size q×N , and the corresponding

encoding functions f (1)
1 , f

(2)
1 , . . . , f

(N)
1 and f

(1)
2 , f

(2)
2 , . . . , f

(N)
2 such that the average bit error

probability can be made arbitrarily small by letting the block length N grow to infinity.

The information capacity region is the closure of all information achievable rate pairs (R1, R2).

Denote by C(−→n 11,
−→n 22, n12, n21,

←−n 11,
←−n 22) the capacity region of the two-user LD-IC-NOF

with parameters −→n 11, −→n 22, n12, n21, ←−n 11, and ←−n 22. Lemma 1 fully characterizes the set

C(−→n 11,
−→n 22, n12, n21,

←−n 11,
←−n 22).

Lemma 1 (Theorem 1 in [8]): The capacity region C(−→n 11,
−→n 22, n12, n21,

←−n 11,
←−n 22) of the

two-user LD-IC-NOF is the set of non-negative rate pairs (R1, R2) that satisfy ∀i ∈ {1, 2} and

j ∈ {1, 2} \ {i}:

Ri 6min (max (−→n ii, nji) ,max (−→n ii, nij)) , (8a)

Ri 6min
Ä
max (−→n ii, nji) ,max

Ä−→n ii,
←−n jj − (−→n jj − nji)

+ää
, (8b)

R1 +R2 6min
Ä
max (−→n 22, n12) + (−→n 11 − n12)

+
,max (−→n 11, n21) + (−→n 22 − n21)

+ä
, (8c)

R1 +R2 6max
Å

(−→n 11 − n12)
+
, n21,

−→n 11 − (max (−→n 11, n12)−←−n 11)
+
ã

+ max
Å

(−→n 22 − n21)
+
, n12,

−→n 22 − (max (−→n 22, n21)−←−n 22)
+
ã
, (8d)

2Ri +Rj6max (−→n ii, nji) + (−→n ii − nij)
+

+ max
Å

(−→n jj − nji)
+
, nij,

−→n jj − (max (−→n jj, nji)−←−n jj)
+
ã
. (8e)
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III. PRELIMINARIES

A. Definitions

Let αi ∈ Q be the interference regime of transmitter-receiver pair i, with i ∈ {1, 2} and

j ∈ {1, 2} \ {i},
αi =

nij
−→n ii

. (9)

For each transmitter-receiver pair i, there exist five possible interference regimes (IRs): very

weak IR (VWIR), i.e., αi 6 1
2
, weak IR (WIR), i.e., 1

2
< αi 6 2

3
, moderate IR (MIR), i.e.,

2
3
< αi 6 1, strong IR (SIR), i.e., 1 < αi 6 2 and very strong IR (VSIR), i.e., αi > 2 [11].

The scenarios in which the desired signal is stronger than or equal to the interference (αi 6 1),

namely VWIR, WIR and MIR, are referred to as low-interference regimes (LIRs). Conversely,

the scenarios in which the desired signal is weaker than the interference (αi > 1), namely SIR

and VSIR, are referred to as high-interference regimes (HIRs). In the two-user LD-IC, up to

twenty-five possible interference regimes might emerge, given α1 and α2. However, only twelve

cases are of real interest. This is because the transmitter-receiver pairs can be indifferently labeled

and thus, for instance, studying the case in which α1 6 1
2

and α2 > 2 is the same as studying

the case in which α1 > 2 and α2 6 1
2
.

The main results of this paper are presented using a list of events (Boolean variables) that are

fully determined by the parameters −→n 11,
−→n 22, n12, and n21. For instance, given the parameters

(−→n 11,
−→n 22, n12, n21), the events (10)-(21) describe some combinations of interference regimes

that are particularly interesting. Let i ∈ {1, 2} and j ∈ {1, 2} \ {i} and define the following

events:

December 27, 2016 DRAFT
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E1 : α161 ∧ α261, (i and j in LIR) (10)

E2,i : αi6
1

2
∧ 1<αj62, (i in VWIR and j in SIR) (11)

E3,i : αi6
1

2
∧ αj>2, (i in VWIR and j in VSIR) (12)

E4,i :
1

2
<αi6

2

3
∧ αj>1, (i in WIR and j in HIR) (13)

E5,i :
2

3
<αi61 ∧ 1<αj62, (i in MIR and j in SIR) (14)

E6,i :
2

3
<αi61 ∧ αj>2, (i in MIR and j in VSIR) (15)

E7,i :
1

2
<αi61 ∧ αj>1, (i in WIR or MIR and j in HIR) (16)

E8,i : αi>1 ∧ αj61, (i in HIR and j in LIR) (17)

E9 : α16
2

3
∧ α26

2

3
, (i and j in VWIR or WIR) (18)

E10,i : αi6
2

3
∧ 2

3
<αj61, (i in VWIR or WIR and j in MIR) (19)

E11,i :
2

3
<αi61 ∧ αj6

2

3
, (i in MIR and j in VWIR or WIR) (20)

E12,i : αi>2 ∧ αj>1, (i in VSIR and j in HIR). (21)

Some other auxiliary events are considered. The event in which the signal from transmitter i is

stronger in its intended receiver than in its non-intended receiver is denoted by E13,i, i.e.,

E13,i:
−→n ii>nji. (22)

The event in which the sum of the number of bit-pipes in the direct links is bigger than the sum

of the number of bit-pipes in the cross-interference links is denoted by E14, i.e.,

E14:
−→n 11 +−→n 22>n12 + n21. (23)

The event in which the number of bit-pipes in the direct link j is bigger than the sum of bit-pipes

in both cross-interference links is denoted by

E15,i:
−→n jj>nij + nji. (24)

The event in which the sum of the number of bit-pipes in the direct links is bigger than the sum

of the number of bit-pipes in one cross-interference link and twice the number of the bit-pipes
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in the other cross-interference link is denoted by

E16,i:
−→n ii +−→n jj>nij + 2nji. (25)

Finally, the event in which the sum of the number of bit-pipes in the direct links is bigger than

the number of bit-pipes in one cross-interference link is denoted by

E17,i:
−→n ii +−→n jj<nij. (26)

In the following, given an event, e.g. E13,i : −→n ii > nji, the notation ‹E13,i implies −→n ii < nji;

E13,i implies −→n ii 6 nji; and Ě13,i implies −→n ii > nji.

