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Stochastic Analysis of Scattered Field by
Building Facades Using Polynomial Chaos

P. Kersaudy, S. Mostarshe B.

Sudret, O. Picon, and J.iart

richness of digital map databases nowadays, séeHsp

Abstract—This paper presents a statistical assessment of models are widely used in wave propagation simtdato

scattered field from a building facade having randa physical
and geometrical parameters. A simple inhomogeneousnodel is
considered for the building and the calculation metod is based
on Green'’s functions. The basis of polynomial chaosxpansion
method is explained and applied to estimate the sitared electric
field from a building facade having 8 random paraméers, in
specular and non-specular scenarios. Uncertainty afysis and
total output distribution are discussed in differert diffraction

zones of the building.

Index Terms—Scattering, urban environment, architectural
details, uncertainty analysis, polynomial chaos

I. INTRODUCTION

IRELESS communications, particularly

Prediction of electromagnetic field intensity icamplex and
variable environment is meaningful when presentétth &n
acceptable amount of uncertainty. Yet this lastoomly used
category of simulators does not accept variablarpaters for
building architectural details and seldom reportstree
information concerning the uncertainty of the resul
Therefore, there is a real need to assess therategnetic
waves in urban environment in terms of the progagadf
uncertainties.

Different numerical methods allow the incorporatimithe
stochastic dimension of the problem to the simoreti and
measurements. Without being exhaustive, we can ioment
Monte Carlo method, perturbation techniques,

networks, experienced a great expansion worldwid€Z]. The final goal of all these techniques isprovide more

These networks are very dense in urban areas a&nd
electromagnetic field distribution is highly depent on city

teliable results concerning a complex system witilie
incomplete knowledge of the underlying physics and/

structures. It is essential to have predictive ¢dol assess as inevitable measurement errors naturally generateneso

accurately as possible the distribution of electgrretic
fields in order to enable optimized implementatiohbase
stations and respect the constraints regarding huwexposure.
Wave propagation simulators are based on differeadels of
urban environment with different assumptions onhhbiding
architectural details. Given
incorporate appropriate calculation methods. We roantion
empirical, statistical, theoretical, site-specificodels or a
combination of them to generate a hybrid model Ebhpirical
models [2] are based on the extensive measureraargaigns
and are highly related to the structure of the.cBiatistical
models [3] are also based on measurements andsackto

the adopted model,y tth

imprecision in the prediction of the system's modael
simulator. Many domains such as civil engineerifigjd

mechanics, control, etc., dealing with large-scatenplex
systems, have made use of numerical methods fohastic
treatments. More specifically in the electromagnétld and
ave propagation domain, some recent studies hhowrs
interest in different aspects of uncertainty managat.
Stochastic collocation has been used in radar enobl[8],
human exposure estimation [9] and reverberativembers
[10]. Polynomial chaos expansion has been intredufor
computational electromagnetics [11] and recenglgrbused in

give wide band multipath model of the environmentEMC problems, for human exposure estimation [} eross

Theoretical (physical) [4] models are obtained ifmposing
some general idealized conditions on the geomeéthey
usually use physical optics with or without difftan
phenomena. Site-specific models [5] depend on rgela
number of parameters which are related to a givenand
their computing time, depending on the complexifytioe
environment, can be long. These models usually enmy
techniques, such as ray tracing and ray launchaigen the
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talk assessment [13]. To our knowledge, no congnsire
study has focused on the propagation of unceréginglated
to building geometrical and physical properties.wduer,
these variable parameters may cause non negligibtes in
the field estimation in the vicinity of buildings they are all
treated as simple homogeneous blocks.

In a recent publication [14], we applied the “pelation
technique” to the scattered field from a buildiregdde. The
perturbation method [7] is based on the Taylorieser
expansion of the response function around the mahre of
the input parameters. The approximation remaingl itithe
variations of the input parameters around theirmaea small.
If the input variables are independent, the vamganan be
decomposed into the contribution of each singleuinp
parameter. The sensitivity indices can be calcdlagng each

moment
mobileequations, operator based methods, polynomial ¢leiog6],
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input variance, the total output variance and tingt order

derivative of the output functiowith respect to each input
parameter. It is important to note that this tegbei is

completely deterministic and needs no sampling aod

important computational time.
operation is a numerical estimation of the deriatof the
function. However the first order expansion canabtays
describe the behavior of the model. In the cagbefeflected
electric field from a building, this technique is longer valid
in the very near-field region where the variatidribe electric
field around its mean is important. The technique its

validity domain (beyond the very-near-field regiagn only
offer the simple sensitivity indices and cannotvide the total
output distribution.