Combining the events (10)-(26), five main events are identified:

S1,i: (E1 ∧ E13,i) ∨ (E2,i ∧ E13,i) ∨ (E3,i ∧ E13,i ∧ E14) ∨ (E4,i ∧ E13,i ∧ E14)

∨ (E5,i ∧ E13,i ∧ E14) ∨
Ä
E6,i ∧ ‹E13,j ∧ E14

ä
, (27)

S2,i:
Ä
E3,i ∧ ‹E13,j ∧ E14

ä
∨
Ä
E7,i ∧ ‹E13,j ∧ E14

ä
∨
Ä
E1 ∧ ‹E13,j

ä
, (28)

S3,i:
Ä
E1 ∧ E13,i

ä
∨
Ä
E2,i ∧ E13,i

ä
∨
Ä
E3,i ∧ Ě13,j ∧ E13,i

ä
∨
Ä
E4,i ∧ Ě13,j ∧ E13,i

ä
∨
Ä
E5,i ∧ Ě13,j ∧ E13,i

ä
∨
Ä
E6,i ∧ Ě13,j

ä
∨
Ä‹E1 ∧ Ě13,j

ä
∨ (E8,i) , (29)

S4,i: (E9 ∧ E13,i ∧ E13,j) ∨ (E10,i ∧ E13,i ∧ E13,j ∧ E16,i ∧ E16,j)

∨ (E11,i ∧ E13,i ∧ E13,j ∧ E16,i ∧ E16,j) , (30)

S5,i: (E12,i ∧ E17,i ∧ E17,j) ∨ (E12,j ∧ E17,i ∧ E17,j) . (31)

For all i ∈ {1, 2} the events S1,i, S2,i and S3,i exhibit the property stated by the following lemma.

Lemma 2: For all i ∈ {1, 2} and for all (−→n 11,
−→n 22, n12, n21) ∈ N4, only one of the events

among S1,i, S2,i and S3,i is true.

Proof: The proof follows from verifying that for all i ∈ {1, 2} and j ∈ {1, 2} \ {i}, the

events (27)-(29) are mutually exclusive. For instance, consider that the event (E1 ∧ E13,i) in (27)

is true. Then, S1,i is true and E2,i, E3,i, E4,i, E5,i, E6,i, E7,i and E8,i hold false, which implies that

S2,i and S3,i hold false as well, since all events in (28) and (29) are false. The same verification

can be made for all the remaining events in (27). This proves that if S1,i is true then S2,i and S3,i

hold simultaneously false. The same verification can be done for showing that when S2,i holds

true (resp. S3,i), both events S1,i and S3,i (resp. S1,i and S2,i) hold simultaneously false. Finally
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following the same reasoning it can be verified that if any pair of the events {S1,i, S2,i, S3,i} is

false, the remaining event is necessarily true. This completes the proof.

For all i ∈ {1, 2} the events S4,i and S5,i exhibit the property stated by the following lemma.

Lemma 3: For all i ∈ {1, 2} if one of the events S4,i or S5,i holds true, then the other

necessarily holds false.

Proof: The proof of Lemma 3 follows along the same lines of the proof of Lemma 2.

Note that Lemma 3 does not exclude the case in which both S4,i and S5,i are simultaneously

false.

B. Rate Improvement Metrics

The rate improvements are given in terms of the following metrics [10]: (a) maximum

individual rate improvements ∆1 and ∆2; and (b) maximum sum-rate improvement Σ, with

∆i ∈ R+ and Σ ∈ R+ for i ∈ {1, 2}.
Let C1 = C(−→n 11,

−→n 22, n12, n21,
←−n 11,

←−n 22) and C2 = C(−→n 11,
−→n 22, n12, n21, 0, 0) be the capacity

region with noisy channel-output feedback and without feedback, respectively. In order to for-

mally define ∆1, ∆2 and Σ, consider a two-user LD-IC-NOF with parameters −→n 11, −→n 22, n12,

n21, ←−n 11, and ←−n 22. The maximum improvement of the individual rate Ri, ∆i(
−→n 11, −→n 22, n12,

n21,←−n 11, ←−n 22), due to the effect of channel-output feedback with respect to the case without

feedback is

∆i(
−→n 11,

−→n 22, n12, n21,
←−n 11,

←−n 22) = max
Rj>0



 sup

(Ri,Rj)∈C1
{Ri} − sup

(R†
i ,Rj)∈C2

{R†i}


 , (32)

and the maximum improvement of the sum rate Σ(−→n 11,
−→n 22, n12, n21,

←−n 11,
←−n 22) with respect

to the case without feedback is

Σ(−→n 11,
−→n 22, n12, n21,

←−n 11,
←−n 22) = sup

(R1,R2)∈C1



R1 +R2



− sup

(R†
1,R

†
2)∈C2



R

†
1 +R†2



. (33)

In the following, when feedback is exclusively used by transmitter-receiver pair i, i.e., ←−n ii > 0

and ←−n jj = 0, then the maximum improvement of the individual rate of transmitter-receiver k,

with k ∈ {1, 2}, and the maximum improvement of the sum rate are denoted by ∆k(−→n 11, −→n 22,

n12, n21, ←−n ii) and Σ(−→n 11,
−→n 22, n12, n21,

←−n ii), respectively. Hence, this notation ∆k(−→n 11, −→n 22,

n12, n21,←−n ii) replaces either ∆k(−→n 11, −→n 22, n12, n21,←−n 11, 0) or ∆k(−→n 11, −→n 22, n12, n21, 0,←−n 22),

when i = 1 or i = 2, respectively. The same holds for the notation Σ(−→n 11,
−→n 22, n12, n21,

←−n ii)
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that replaces Σ(−→n 11,
−→n 22, n12, n21,

←−n 11, 0) or Σ(−→n 11,
−→n 22, n12, n21, 0,

←−n 22), when i = 1 or

i = 2, respectively.

IV. MAIN RESULTS

A. Enlargement of the Capacity Region

In this subsection, the capacity region of a two-user LD-IC-NOF with parameters (−→n 11, −→n 22,

n12, n21), when feedback is available only at transmitter-receiver pair i, i.e., ←−n ii > 0 and
−→n jj = 0, is denoted by C (−→n 11,

−→n 22, n12, n21,
←−n ii) instead of C (−→n 11,

−→n 22, n12, n21,
←−n 11, 0) or

C (−→n 11,
−→n 22, n12, n21, 0,

←−n 22), when i = 1 or i = 2, respectively. Following this notation, Theo-

rem 1 identifies the exact values of←−n ii for which the strict inclusion C (−→n 11,
−→n 22, n12, n21, 0, 0) ⊂

C (−→n 11,
−→n 22, n12, n21,

←−n ii) holds, with i ∈ {1, 2}.
Theorem 1: Let i ∈ {1, 2}, j ∈ {1, 2} \ {i} and ←−n ∗ii ∈ N be

←−n ∗ii =





max
Ä
nji, (

−→n ii − nij)
+ä if S1,i = True

−→n jj + (−→n ii − nij)
+ if S2,i = True.

(34)

Assume that S3,i = True. Then, for all ←−n ii ∈ N, C
Å−→n 11, −→n 22, n12, n21, 0, 0

ã
= C

Å−→n 11,
−→n 22, n12, n21, ←−n ii

ã
. Assume that either S1,i = True or S2,i = True. Then, for all ←−n ii 6

←−n ∗ii,
C
Å−→n 11,

−→n 22, n12, n21, 0, 0
ã

= C
Å−→n 11,

−→n 22, n12, n21,
←−n ii

ã
and for all ←−n ii >

←−n ∗ii, C
Å−→n 11, −→n 22,

n12, n21, 0, 0
ã
⊂ C
Å−→n 11, −→n 22, n12, n21, ←−n ii

ã
.

Proof: The proof of Theorem 1 is presented in Appendix A.