In the same publication, the results are comparvdddnte
Carlo simulation [15] which is a more universapegach to
estimate the output distribution but may requirdssantial
computer resources. A probability density functimassigned
to each input parameter according to which theysarapled.
Moreover, from the law of large numbers, the experit is
repeated a considerable number of times in ordebtain a
large confidence in the output values. Despite shaple
implementation of this non-intrusive method, theergence
rate of the statistical moments such as the meah the

variance is rather Iovxn,(\/ﬁ). For the scattering problem of

interest, this method can potentially give vialdsults even in
the very near-field zone of the building but thguieed large
number of simulations limits its applicability.

In this paper, we treat the problem of variation tbé
scattered field from a building presenting severahdom
physical and geometrical parameters. For the sake
calculation efficiency, we apply polynomial chaogpansion.

e

M

=hxE 2)
wheref is the, by eIectricQI) and magneticI(/TS) surface

currents at the interface between the air and tiject The

The only mathematicaéxpressions of the equivalent currents dependirg @m the

incident field are as

local surface normal vector of the object. Theltmdiation of
these fictive currents in the presence of the dhjpees the
scattered field from the object. In order to cadtel the

radiation of surface currents, the electréE(J) and magnetic

(Gem) Green's functions associated with the interface
between two semi-infinite media are used. The chriom
integral of the Green’s functions with the surfam@rents
gives the reflected field at each point in space:

E:”EEJ(r,r')-Hs(r')d_§+”EEM(r,r')-l\_A’s(r')d_s’ ®)

The detailed expressions and explanation on therdifce
between this type of Green’s function and the fspace
Green'’s functions can also be found in [16].

Like any other asymptotic method, it is importamt t
highlight the validity domain in the first place.h@ total
radiation is calculated assuming that the surfddie object
is large enough so that the edges do not pertwlatiiation
of the elementary dipoles. Given this assumptione t
diffracting object has to be large enough (a fewelangths)
and the grazing observation angles cannot be cdvéree
minimum observation distance is directly related tte
accuracy of the asymptotic development of the Sorfette
integral in the Green's functions expression. Fairtno low
@ermittivities, the observation distance can besehofrom
one wavelength of the diffracting object and givére

In section Il, the constitutive equations and asged working frequencies (a few gigahertz), reflecteectic field
computational model is presented and the randomnpeters can be calculated with a very good precision in diffyaction
are introduced. In section Ill, the basis of polyial chaos zone of the building going from very near-fieldtb& building

expansions is explained. The series truncation, nie¢hod

convergence and the quality of the approximatior ar

discussed. Consequently, the sensitivity indicesirroduced
and interpreted. Finally, some numerical results f@o
different scattering scenarios are presented itioseby/.

Il.  SIMULATOR

A. Method

The use of a non intrusive technique for the ststiba
processing allows a flexible choice of the caldotatcore of
the simulator. Given our other publications, instipaper we
continue to utilize the asymptotic method basethenGreen's
functions [16]; however any other asymptotic, stiehl or
numerical method commonly employed in wave pratiag
processing can be used instead (e.g. physical spptay
tracing, FDTD, etc).

According to this method, a locally plane waverilinating
an object can be replaced, with respect to the cinoiu
theorem follows:

—_—

Jg =—fixH; @)

to its far-field.

. Model

The presented Green's functions are associated thvith
interface between two semi-infinite media. A 2D mabdan
naturally be used for building facades. The chatesemi-
infinite Green’s functions applied to building waltan be
justified by the fact that at working frequenciebdut 1GHz
and beyond), the losses through the wall are largrigh so
that the wall be considered as a semi-infinite rmmedi
However for windows with thin or multilayered glaparts
which present very low loss, the semi-infinite asption is
no longer valid. In this case, we adopt a mathemlamodel
[17] which allows applying the same type of Greduahctions
on stratified media by introducing an equivalentnpiétivity.
In this way and for each incidence angle, the raykired
dielectric is replaced by a semi-infinite mediumthwian
equivalent complex permittivity having the samelaetfon
properties as the original medium. Obviously, tlmplex
permittivity does not necessarily represent a pajsinedium
and the solution is only valid in the reflectioroplem and not
in the transmission one. Consequently, the builf@mgde can
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eventually be described by a 2.5D model with lasgale
discontinuities.

In this paper, we consider 2D concrete-glass facadth
variable physical and geometrical properties,
geometries (e.g. balconies) are not treated. Ssurmk
uncertainty in urban environment being numerous yeggrict
the study to those coming from the architecturalpprties of
the building; consequently we do not study the dadaty on
the source (e.g. radiating antennas) and the ¢ecitds
considered to be a plane wave. For the same retsodirect
path of the wave propagation, from the emitteh® rieceiver,
or other indirect paths (e.g. ground reflectionhds taken into
account because it does not involve buildings dleating
objects.

C. A few deterministic results

Before integrating the stochastic approaches
simulator, it is interesting to remind a few detémistic key
results for the scattered field in the vicinity thie building.
We consider the generic 12 mx12 m concrete-glagditg
profile presented in Fig. 1. The nominal parametdues are
W=H=1.25m, 0[=D,=0.6m and [B=D,=0.5m while the
relative concrete and glass permittivities are eéguax7 and
£c=3.5. Later in the statistical studies, we will sbat these
values present simply the mean of the uniformlytritisted

parameters.
-6

-4

-6

-4
Fig. 1. Generic concrete-glass building facadegtes!

-2 0 2 4 6

At first, the facade is illuminated by a TE pola&dizplane
wave at 900 MHz in normal6££0°) incidence and the
reflected electric field is calculated in specudaection and in
different diffraction zones of the building facad&he
amplitude of the reflected electric field as a fime of the
observation distance is presented in Fig. 2. Thesation
distances can be referenced according to the definbf
standard radiation/diffraction zones of a radidtiiffracting
object. Fig. 2 also summarizes some of the mosbitapt

so 3C

3
D%/8\ D2\ 2D%/\
0.8 T T T
0.7
0.6
€ 05
=S
w 04
03} !
02 [ Rayleigh . 1
0 —
R Far-field
o1 ety near-field X
"0 54 216 864 1000

Observation distance r (m)

in thﬁg_ 2. Evolution of the amplitude of the reflectekkctric field in specular

direction as a function of the observation distainem the generic building

As expected, in the very near-field of the buildindpe
reflected electric field goes through a highly flated zone.
The variation becomes smoother further and the mmarxi
radiation occurs before the end of the Rayleighezokter
this peak, the amplitude decreases continuoushutir the
intermediate zone (called Fresnel) into the faidfregion.

The second key result shows the angular distributiothe
electric field at a given distance. The plane wisvaormally
incident to the building facade in Fig. 1 at 900 ¥&ihd the
scattered field is observed at 300 m from the Ingidin
Fresnel zone as a function of the observation amgl€ig. 3,
we notice that the scattered electric field presenthin main
lobe, given the large size of the building at tfisquency
(361). The field amplitude falls off rapidly so thatexf a few
side lobes the received field becomes significalotly. Given
the directivity of the building, the more grazingservation
angles are thus not shown in this figure. Simitarthe first
result, the next section describes the influencehef input
random parameters on the angular distribution efetectric
field.

0.6

0.5

0.4}

0.3}

r

[E I (VIim)

0.2}

0.1

0 : ; .
10 15 20
Observation angle (°)

0 5 25 30

existing definitions[18]-[21] where D represents the largestg 3. Evolution of the amplitude of the reflectdctric field at 300 m from

dimension of the building aridthe free-space wavelength.

the generic building and in non-specular directions
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Fig. 4. Electric field overlay in the vicinity ohé generic building and in the
incidence plane

As a final result for the generic building profil€jg. 4
presents the scattered field overlay in the inatégulane. The
complexity of different diffraction zones of theilding, in
specular and non-specular directions, is very wbfervable
in this figure. We will show in the next sectionvinahe
uncertainty in the input parameters influence tmplgude of
the scattered field and how the propagation of dacgy can
be studied, given the nature of the fluctuationdifferent
diffraction zones. It is worth noting that for avgh profile and
with the computer used for our development, a sing
simulation with a fixed incidence and observatiogla at a
given distance takes approximately 3 seconds fbuikling
discretization equal to 5 mm.

[ll. STATISTICAL APPROACH USINGPOLYNOMIAL CHAOS

EXPANSION

A first step in clarifying the complex mechanismivieeen
the inputs and the system response would be torlimei¢he
most influent parameters in a given configuratibna very
complex system with a large number of input random
variables, this stage allows a smart eliminationtted less
influent parameters and thus a simplification oé tiwhole
process. Different types of multivariate sensitidnalysis can
be performed22]. It is important to note that some technique
provide the first order sensitivity indices whehe tinfluence
of each input parameter on the system output imastd. For
many systems, this might prove to be sufficient foutsome
physical mechanisms the relation between the iapdtoutput
reveals to be much more complicated, in this casecand or
third order sensitivity analysis might be needelisTmeans
that the separate impact of some input parameteress
important than their simultaneous effect. Parallel the
sensitivity analysis, some important statisticalnmats such

as mean, variance, etc. can also be obtained. Tiess#ts
have a variable precision depending on the molelsample
size, the selected approach and the desired &taftistoment.
Finally in some cases, one can be interested itothé output
distribution which is the most comprehensive repngstion of
the process. Given a limited number of sample poinbt all
stochastic approaches can provide this amountfofnmation
concerning the system output including higher oslatistical
moments, rare events, etc. In this section, we eptethe
polynomial chaos expansiomhich is a good candidate for a
parsimonious able to provide with various typesstatistical
information.
Let us consider an input random veckor [X;, X » X

] and the random output related to the input patarseby a

physical modely = A7 (X). The polynomial chaogPC) is an
advanced statistical method that gives a meta-moti¢he

physical model by the polynomial expansion, proditeat the
input parameters are independid]:

Y= ZaeNm aalpa(x) (4)

where a =[a,,....a\, ] is the multi-index,iy, are multivariate

orthogonal polynomials an@, are unknown coefficients to
be calculated. If the input random variables follawiform
distributions in the interval [-1, 1], the polyncais
constituting the basis of the probabilistic space af
Legendre typg24]. In this paper, in order to calculate the
unknown coefficients, the expansion is truncatedpkay a
given set of polynomials whose multi-indices belotog a
subsetA ¢ N™. Thus a regression problem is obtained:

|Y = Yaea AaPa(X) (5)

To solve this regression problem, the coefficieotsthe
truncated expansion are estimated by minimizing rfemn
square error between the actual physical model otedpat a
given point of the experimental design and the dated
polynomial approximation of the latter equatione.i.an
ordinary least square resolution is employed. letonsider
the following experimental design df input points: X =
{x® ..xM } the coefficients of the truncated expansion are
therefore approximated by the ordinary least-sqeatienator:

~

a= (Y"¢)yTy (6)

Wwherea = {a.}le.4 is the vector of the estimated coefficients,
T
W = (P (xD) e (x™)) the

polynomials computed & andy = {M(x®) ... M(x™)}"is
the vector of the response of the physical modeX afhis
regression solution would be less demanding in edatnal
resources compared to the solution based on thection of
the expansion on the subspace associated to tfffecismts of
interest[25]. We bring to attention that this approach et
build an experimental design in which the numbepoints
will be limited by the conditioning of the least usge

is the matrix of
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information matrix and so by the number of polynalsikept
in the truncation. Knowing that the truncation wgkrtainly
impact the quality of the meta-model, different dgpof
truncation can be suggested. Besides, one neddkdmn an
iterative experimental design for which the numb&points
can be adjusted according to the desired qualitthefmeta-
model. In this paper Latin Hypercube Sampling (Lt#Sign)
will be used and will be iteratively increased bgdted Latin
Hypercube Sampling (NLHS) technique [23].

A. Truncation

In a full PC expansion, the infinite sum in equati@) is
reduced to a finite numbeP of polynomials. The set

{(//a,05|a|s p} represents ally, which are kept in the

where N is the total number of points in the experimental
design. Using this error, a determination coeffitiean be
derived [25]:
Q?=1- Ermoo

Var(Y)
where Vary) is the estimated variance of the output sanyple
The closerQ?gets to one, the better is the quality of the meta-
model in terms of generalization. The comparatittels in
[28] shows that overall, the LOOCYV technique perfe well
in terms of generalization error bias. Accordinghe desired
Q? the number and order of polynomials that are kephe

expansion will vary. If the LOOCV is used to asseiss
accuracy of the meta-model, it is also used tocsdie set of

(10)

truncation where is the chosen maximal total degree of thgolynomials kept in the truncation providing theshaccurate

retained polynomials. The numbRris related to the degrege
and the numbanm of input variables by [25]:

m+p
P= 7
(DJ )

If the dimension of the vector of input parameiarseases
and higher order polynomials are included, the éxibansion
meets a difficulty concerning its computational i@éncy
according to a large number of simulations in tkgegimental
design. In this case, another type of truncatiorchvhesults in

meta-model. In the LARS methodology described mesiy,
the most influent polynomials are selected iteryivand
added in the truncation. A LOOCYV is therefore perfed at
each step of the LARS selection to assess the ancwf the
generated meta-models. In fact, because of a lawbeu of
points in the experimental design, the additiontved many
LARS polynomials in the truncation could lead to @wer-
fitting phenomenon. The number of LARS polynomials
retained in the truncation is eventually the onat throvides
the higher @. Depending on the nature of physical process,

a sparse polynomial chaos expansion seems to b& mthis may result in a heavy calculation process.

appropriate. In this second technique which isecbihe Least
Angle Regression selection (LARS), only polynomialigh

the most significant impact on the model outputlamgt in the
expansion [26], [27]. Thus this method providessparse
representation of the physical model. The purpcsetoi
iteratively select among a large full truncatione timost
significant polynomials depending on their corrielat with

the residual of the current meta-model. The usdecten

algorithm is detailed in [26]. As the most infligrolynomials
are added iteratively to the truncation, it progidecollection
of possible truncation whose size also increasasitively.

The least-square estimation of the coefficientghisrefore
performed for each possible set to generate as meatg-
models as possible while their quality needs tagsessed.

B. Quality assessment

In this paper, we use the so-callshve-one-out cross
validation (LOOCV) technique [28]. Thereby, one point is

taken out of the experimental design. The meta-indsle
constructed using the remaining points and theigtied error
is calculated for the point which was set aside:

AD = M (x) =M ) (x) ®)
where x@ is the left-out point,M (x)is the output value of

the physical model for the point ardd () is the meta-model
obtained from the remaining points. Tleave-one-ou{LOO)
error is calculated by repeating the procedureeach and
every point in the experimental design.