Theorem 1 shows that under event S3,i in (29), implementing feedback in transmitter-receiver

pair i does not bring any capacity region enlargement. Alternatively, under events S1,i in (27)

and S2,i in (28), the capacity region can be enlarged when ←−n ii >
←−n ∗ii. That is, there exists a

threshold on the SNR of the feedback link beyond which it is possible to observe a capacity

region enlargement. Consider the following example.

Example 1: Consider a case in which transmitter-receiver pair 1 is in SIR (1 < α1 6 2),

transmitter-receiver pair 2 is in VWIR (α2 6 1
2
) and −→n 22 > n12. In this case, the event E8,1

holds true (and so does S3,1). Thus, implementing feedback in the transmitter-receiver pair 1

does not enlarge the capacity region. Note also that the events E2,2 and E13,2 hold true (and

so does S1,2). In view of this, implementing feedback in transmitter-receiver pair 2 enlarges the

capacity region whenever the feedback link 2 satisfies that ←−n 22 > max
Ä
n12, (

−→n 22 − n21)
+ä.
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(4, 4)

(4, 5)

(5, 4)

Fig. 2. Capacity regions of C(7, 7, 3, 5, 0, 0) (thick red line) and C(7, 7, 3, 5, 6, 0) (thin blue line).

It is important to highlight that in the cases in which feedback might potentially enlarge the

capacity region of the two-user LD-IC-NOF, that is, in events S1,1, S2,1, S1,2 or S2,2, the following

is always true for all i ∈ {1, 2} and j ∈ {1, 2} \ {i}:

←−n ∗ii > (−→n ii − nij)
+. (35)

The inequality in (35) unveils the fact that feedback is useful for enlarging the capacity region

of the two-user LD-IC-NOF when at least one receiver is capable of feeding back to its intended

transmitter at least part of the information transmitted by the other transmitter. Essentially, when
←−n ii 6 (−→n ii − nij)

+, the noise over the feedback link i impairs all the bit-pipes that contain

information sent by transmitter j. This implies that transmitter i cannot obtain any information

sent by transmitter j, see for instance Fig. 1. Another interesting observation is that the threshold
←−n ∗ii beyond which feedback is useful is different under event S1,i in (27) and event S2,i in (28).

In general when S1,i holds true, the enlargement of the capacity region is due to the fact that

feedback allows using interference as side information [12]. Alternatively, when S2,i in (28)

holds true, the enlargement of the capacity region occurs thanks to the fact that some of the bits

December 27, 2016 DRAFT
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Fig. 3. (a) Achievability of the rate pair (4, 4) in an LD-IC with parameters −→n 11 = 7, −→n 22 = 7, n12 = 3, n21 = 5, ←−n 11 = 0

and ←−n 22 = 0. (b) Achievability of the rate pair (5, 4) in an LD-IC with parameters −→n 11 = 7, −→n 22 = 7, n12 = 3, n21 = 5,
←−n 11 = 6 and ←−n 22 = 0. (c) Achievability of the rate pair (4, 5) in an LD-IC with parameters −→n 11 = 7, −→n 22 = 7, n12 = 3,

n21 = 5, ←−n 11 = 6 and ←−n 22 = 0.

that cannot be transmitted directly from transmitter j to receiver j, can arrive to receiver j via

an alternative path: transmitter j - receiver i - transmitter i - receiver j. Consider the following

examples.

Example 2: Consider the parameters −→n 11 = 7, −→n 22 = 7, n12 = 3, and n21 = 5. This implies

that both S1,1 and S1,2 hold true. Hence, according to Theorem 1, it follows that the capacity

region can be enlarged by either using feedback in transmitter-receiver pair 1 or in transmitter-

receiver pair 2, with←−n 11 > max
Ä
n21, (

−→n 11 − n12)
+ä

= 5 or←−n 22 > max
Å
n12, (

−→n 22 − n21)
+
ã

=

3, respectively. Figure 2 shows the capacity region of C(7, 7, 3, 5, 0, 0) (thick red line) and

C(7, 7, 3, 5, 6, 0) (thin blue line).

Note that in example 2, the capacity region is enlarged when ←−n 11 = 6, with respect to the

case in which ←−n 11 = 0. Figure 3a shows the achievability of (4, 4) without feedback, whereas

Figures 3b and 3c show the achievability of (5, 4) and (4, 5) with feedback in transmitter-receiver

pair 1, respectively. More specifically, when feedback is used at transmitter-receiver pair 1 and
←−n 11 > max

Ä
n21, (

−→n 11 − n12)
+ä, transmitter 1 obtains part of the information sent by transmitter

2. This information can be re-transmitted by transmitter 1 to cancel the interference it produced at

receiver 1 when it was first transmitted by transmitter 2. Interestingly, the interference perceived

at receiver 2 due to this re-transmission can be cancelled given that this information was reliably

decoded when it was first sent by transmitter 2. This allows transmitter-receiver pair 1 or 2 to

improve its individual rate.
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Fig. 4. (a) Capacity regions of C(5, 1, 3, 4, 0, 0) (thick red line) and C(5, 1, 3, 4, 4, 0) (thin blue line). (b) Achievability of the

rate pair (3, 1) in an LD-IC with parameters −→n 11 = 5, −→n 22 = 1, n12 = 3, n21 = 4, ←−n 11 = 0 and ←−n 22 = 0 (no feedback

links). (c) Achievability of the rate pair (3, 2) in an LD-IC with parameters −→n 11 = 5, −→n 22 = 1, n12 = 3, n21 = 4, ←−n 11 = 4

and ←−n 22 = 0.

Example 3: Consider the parameters −→n 11 = 5, −→n 22 = 1, −→n 12 = 3, and −→n 21 = 4. In this case,

S2,1 in (28) and S3,2 in (29) hold true. Hence from Theorem 1, it follows that the capacity region

cannot be enlarged by using feedback in transmitter-receiver pair 2 (S3,2 holds true). At the same

time, it follows that the capacity region can be enlarged using feedback in transmitter-receiver

pair 1, whenever ←−n 11 >
−→n 22 + (−→n 11 − n12)

+
= 3 (S2,1 holds true).

Figure 4a shows the capacity region of C(5, 1, 3, 4, 0, 0) (thick red line) and C(5, 1, 3, 4, 4, 0)

(thin blue line). Note that the capacity region is indeed enlarged when ←−n 11 = 4, with respect

to ←−n 11 = 0. Figure 4b and Figure 4c show the achievability of the rate pairs (3, 1) and (3, 2)

without and with feedback, respectively. Note that the main difference between both schemes is

that the existence of a feedback link between transmitter 1 and receiver 1, with ←−n 11 = 4, allows

transmitter 2 to send an additional bit per channel use, i.e., bits b2, b4, b6, . . ., via the alternative

path (transmitter 2 - receiver 1 - transmitter 1 - receiver 2). This accounts for transmitter-receiver

pair 2 increasing its rate from one to two bits per channel use.

B. Improvement of the Individual Rate Ri by Using Feedback in Link i

Implementing channel output feedback in transmitter-receiver pair i might allow increasing the

individual rate of either transmitter-receiver pair i or j. Theorem 2 identifies the exact values of
←−n ii for which the individual rate Ri can be improved, given the parameters (−→n 11,

−→n 22, n12, n21)

and ←−n jj = 0 in the two-user LD-IC-NOF.
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Theorem 2: Let i ∈ {1, 2}, j ∈ {1, 2} \ {i} and ←−n †ii ∈ N be

←−n †ii = max
Ä
nji, (

−→n ii − nij)
+ä
. (36)

Assume that either S2,i = True or S3,i = True. Then, for all ←−n ii ∈ N, ∆i(
−→n 11, −→n 22, n12, n21,

←−n ii) = 0. Assume that S1,i = True. Then, when ←−n ii 6
←−n †ii, it holds that ∆i(

−→n 11, −→n 22, n12,

n21, ←−n ii) = 0; and when ←−n ii >
←−n †ii, it holds that ∆i(

−→n 11, −→n 22, n12, n21, ←−n ii) > 0.

Proof: The proof of Theorem 2 is presented in Appendix B.

Theorem 2 highlights that under events S2,i in (28) and S3,i in (29), the individual rate Ri cannot

be improved by using feedback in transmitter-receiver pair i, i.e., ∆i(
−→n 11,

−→n 22, n12, n21,
←−n ii) =

0. Alternatively, under event S1,i in (27), the individual rate Ri can be improved, i.e., ∆i

Å−→n 11,
−→n 22, n12, n21, ←−n ii

ã
> 0, whenever ←−n ii > max

Ä
nji, (

−→n ii − nij)
+ä.

An example in which for all (R′1, R
′
2) ∈ C (−→n 11,

−→n 22, n12, n21, 0, 0) there always exists a rate

pair (R1, R2) ∈ C(−→n 11,
−→n 22, n12, n21,

←−n 11, 0) such that R′1 6 R1 and R′2 = R2, is presented in

Fig. 2.

It is worth noting that under event S3,i in (29), the capacity region cannot be improved via

feedback (Theorem 1) and thus, none of the individual rates can be improved as suggested by

Theorem 2. Alternatively, under event S2,i in (28), the capacity region can be enlarged (Theorem

1) but the individual rate Ri cannot be improved (Theorem 2). This implies that the capacity

improvement occurs due to the fact that Rj can be improved. More specifically, in this case:

∆i(
−→n 11,

−→n 22, n12, n21,
←−n ii) = 0 and ∆j(

−→n 11,
−→n 22, n12, n21,

←−n ii) > 0. This implies that using

feedback in transmitter-receiver pair i is exclusively beneficial for transmitter-receiver pair j, as

shown in the following section.

C. Improvement of the Individual Rate Rj by Using Feedback in Link i

Implementing channel output feedback in transmitter-receiver pair i might allow increasing

the individual rate of transmitter-receiver pair i or j; or both individual rates. This reveals the

altruistic nature of implementing feedback as suggested in [13], [14]. Theorem 3 identifies the

exact values of ←−n ii for which the individual rate Rj can be improved by using feedback in

transmitter-receiver pair i, given the parameters (−→n 11,
−→n 22, n12, n21) and ←−n jj = 0 in the two-

user LD-IC-NOF.
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Theorem 3: Let i ∈ {1, 2}, j ∈ {1, 2} \ {i} and ←−n ‡ii ∈ N be

←−n ‡ii =





max
Ä
nji, (

−→n ii − nij)
+ä if S1,i = True

−→n jj + (−→n ii − nij)
+ if S2,i = True.

(37)

Assume that S3,i = True. Then, for all ←−n ii ∈ N, ∆j(
−→n 11, −→n 22, n12, n21, ←−n ii) = 0. Assume that

either S1,i = True or S2,i = True. Then, when ←−n ii 6
←−n ‡ii, it holds that ∆j(

−→n 11, −→n 22, n12, n21,
←−n ii) = 0; and when ←−n ii >

←−n ‡ii, it holds that ∆j(
−→n 11, −→n 22, n12, n21, ←−n ii) > 0.

Proof: The proof of Theorem 3 follows along the same lines of the proof on Theorem 2 in

Appendix B. The difference is that the analysis is focused on the individual rate R2.

Theorem 3 shows that under event S3,i in (29), implementing feedback in transmitter-receiver pair

i does not bring any improvement on the rate Rj . This is in line with the results of Theorem 1 that

states that under event S3,i in (29), implementing feedback in transmitter-receiver pair i does not

enlarge the capacity region. In contrast, under events S1,i in (27) and S2,i in (28), the individual

rate Rj can be improved (∆j(
−→n 11,

−→n 22, n12, n21,
←−n ii) > 0) whenever←−n ii >

←−n ‡ii. It is important

to highlight that under event S1,i, the threshold on ←−n ii for increasing the individual rate Ri i.e.,

(←−n †ii), and Rj i.e., (←−n ‡ii), are identical, see Theorem 2 and Theorem 3. This shows that in this

case, the use of feedback in transmitter-receiver pair i, with ←−n ii >
←−n †ii = ←−n ‡ii, simultaneously

improves both individual rates. Under event S2,i, using feedback in transmitter-receiver pair i,

with ←−n ii >
←−n ‡ii, exclusively benefits transmitter-receiver pair j, which can improve its own

individual rate. An example in which for all (R′1, R
′
2) ∈ C (−→n 11,

−→n 22, n12, n21, 0, 0) there always

exists a rate pair (R1, R2) ∈ C(−→n 11,
−→n 22, n12, n21,

←−n 11, 0) such that R′2 < R2, is presented in

Fig. 4a.

D. Improvement of the Sum-Capacity

Implementing channel output feedback in transmitter-receiver pair i increases the sum-capacity

under certain conditions. Theorem 4 identifies the exact values of←−n ii for which the sum-capacity

can be improved, for parameters (−→n 11,
−→n 22, n12, n21) and ←−n jj = 0 in the two-user LD-IC-NOF.

Theorem 4: Let i ∈ {1, 2}, j ∈ {1, 2} \ {i} and ←−n +
ii ∈ N be

←−n +
ii =





max
Ä
nji, (

−→n ii − nij)
+ä if S4,i = True

−→n jj + (−→n ii − nij)
+ if S5,i = True.

(38)

Assume that S4,i = False and S5,i = False. Then, for all ←−n ii ∈ N, Σ(−→n 11, −→n 22, n12, n21,
←−n ii) = 0. Assume that S4,i = True or S5,i = True. Then, when ←−n ii 6

←−n +
ii , it holds that
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Fig. 5. Generalized Degrees of Freedom (GDoF) as a function of parameters α and β, with 0 6 α 6 3 and β ∈ { 3
5
, 4
5
, 6
5
},

of the symmetric LD-IC-NOF. The plot without feedback is obtained from [11] and the plot with perfect-output feedback is

obtained from [3].

Σ(−→n 11,
−→n 22, n12, n21,

←−n ii) = 0; and when←−n ii >
←−n +

ii , it holds that Σ(−→n 11,
−→n 22, n12, n21,

←−n ii) >

0.