1<h 02
EM oo :WZA
i=1

(9)

C. Global sensitivity and signature analysis

Global sensitivityanalysis aims at assessing the relative
importance of each input parameter onto the ougfuthe
physical model. Sobol’ indices [29] are widely ds@ this
context. These sensitivity indices are usually corag by
Monte Carlo simulation but from a polynomial chaos
expansion, it is possible to compute global seriitindices
of the model response related to the input parasietéh a
minimum computational effort [30], [31]. Let cader the PC
expansion presented in (5), wheflec N™ represents the set
of multi-indicesa. corresponding to the polynomials kept in
the truncation. The total Sobol’ index to the inpatametek;
is then estimated by:

ZaDA, a‘f
ZuELA\[O] a'f

where the denominator is the variance of the outipet the
sum of squares of all PC coefficients excludina,

S = (11)

representing the mean|; denotes the set of all multi-indices
belonging taA with a non zerd-th component:

A ={a0A,0; 20} (12)

In other words, the nominator represents the susgoéres of
all PC coefficients for which the input paramexgis present
in the expression of the multivariate polynomial.

Signature analysiss another way of assessing the relative
importance of each input parameter in the outputamae
which is a direct result of the meta-model postcpesing.
Considering centered and normalized polynomial viiréance
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of the meta-model is assessed in terms of eacmpwiyal. To
achieve such objective, one computes the relatisgnitude
of each coefficient. The relative magnitude of toefficient

aZ; is defined as follow:
as(i)

2
ZaELA\[O]a“
Where the denominator is the output variance aerbednd
the numerator is simply the square of the coefficisf thei™
polynomial in the expansion. In this way, the intpace of
each parameter is assessed through the amplitudineof
polynomials involving that parameter. Yet the coemjiy of
the phenomenon can be evaluated by the order amd
amplitude of the higher-order polynomials. The nataf the
interaction between parameters can be broughtgtut by
looking into the relative order of the parametessnposing
the polynomial (which is not allowed by a crude stwty

analysis). Thus a finer physical interpretation cae
conducted from the polynomial-chaos meta-model.

s =

(13)

IV. NUMERICAL RESULTS

Although limited to architectural properties, saler
parameters can be identified whose variation mélyence
the scattered field and create an uncertainty enctticulated
scattered field. In this study, we have chosen @dom
variables among all possible architectural varr@ioThese
parameters are defined for the generic 12 mx12 ncrete-
glass building illustrated in Fig. 1.

In order to cover all possible values for differanput
parameters, no special hypothesis has been takerihéo
statistical distribution and all parameters arepsiged to have
a uniform variation over the authorized intervalheT 8
parameters are as follows:

Concrete relative permittivity: & = [5, 9]

Glass relative permittivity: & =[2, 5]

Width of windows: U, =[0.5, 2] m

Height of windows: Y =[0.5, 2] m

Horizontal distance of windows from the verticajedf
the building: ; =[0.2, 1] m

Vertical distance of windows from the horizontafyedf
the building: U, =[0.2, 1] m

Horizontal distance between windows in each block:
UD3: [O’ 1] m

Vertical distance between windows in each block:
Ups=1[0, 1] m

It is important to note that given the large vaoatintervals
of the parameters, various building profiles cangbaerated,
both from the geometrical and electrical point adw. The
building in Fig. 1 is presented for the mean valuds
geometrical parameters; two extreme profiles ase ahown
in Fig. 5. In Fig. 5 (b), for the minimum value parameters,
the block of four windows in the corners are merged the
center of the facade is clear. In Fig. 5 (a), fog tnaximum
value of parameters, four windows are merged irctrder of
the facade making a big bay window.

6
-6 -4 -2

6
- -4 2 4 6 4 6

-2 0 0 2
@) ) (b

Fig. 5. Building profiles for (a) maximum (b) minimm values of geometrical

pﬁrameters (W, H, DD,, D; and D)

t - I
The random variation of these parameters on onleibgi

(for example by a frequency change or due to anfficgént
knowledge of the exact properties) or from one ding to
another, can cause large or small modificationshan wave
propagation in the vicinity of buildings. As we invdee, the
impact would be more or less important accordinditferent
conditions such as wave polarization, incidence and
observation angle or distance. As the scatteréd fiehavior
would be very different for each given conditiohge tlatter
parameters cannot be treated as random varialbteshel
following studies, we consider different scenaiiosvhich the
above parameters are fixed and the 8 random vesabl
presented before change within their authorizeshats.

In this section, we describe two scenarios fordtettering
assessment in the vicinity of the building. In bathses, a
sufficient number of building profiles need to bengrated.
Here the sufficient number of samples is achievéewan
acceptable determination coefficient?)(@s obtained for the
polynomial chaos meta-model built with LARS selenti This
coefficient is directly related to the acceptabtstr mean
square error for the phenomenon under considergtiong a
more physical interpretation of the model quality.