Proof: The proof of Theorem 4 is presented in Appendix C.

Theorem 4 identifies the conditions under which implementing feedback in transmitter-receiver

pair i improves the sum-capacity whenever ←−n ii >
←−n +

ii , that is, Σ(−→n 11,
−→n 22, n12, n21,

←−n ii) > 0.

Theorem 4 highlights that one of the necessary but not sufficient conditions for improving

the sum-capacity by implementing feedback in transmitter-receiver pair i is that either (a) at

least one transmitter-receiver pair must be in VWIR or WIR; or (b) both transmitter-receiver

pairs must be in VSIR. This follows immediately from observing that for S4,i or S5,i to hold

true, at least one of the events E9, E10,i, E11,i or E12 must hold true. An example in which

Csum (−→n 11,
−→n 22, n12, n21, 0, 0) < Csum (−→n 11,

−→n 22, n12, n21,
←−n 11, 0), with ←−n 11 >

←−n +
11, is pre-

sented in Fig. 2.

Interestingly, Theorem 4 shows that if at least one transmitter-receiver pair is in SIR, then the

sum-capacity cannot be improved. Finally, note that the thresholds ←−n +
ii in the events S4,i and

S5,i coincide with those observed in Theorem 1.
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V. GENERALIZED DEGREES OF FREEDOM

This section focuses on the analysis of the number of GDoF of the LD-IC-NOF for studying

the case in which feedback is simultaneously implemented in both transmitter-receiver pairs.

Moreover, the analysis is only performed for the symmetric case, i.e., −→n = −→n 11 = −→n 22,

m = n12 = n21, and ←−n = ←−n 11 = ←−n 22, with (−→n ,m,←−n ) ∈ N3. The results in Lemma 1 allow

a more general analysis of the GDoF, e.g., non-symmetric case. However, the symmetric case

captures some of the most important insights about how the capacity region is enlarged when

feedback is used in both transmitter-receiver pairs.

Essentially, given the parameters −→n , m and ←−n , with α = m−→n and β =
←−n−→n , the number of GDoF,

denoted by D(α, β), is the ratio between the symmetric capacity, i.e., Csym(−→n ,m,←−n ) = sup{R :

(R,R) ∈ C(−→n ,−→n ,m,m,←−n ,←−n )}, and the individual interference-free point-to-point capacity,

i.e., −→n , when (−→n ,m,←−n )→ (∞,∞,∞) at constant ratios α = m−→n and β =
←−n−→n . More specifically,

the number of GDoF is

D(α, β) = lim−→n ,m,←−n→∞

Csym(−→n ,m,←−n )
−→n . (39)

Theorem 5 determines the number of GDoF for the two-user LD-IC-NOF.

Theorem 5: The number of GDoF for the two user symmetric LD-IC-NOF with parameters

α and β is given by

D(α, β)=min

Ñ
max(1, α),max

Ä
1, β − (1− α)+

ä
,
1

2

Ä
max(1, α) + (1− α)+

ä
,

max
Ä
(1− α)+ , α, 1− (max(1, α)− β)+

ä
,

1

3

Ç
max(1, α) + (1− α)+ + max

ÇÇ
1− α

å+

, α, 1− (max (1, α)− β)+
åé

. (40)

Proof: The proof of Theorem 5 is presented in Appendix D.

The result in Theorem 5 can also be obtained from Theorem 1 in [7]. The following properties

are a direct consequence of Theorem 5.

Corollary 1: The number of GDoF for the two user symmetric LD-IC-NOF with parameters
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α and β satisfies the following properties:

∀α ∈
ñ
0,

2

3

ô
and β 6 1, max

Ç
1

2
, β

å
6 D(α, β) 6 1, (41a)

∀α ∈
ñ
0,

2

3

ô
and β > 1, D(α, β) = 1− α

2
, (41b)

∀α ∈
Ç

2

3
, 2

ô
and β ∈ [0,∞), D(α, 0) = D(α, β) = D(α,max(1, α)), (41c)

∀α ∈ (2,∞) and β > 1, 1 6 D(α, β) 6 min
Åα

2
, β
ã
, (41d)

∀α ∈ (2,∞) and β < 1, D(α, β) = 1. (41e)

Properties (41a) and (41b) highlight the fact that the existence of feedback links in the symmetric

LD-IC in the VWIR and WIR does not have any impact in the GDoF when β 6 1
2
, and the

GDoF is equal to the case with perfect-output feedback when β > 1. Property (41c) underlines

that in the symmetric LD-IC in MIR and SIR, the number of GDoF is identical in both extreme

cases: without feedback (β = 0) and with perfect-output feedback
Ä
β = max(1, α)

ä
. Finally,

from (41d) and (41e), it follows that for observing an improvement in the GDoF of the LD-IC-

NOF in VSIR, the following condition must be met: β > 1. That is, the number of bit-pipes in

the feedback links must be strictly bigger than the number of bit-pipes in the direct links.

Figure 5 shows the number of GDoF for the two user symmetric LD-IC-NOF for the case in

which 0 6 α 6 3 and β ∈ {3
5
, 4
5
, 6
5
}.

VI. CONCLUSIONS

This paper presented the exact conditions on the feedback parameters ←−n 11 and ←−n 22, be-

yond which the capacity region of the two-user LD-IC-NOF can be enlarged for any 4-tuple

(−→n 11,
−→n 22, n12, n21) ∈ N4. More specifically, the exact values of ←−n 11 (resp. ←−n 22) for which

C(−→n 11, −→n 22, n12, n21, 0, 0) ⊂ C(−→n 11, −→n 22, n12, n21,←−n 11, 0)
Ä
resp. C(−→n 11,

−→n 22, n12, n21, 0, 0) ⊂
C(−→n 11,

−→n 22, n12, n21, 0,
←−n 22)

ä
, with strict inclusion. The exact conditions on ←−n 11 (resp. ←−n 22)

to observe an improvement on a single rate or the sum-rate capacity, for any 4-tuple
Å−→n 11, −→n 22,

n12, n21

ã
∈ N4 were also presented. Interestingly, there exist conditions in the two-user LD-IC-

NOF in which the use of feedback does not enlarge the capacity region. The gain in the capacity

of the two user LD-IC-NOF under symmetric conditions and for the VSIR can be bounded by

the noise in the feedback links. Finally, closed-form expressions for the number of GDoF are
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presented in the case of symmetric LD-IC-NOF. As observed before in [3] and [11], the number

of GDoF is invariant with respect to the use of output feedback links in both moderate and

strong interference regimes. In all the other interference regimes, the exact improvement on the

GDoF is perfectly identified.

APPENDIX A

PROOF OF THEOREM 1: ENLARGEMENT OF THE CAPACITY REGION BY USING FEEDBACK IN

ONE TRANSMITTER-RECEIVER PAIR

The proof of Theorem 1 is obtained by comparing C(−→n 11, −→n 22, n12, n21, ←−n 11, 0)
Ä
resp.

C(−→n 11, −→n 22, n12, n21, 0, ←−n 22)
ä

and C(−→n 11, −→n 22, n12, n21, 0, 0), for all possible parameters
−→n 11, −→n 22, n12, n21, and ←−n 11 (resp. −→n 11, −→n 22, n12, n21, and ←−n 22). More specifically, for

each tuple
Ä−→n 11, −→n 22, n12, n21

ä
, the exact value ←−n ∗11 (resp ←−n ∗22) for which any ←−n 11 >

←−n ∗11
(resp ←−n 22 > ←−n ∗22) ensures C(−→n 11, −→n 22, n12, n21, 0, 0) ⊂ C(−→n 11, −→n 22, n12, n21, ←−n 11, 0)

(resp. C(−→n 11,
−→n 22, n12, n21, 0, 0) ⊂ C(−→n 11,

−→n 22, n12, n21, 0,
←−n 22)) is calculated. This procedure

is tedious and repetitive, and thus, in this appendix only one combination of interference regimes

is fully studied, e.g., VWIR - VWIR.

Proof:

Consider that both transmitter-receiver pairs are in VWIR, that is,

α1 =
n12
−→n 11

6
1

2
and α2 =

n21
−→n 22

6
1

2
. (42)

Under conditions (42), C(−→n 11,
−→n 22, n12, n21, 0, 0) is the set of non-negative rate pairs (R1, R2)

that satisfy

R16
−→n 11 , θ1, (43a)

R26
−→n 22 , θ2, (43b)

R1 +R26min (max (−→n 22, n12) +−→n 11 − n12,max (−→n 11, n21) +−→n 22 − n21) , θ3, (43c)

R1 +R26max (−→n 11 − n12, n21) + max (−→n 22 − n21, n12) , θ4, (43d)

2R1 +R26max (−→n 11, n21) +−→n 11 − n12 + max (−→n 22 − n21, n12) , θ5, (43e)

R1 + 2R26max (−→n 22, n12) +−→n 22 − n21 + max (n21,
−→n 11 − n12) , θ6. (43f)

Note that for all (−→n 11,
−→n 22, n12, n21,

←−n 22) ∈ N5 and ←−n 11 > max (−→n 11, n12), it follows that

C(−→n 11,
−→n 22, n12, n21,

←−n 11,
←−n 22) = C(−→n 11,

−→n 22, n12, n21,max(−→n 11, n12),
←−n 22). Hence, in the
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following, the analysis is restricted to the following condition:

←−n 11 6 max (−→n 11, n12) . (44)

Under conditions (42) and (44), C(−→n 11,
−→n 22, n12, n21,

←−n 11, 0) is the set of non-negative rate

pairs (R1, R2) that satisfy

R16
−→n 11, (45a)

R26
−→n 22, (45b)

R1 +R26min (max (−→n 22, n12) +−→n 11 − n12,max (−→n 11, n21) +−→n 22 − n21) , (45c)

R1 +R26max (−→n 11 − n12, n21,
←−n 11) + max (−→n 22 − n21, n12) , θ7, (45d)

2R1 +R26max (−→n 11, n21) +−→n 11 − n12 + max (−→n 22 − n21, n12) , (45e)

R1 + 2R26max (−→n 22, n12) +−→n 22 − n21 + max (−→n 11 − n12, n21,
←−n 11) , θ8. (45f)

When comparing C(−→n 11,
−→n 22, n12, n21, 0, 0) and C(−→n 11,

−→n 22, n12, n21,
←−n 11, 0), note that (43a),

(43b), (43c), and (43e) are equivalent to (45a), (45b), (45c), and (45e), respectively. Under these

observations, the region C(−→n 11, −→n 22, n12, n21, ←−n 11, 0) is greater than the region C(−→n 11, −→n 22,

n12, n21, 0, 0) if at least one of the following conditions is true:

min(θ3, θ4) < min(θ3, θ7) < θ1 + θ2, (46a)

θ6 < min (θ8, θ1 + 2θ2, θ2 + θ3, θ2 + θ4) < min (θ1 + 2θ2, θ2 + θ3, θ2 + θ7) . (46b)

Condition (46a) implies that the active sum-rate bound in C(−→n 11,
−→n 22, n12, n21,

←−n 11, 0) is greater

than the active sum-rate bound in C(−→n 11,
−→n 22, n12, n21, 0, 0). Condition (46b) implies that the

active weighted sum-rate bound on R1 + 2R2 in C(−→n 11, −→n 22, n12, n21,←−n 11,0) is greater than

the active weighted sum-rate bound on R1 + 2R2 in C(−→n 11,
−→n 22, n12, n21, 0, 0).

To simplify the inequalities containing the operator max(·, ·) in (45) and (43), the following 4

cases are identified:

Case 1 :−→n 11 − n12 < n21 and −→n 22 − n21 < n12; (47)

Case 2 :−→n 11 − n12 < n21 and −→n 22 − n21 > n12; (48)

Case 3: −→n 11 − n12 > n21 and −→n 22 − n21 < n12; and (49)

Case 4: −→n 11 − n12 > n21 and −→n 22 − n21 > n12. (50)
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Case 1: Under assumptions (42) and (47), this case is not possible by contradiction.

Case 2: Under assumptions (42) and (48), this case is possible.

Plugging (48) into (45) yields:

R1 +R26min (−→n 22 +−→n 11 − n12,max (−→n 11, n21) +−→n 22 − n21) , (51a)

R1 +R26max (n21,
←−n 11) +−→n 22 − n21, (51b)

R1 + 2R262−→n 22 − n21 + max (n21,
←−n 11) . (51c)

Plugging (48) into (43) yields:

R1 +R26
−→n 22, (52a)

R1 + 2R262−→n 22. (52b)

To simplify the inequalities containing the operator max(·, ·) in (51), the following 2 cases are

identified:

Case 2a :−→n 11 > n21; and (53)

Case 2b :−→n 11 6 n21. (54)

Case 2a: Plugging (53) into (51) yields:

R1 +R26
−→n 11 +−→n 22 − n21, (55a)

R1 +R26max (n21,
←−n 11) +−→n 22 − n21, (55b)

R1 + 2R262−→n 22 − n21 + max (n21,
←−n 11) . (55c)

Comparing inequalities (55a) and (55b) with inequality (52a), it can be verified that min
Å−→n 11 +

−→n 22− n21, max
Ä
n21, ←−n 11

ä
+−→n 22− n21

ã
> −→n 22, i.e., condition (46a) holds, when ←−n 11 > n21.

Comparing inequalities (55c) and (52b), it can be verified that 2−→n 22 − n21 + max (n21,
←−n 11) >

2−→n 22, i.e., condition (46b) holds, when ←−n 11 > n21. Therefore, ←−n ∗11 = n21 under assumptions

(42), (44), (48), and (53).