A. Observation distance

Each random building profile is illuminated by a TE
polarized plane wave at 900 MHz. The incidence and
observation angles are fixe@®%6,=0°). A few number of
observation distances, from 50 m to 800 m, reptesga of
different diffraction zones, are selected to belistd.

The number of polynomials increases with the nundjer
input parameters and the complexity of the modélef®the
dramatic field fluctuations in the closest diffiact zone of the
building, the chaos polynomial expansion becomegsicable
only at the end of the very near-field region (54ana 12 m
by 12 m building at 900 MHz). Indeed, below thisili, the
high complexity of the output process results itoa low
accuracy for a reasonable number of points. Tseresults
can be obtained for the reflected field at 50 mmfrohe
building. The convergence of the PC expansion ifiged for
this worst case distance in Fig. 6. We can obsémat an
acceptable &0.95 can be obtained using 300 samples. For
this distance, the total number of polynomials celé by
LARS algorithm is P=178 from the total number of
P=(p+m!/( pm) wherep=15. This experimental design is
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kept for the other observation distances and gteeanthe
convergence of the technique for the further difin zones
where the variation of the electric field is qustmooth. For a
better comprehension, the Root Mean Square Ertonaion
associated to the value of Q2=0.95 obtained fors3fulation

points is equal to: RMSEo = 7.3x10° V/m.
0.96 —— ‘

0.94}

0.92}
O 09}
0.88}

0.86 |

0.84

200 300
Number of points in the LHS design
Fig. 6. Evolution of the determination coefficiead a function of the number

of sample points in the LHS design calculated amn50

100

Using this meta-model, the confidence
calculated every 50 meters from the generic bujdacade.
Fig. 7 shows the median and the distance betwe=®.025
and 0.975 quantiles of the electric field superdose the
deterministic curve of Fig. 2 obtained by the mealues of
the input architectural parameters. For a few dista the

quantiles are compared to a 20000-sample MonteoCarl

simulation. The medians indicated by a circle a®y/\close to
the mean values. The confidence interval decreasethe
observation distance increases. This can be rathative; for
a far observer the field reflected from the builgis a result

of the influence of a set of physical and geomatric algorithm

parameters attenuated by the distance which haothef a
predominant factor. This result shows the jointuence of all
variables, yet we cannot distinguish which paransetare
more influent in different region. A sensitivity agsis of the

result can thus be useful.
0.9

PC (300-sample exp. design) | |
X MC (20000 samples)

0.8

0.7

0.6

0.5

IE | (vim)

0.4

0.3

0.2

0.1 - - -

400 600 800
Distance (m)

Fig. 7. Median, 0.025 and 0.975 quantiles of tHieceed electric field using

the meta-model constructed by the experimentalgdesf 300 samples in

different diffraction zones

0 200 1000

As described in the previous section, the total dBob
indices describe the importance of each input bégian the
output variance. The total Sobol’ indices are dalmad for
each input parameter and presented in Table | gethrin
descending order. It appears that at 100 m the retc
permittivity is the input parameter that has theeagest
influence on the output variance followed by théght and
the width of the windows. The permittivity of glaagpears far
after these 3 variables. Other input parametekgiving the
distribution of windows, do not have great influend@hese
results are in accordance with those of [14] wh8obol’
indices were computed with perturbation technique.

Further details of the output variance expansion by
computing the signature analysis of the expansamnow be
presented. Fig. 8 makes a summary of the signatuiatysis
for the most influent polynomials (only those whimntribute
for 95% of the output variance of the meta-modél)1@0

meters from the building.
TABLE |

intervals are TOTAL SOBOL’ INDICES FOR THE SPECULAR REFLECTION ATOOM OF THE

BUILDING FACADE

Input parameter Total Sobol’ index
Sec 0.5364
SH 0.2094
Sw 0.2010
Seg 0.0906
So1 0.0454
Spo 0.0363
Sp4 0.0123
Sp3 0.0075

Fig. 8 presents the polynomials selected by LARS
and arranged with regard to the LARS c@e
order. The values of the relative magnitude ofdbefficients
of the corresponding polynomials are presentedhkyhieight
of color bars and can be read over the left axie @rder of
the polynomials is indicated by the width of thesband their
contents (in terms of input parameters) by differealors
introduced in the legend. Consequently the weightach
input parameter can be easily determined by thersgol
composing the bars. For instance, consider a poljeloof
chaos selected at the 10th position by LARS algorijt
involving the concrete permittivitye§) at order 1 and the
width of windows (W) at order 1. The resulting ninariate
polynomial of chaos will be the product of the wanate
Legendre polynomial of order 1 involvings and the
univariate Legendre polynomial of order 1 involving Thus
the total order will be equal to 2. This polynomgkhown in
Fig. 8 by a bar of width 2, composed of the twaresponding
colors, each of which of width 1. The relative miagte of
this polynomial is represented by the height of ke and is
equal to 6x18.
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Relative magnitude of polynomial’s coefficient