Case 2b: Plugging (54) into (51) yields:

R1 +R26
−→n 22, (56a)

R1 +R26max (n21,
←−n 11) +−→n 22 − n21, (56b)

R1 + 2R262−→n 22 − n21 + max (n21,
←−n 11) . (56c)
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Comparing inequalities (56a) and (56b) with inequality (52a), it can be verified that min
Å−→n 22,

max
Ä
n21,←−n 11

ä
+−→n 22−n21

ã
= −→n 22, i.e., condition (46a) does not hold, for all←−n 11 ∈ N. Com-

paring inequalities (56c) and (52b) it can be verified that 2−→n 22−n21 + max (n21,
←−n 11) > 2−→n 22,

when ←−n 11 > n21, which implies that ←−n 11 > max (−→n 11, n12). However, under the assumptions

(42), (44), (48), and (54), the bounds (52b) and (56c) are not active. Hence, condition (46b) does

not hold. Therefore, for all ←−n 11 ∈ N, the capacity region cannot be enlarged under assumptions

(42), (44), (48), and (54).

Case 3: Under assumptions (42) and (49), this case is possible.

Plugging (49) into (45) yields:

R1 +R26min (max (−→n 22, n12) +−→n 11 − n12,
−→n 11 +−→n 22 − n21) , (57a)

R1 +R26max (−→n 11 − n12,
←−n 11) + n12, (57b)

R1 + 2R26max (−→n 22, n12) +−→n 22 − n21 + max (−→n 11 − n12,
←−n 11) . (57c)

Plugging (49) into (43) yields:

R1 +R26
−→n 11, (58a)

R1 + 2R26max (−→n 22, n12) +−→n 22 − n21 +−→n 11 − n12. (58b)

To simplify the inequalities containing the operator max(·, ·) in (57) and (58), the following 2

cases are identified:

Case 3a :−→n 22 > n12; and (59)

Case 3b :−→n 22 6 n12. (60)

Case 3a: Plugging (59) into (57) yields:

R1 +R26
−→n 22 +−→n 11 − n12, (61a)

R1 +R26max (−→n 11 − n12,
←−n 11) + n12, (61b)

R1 + 2R262−→n 22 − n21 + max (−→n 11 − n12,
←−n 11) . (61c)

Plugging (59) into (58) yields:

R1 +R26
−→n 11, (62a)

R1 + 2R262−→n 22 − n21 +−→n 11 − n12. (62b)
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Comparing inequalities (61a) and (61b) with inequality (62a), it can be verified that min
Å−→n 22 +

−→n 11−n12, max
Ä−→n 11−n12,←−n 11

ä
+n12

ã
> −→n 11, i.e., condition (46a) holds, when←−n 11 >

−→n 11−
n12. Comparing inequalities (61c) and (62b), it can be verified that 2−→n 22−n21+max

Ä−→n 11−n12,
←−n 11

ä
> 2−→n 22−n21 +−→n 11−n12, i.e., condition (46b) holds, when←−n 11 >

−→n 11−n12. Therefore,
←−n ∗11 = −→n 11 − n12 under assumptions (42), (44), (49), and (59).

Case 3b: Plugging (60) into (57) yields:

R1 +R26
−→n 11, (63a)

R1 +R26max (−→n 11 − n12,
←−n 11) + n12, (63b)

R1 + 2R26n12 +−→n 22 − n21 + max (−→n 11 − n12,
←−n 11) . (63c)

Plugging (59) into (58) yields:

R1 +R26
−→n 11, (64a)

R1 + 2R26
−→n 22 − n21 +−→n 11. (64b)

Comparing inequalities (63a) and (63b) with inequality (64a), it can be verified that min
Å−→n 11,

max
Ä−→n 11 − n12, ←−n 11

ä
+ n12

ã
= −→n 11, i.e., condition (46a) does not hold, for all ←−n 11 ∈ N.

Comparing inequalities (63c) and (64b), it can be verified that n12+−→n 22−n21+max
Ä−→n 11−n12,

←−n 11

ä
> −→n 22 − n21 + −→n 11, i.e., condition (46b) holds, when ←−n 11 >

−→n 11 − n12. Therefore,
←−n ∗11 = −→n 11 − n12 under conditions (42), (44), (49), and (60).

Case 4: Under conditions (42) and (50), this case is possible.

Plugging (50) into (45) yields:

R1 +R26min (−→n 22 +−→n 11 − n12,
−→n 11 +−→n 22 − n21) , (65a)

R1 +R26max (−→n 11 − n12,
←−n 11) +−→n 22 − n21, (65b)

R1 + 2R262−→n 22 − n21 + max (−→n 11 − n12,
←−n 11) . (65c)

Plugging (50) into (43) yields:

R1 +R26
−→n 11 − n12 +−→n 22 − n21, (66a)

R1 + 2R262−→n 22 − n21 +−→n 11 − n12. (66b)

Comparing inequalities (65a) and (65b) with inequality (66a), it can be verified that min
Å

min
Ä−→n 22

+−→n 11−n12, −→n 11 +−→n 22−n21

ä
, max

Ä−→n 11−n12, ←−n 11

ä
+−→n 22−n21

ã
> −→n 11−n12 +−→n 22−n21,
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i.e., condition (46a) holds, when ←−n 11 >
−→n 11 − n12. Comparing inequalities (65c) and (66b),

it can be verified that: 2−→n 22 − n21 + max
Ä−→n 11 − n12, ←−n 11

ä
> 2−→n 22 − n21 + −→n 11 − n12, i.e.,

condition (46b) holds, when ←−n 11 >
−→n 11 − n12. Therefore, ←−n ∗11 = −→n 11 − n12 under conditions

(42), (44), and (50).

From all the observations above, when both transmitter-receiver pairs are in VWIR (event E1

is True), it follows that when ←−n 11 >
←−n ∗11 and −→n 11 > n21 (event E13,1 is True) with with

←−n ∗11 = max (−→n 11 − n12, n21), then C(−→n 11, −→n 22, n12, n21, 0, 0) ⊂ C(−→n 11, −→n 22, n12, n21, ←−n 11,

0). Otherwise C(−→n 11, −→n 22, n12, n21, 0, 0) = C(−→n 11, −→n 22, n12, n21, ←−n 11, 0). Note that when

events E1 and E13,1 hold simultaneously true, then the event S1,1 is true, which verifies the

statement of Theorem 1. The same procedure can be applied for all the other combinations of

interference regimes. This completes the proof.

APPENDIX B

PROOF OF THEOREM 2: IMPROVEMENT OF THE INDIVIDUAL RATE Ri BY USING FEEDBACK

IN LINK i

The proof of Theorem 2 is obtained by comparing C(−→n 11, −→n 22, n12, n21, ←−n 11, 0)
Ä
resp.

C(−→n 11, −→n 22, n12, n21, 0, ←−n 22)
ä

and C(−→n 11, −→n 22, n12, n21, 0, 0), for all possible parameters
−→n 11, −→n 22, n12, n21, and ←−n 11 (resp. −→n 11, −→n 22, n12, n21, and ←−n 22). More specifically, for each

tuple
Ä−→n 11, −→n 22, n12, n21

ä
, the exact value ←−n †11 (resp ←−n †22) for which any ←−n 11 >

←−n †11 (resp
←−n 22 >

←−n †22) ensures an improvement on R1 (resp. R2) , i.e., ∆1(
−→n 11, −→n 22, n12, n21, ←−n 11,

0) > 0 (resp. ∆2(
−→n 11, −→n 22, n12, n21, 0, ←−n 22) > 0), is calculated. This procedure is tedious

and repetitive, and thus, in this appendix only one combination of interference regimes is fully

studied, e.g., VWIR - VWIR.

Proof:

Consider that both transmitter-receiver pairs are in VWIR, i.e., conditions (42) hold. Under

these conditions, the capacity regions C(−→n 11, −→n 22, n12, n21, 0, 0) and C(−→n 11, −→n 22, n12, n21,
←−n 11, 0) are given by (43) and (45), respectively. When comparing C(−→n 11,

−→n 22, n12, n21, 0, 0) and

C(−→n 11,
−→n 22, n12, n21,

←−n 11, 0), note that (43a), (43b), (43c), and (43e) are equivalent to (45a),

(45b), (45c), and (45e), respectively. In this case any improvement on R1 is produced by an

improvement on R1 +R2 (condition (46a)) or 2R1 +R2 (condition (46a)), and thus, the proof of

Theorem 2 in these particular interference regimes follows exactly the same steps in Theorem
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1. This completes the proof.

APPENDIX C

PROOF OF THEOREM 4: IMPROVEMENT OF THE SUM-RATE CAPACITY BY USING FEEDBACK

IN ONE TRANSMITTER-RECEIVER PAIR

The proof of Theorem 4 is obtained by comparing C(−→n 11, −→n 22, n12, n21, ←−n 11, 0)
Ä
resp.

C(−→n 11, −→n 22, n12, n21, 0, ←−n 22)
ä

and C(−→n 11, −→n 22, n12, n21, 0, 0), for all possible parameters
−→n 11, −→n 22, n12, n21, and ←−n 11 (resp. −→n 11, −→n 22, n12, n21, and ←−n 22). More specifically, for each

tuple
Ä−→n 11, −→n 22, n12, n21

ä
, the exact value ←−n +

11 (resp ←−n +
22) for which any ←−n 11 >

←−n +
11 (resp

←−n 22 >
←−n +

22) ensures an improvement on R1+R2, i.e., Σ(−→n 11, −→n 22, n12, n21,←−n 11, 0) > 0 (resp.

Σ(−→n 11, −→n 22, n12, n21, 0, ←−n 22) > 0), is calculated. This procedure is tedious and repetitive, and

thus, in this appendix only one combination of interference regimes is fully studied, e.g., VWIR

- VWIR.

Proof:

Consider that both transmitter-receiver pairs are in VWIR, i.e., conditions (42) hold. Under

these conditions, the capacity regions C(−→n 11, −→n 22, n12, n21, 0, 0) and C(−→n 11, −→n 22, n12, n21,
←−n 11, 0) are given by (43) and (45), respectively. When comparing C(−→n 11,

−→n 22, n12, n21, 0, 0)

and C(−→n 11,
−→n 22, n12, n21,

←−n 11, 0), note that (43a), (43b), (43c), and (43e) are equivalent to (45a),

(45b), (45c), and (45e), respectively. In this case, the proof is focused on any improvement on

R1 + R2 (condition (46a)), and thus, the proof of Theorem 4 in these particular interference

regimes follows exactly the same steps in Theorem 1.

From the analysis presented in Appendix A, it follows that:

Case 2a: condition (46a) holds true, when ←−n 11 > n21 under assumptions (42), (44), (48), and

(53).

Case 2b: condition (46a) does not hold true, under assumptions (42), (48), and (54).

Case 3a: condition (46a) holds true, when ←−n 11 >
−→n 11−n12 under assumptions (42), (44), (49),

and (59).

Case 3b: condition (46a) does not hold true, when ←−n 11 >
−→n 11 − n12 under assumptions (42),

(44), (49), and (60).

Case 4: condition (46a) holds true, when ←−n 11 >
−→n 11 − n12 under assumptions (42), (44), and

(50).

December 27, 2016 DRAFT



27

From all the observations above, when both transmitter-receiver pairs are in VWIR (event E9 is

True), it follows that when ←−n 11 >
←−n +

11, −→n 11 > n21 (event E13,1 is True) and −→n 22 > n12 (event

E13,2 is True) with ←−n +
11 = max (−→n 11 − n12, n21), then Σ(−→n 11, −→n 22, n12, n21, ←−n 11, 0) > 0.

Otherwise Σ(−→n 11, −→n 22, n12, n21, ←−n 11, 0) = 0. Note that when events E9, E13,1 and E13,2

hold simultaneously true, then the event S4,1 is true, which verifies the statement of Theorem 4.

The same procedure can be applied for all the other combinations of interference regimes. This

completes the proof.

APPENDIX D

PROOF OF THEOREM 5: GENERALIZED DEGREES OF FREEDOM

This appendix provides a proof to Theorem 5 for the two user LD-IC-NOF.

Proof:

Under symmetric conditions i.e., −→n = −→n 11 = −→n 22, m = n12 = n21 and ←−n = ←−n 11 = ←−n 22,

from (8a) and (8b) with i = 1 and j = 2, it follows that:

R1 6 min
Ä
max (−→n ,m) ,max

Ä−→n ,←−n − (−→n −m)
+ää , a1; (67)

from (8c) and (8d), it follows that:

R1 +R26min
Å

max (−→n ,m) + (−→n −m)
+
, 2 max

Å
(−→n −m)

+
,m,−→n − (max (−→n ,m)−←−n )

+
ãã

,a2; (68)

and from (8e) with i = 1 and j = 2, it follows that:

2R1 +R26max (−→n ,m) + (−→n −m)
+

+ max
Å

(−→n −m)
+
,m,−→n − (max (−→n ,m)−←−n )

+
ã
, a3

(69)

The symmetric sum-capacity, Csym(−→n ,m,←−n ) = sup{R : (R,R) ∈ C(−→n ,−→n ,m,m,←−n ,←−n )}, can

be obtained from (67), (68) and (69) as follows

Csym=min
Å
a1,

a2
2
,
a3
2
,
a4
3

ã
=min

Ñ
max (−→n ,m) ,max

Ä−→n ,←−n − (−→n −m)
+ä
,
1

2

Ä
max (−→n ,m) + (−→n −m)

+ä
,

max
Å

(−→n −m)
+
,m,−→n − (max (−→n ,m)−←−n )

+
ã
,
1

3

Å
max (−→n ,m) + (−→n −m)

+

max
Å

(−→n −m)
+
,m,−→n − (max (−→n ,m)−←−n )

+
ããé

. (70)
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Plugging (70) into (39) yields

Dsym(α, β)=min

Ñ
max (1, α) ,max

Ä
1, β − (1− α)+

ä
,
1

2

Ä
max (1, α) + (1− α)+

ä
,

max
Å

(1− α)+ , α, 1− (max (1, α)− β)+
ã
,
1

3

Å
max (1, α) + (1− α)+

+ max
Å

(1− α)+ , α, 1− (max (1, α)− β)+
ããé

. (71)

where α = n−→n and β =
←−n−→n and this completes the proof.
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