1 2 3 4 5 6
3,
>

1st order

<
Y

7 8 9 10
< 3
< >

2nd order

Most influent polynomials in the chaos expansion (95% of output variance) arranged by their selection order
Fig. 8. Signature analysis of the most influentypomials in the LARS expansion associated to tideroof polynomials and the weight of each inpuapseter

calculated at 100 m from building facade

As we see, only 6 input parameters appear in the euler 20 T T T T T T T
category. The vertical and horizontal distancesweeh / PC (300-sample exp. design)
windows (D, D,) are not part of the most important § ~ — — MC (20000 samples)
parameters which influence singly the reflectecttele field g 157 800m 7]
form the building at this distance. Among the 6 serd '; v om
parameters, the concrete permittivitgc)( has the most @ 10l % 100m |
important impact with an associated relative magtdt of & 200m
0.51, followed by the dimensions of windows (H, With 2
0.14 and 0.13 relative magnitudes. As for the highaler § s| |
polynomials, the interactions are limited to 2 paeters £
among the first 4 parametees, (¢, W, H). All corresponding
relative magnitudes are less important than thst farder 0 . . : . . .
relative magnitudes, which means that the physice 01 02 03 04 IEIO(.\E/S/m) 06 07 08 09

r

phenomenon has essentially a linear behavior vegipect to
the 6 first variables. We also point out that bel/dimis linear
aspect, the most influent polynomials on outpuiarare are
the interaction polynomials and none of the pureeor
polynomials of level 2 appears in the list. Knowitigt the
reflected field behaves differently in differentffdiction

zones, the most influent parameters vary accordinghe

distance. The relative magnitudes should thus béomeed

for different distances.

With the best meta-model available as a polynomi
expansion, we can easily obtain the statisticatidigion of
the reflected field at different distances. The batality
density functions for a few observation distanaesteaced in
Fig. 9. Given the quality of the model (Fig. 6), expect that
these distributions be very close to the realitye Tesults are
compared to an enriched Monte Carlo simulation \2®000
samples in the LHS design. It is important to reimihat the
PDF obtained by PC is a result of a meta-model tcocted
with 300 samples in the experimental design. As ban
observed in Fig. 9, the distributions obtained frtme PC
expansions are almost exactly equal to the referemes
obtained by MCs. Note that the standard deviatisn
consistent with the confidence intervals obtaime#ig. 7.

Fig. 9. Statistical distribution of the amplitudktioe reflected electric field for
a few number of observation distances obtained dlynBmial Chaos (PC)
and Monte Carlo (MC)

In order to highlight the slow convergence of therie
Carlo method, the PC results are compared to that moor
MC simulation. For two distances (r=50m and r=800thg
PC probability density functions are compared to tifferent
runs for a 300-sample crude Monte Carlo in Fig. \W@ can
Qbserve that the pdf changes considerably betweerfirst
and the second run. For each different 300-run,weeld
obtain a quite different result among which we eaentually
find a result which is close to the result predidiy PCE. We
can conclude that the statistical moments do noveme for
300 samples. In the Monte Carlo method, the higther
moment, the slower would be the convergence asdifun of

sample number. While an acceptable accuracy may be

obtained for mean, whole distributions, especidily tails are
far from being precise using 300 samples. In othends, the
variance of the 300-sample estimators is not nixjgigand
cannot be represented by the results of a single ru
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30 T T T 0.7
PC — 300—sample exp. design
P Crude MC — 300 samples — Run 1
257 ;Y| = — — Crude MC - 300 samples — Run 2
c \
S "
S oot ~
< S
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2 —
RN =
a
2
S 10t
o)
o
a
5 -
8.()
815 Fig. 12. Median, 0.025 and 0.975 quantiles of #ftected electric field using

the experimental design of 800 samples at 100 ndiiferent observation

[E | (v/m) angles

Fig. 10. Probability density functions obtainedRglynomial Chaos (PC) and  |n order to complete the information conveyed bg th
two different runs of crude Monte Carlo (MC) witi@sample points confidence intervals, signature and relative max_mit
B. Observation angle analyses can be added to identify the most impbrtan
Each random building profile is illuminated by a TEParameters. A similar illustration to the previcaenario is
polarized plane wave at 900 MHz and in normal iene Presented in Table Il and Fig. 13 for the largesidied

(6:=0°). The angular distribution of the electric fid studied Observation angle of(=10°) at 100 m from the building
at a fixed observation distance. facade. In Table Il are presented the total Sdhdices for

The radiation pattern of the building facade is hhjg this case. The relative impqrtance of the inpulapm_ters is
directive and the field level for the side lobescrdases NOt the same as the previous study. Particulariyabbes

rapidly (Fig. 3). We can fix a deviation limit frothe specular involving lateral modifications in the geometry (W1 and
direction ©,=0°) beyond which the field level is negligible. D3) become clearly more important than the previsiusly.

According to the distribution=10° (in zy plane of Fig. 1) TOTAL SOBOL’ INDICES FOR THE-II-\I,?)?ILSEPIIEICULAR REFLECTIOMO°) AT 100M
can be a reasonable limit in this study. As thddfigoes OF THE BUILDING FACADE

through different local maxima and minima and aslével is Input parameter Total Sobol index

globally low, non-specular reflections present allgmge for Sec 0.3415

the polynomial chaos expansion. For 10°, the eimiubf the Sp1 0.3031

leave-one-out ®as a function of the number of samples in the Sw 0.2950

experimental design is shown in Fig. 11. For thmesaneta- ggDG 8‘?%’2

model quality 3=0.95 as the previous scenario, we need a SH3 021309

larger sample size N=800. We note that the RootarMe Sou 0.0807

Square Error estimation associated to this Q vaéuequal Soo 0.0611

2.4x10° V/m. The total number of polynomials selected by
LARS algorithm in this case B=434. For a few observation Concerning the signature analysis presented in Hgthe
angles, the confidence intervals are calculatedgugtie 800 interpretation is much more complicated than thevious
points in the LHS design and are superposed inTAgo the study. In order to simplify the readability of tlgaph, we
angular distribution of electric field obtained blye mean deliberately fixed the importance of the polynomsitd 80% of

values of the input parameters of the building fieca the output variance. For instance, consider anuotyal of
0.98 ‘ ‘ ‘ ‘ chaos selected at 15th position by LARS algorithmolving
0.96 f 1 the width of windows (W) at order 2 and the heiglft
0.94} 1 windows (H) at order 1. The resulting multivarig@ynomial
0.92} of chaos will be the product of the univariate Lede
o polynomial of order 2 involving W and the univadat
oor Legendre polynomial of order 1 involving H. Thus ttotal
0.88] 1 order will be equal to 3 and the polynomial will tepresented
0.86 1 at 15th position in this figure by a bar of width &hd
0.84 ‘ ‘ ‘ ‘ composed of the two corresponding colors. The iveat
200 400 800 1200 magnitude of this polynomial is represented by tha's

Number of points in the LHS design
Fig. 11. Evolution of the determination coefficierst a function of the number
of sample points in the LHS design calculated &t itfor6,=10°

height and is equal to 15x10-3.
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Most influent polynomials in the chaos expansion (80% of output variance) arranged by their selection order
Fig. 13. Signature analysis of the most influenlypomials in the LARS expansion associated to trdewoof polynomials and the weight of each input

parameter calculated fé/=10° at 100m from building facade

We observe that in non-specular reflection, théagldevel
of sensitivity indices is lower than the speculeflaction
while the order of the most influent polynomialsiea from a
pure to the 6th order. All of the input parametxsept for D2
appear in the pure order category among which tmerete
and glass permittivitieseC, €G) occupy the first ranks
followed by the lateral distance of windows frone tedge of
the building (D1) and the width of the windows (VBoth of
parameters represent horizontal distances. Giveml¢kiation
of the observation point from the specular directand the
wave polarization, the influence of horizontal distes and
dimensions is obviously more important than thaa ekrtical
distance or dimension. As far as higher order pmtyials are
concerned, we note a strong presence of the willtthe
windows (W) in different interactions and a raregence of
the vertical distances (D2 and D4). Although theeleof each
sensitivity index of higher order polynomial is lowhen
considered separately, some of them are of the sadez as
that of the pure order polynomials. It is importémtnote that
if in this case we display the polynomials partitipg up to
95% of output variance, as in the previous scengmfigure
would be much more loaded with higher order polyrasrup
to order 15. As mentioned previously, for the saife
comparison between the model qualities in the teenarios,
we built the second model using 800 samples. Gikienlow
amplitude of electric field in the non-specular esasve
examined the validity of results by 1200 samplegtvinesults
in a higher Q2 (Fig. 11). No fundamental differemdwmave
been observed except that the two Sobol’ indie€> 8nd SW
were interchanged in Table Il and the signaturdyaisaof
Fig. 13 stops at 6th order polynomials. Since & three
sensitivity indices are of the same order, the kmions
remain the same.

The statistical distribution of the reflected efecfield at
100m from the building is presented for differebservation

angles in Fig. 14 and compared to a 20000-samplatd/o
Carlo simulation. As expected, the probability dgnfsinction
for large non-specular angles (6° and 10°) is veayrow
resulting in low dispersion. Given the very smallue of the
electric field for these angles, no significantoimhation can
be obtained from the field distribution. Fdi=2° the
distribution is similar to the specular reflecticand the
signature analysis is less complex than those ofela
reflection angles. In this case, the polynomialstgbuting up
to 95% of output variance are of pure order anst farder
interaction. The more the observation angle desifitem the
specular direction, the larger gets the order oftnmportant
polynomials. Given the wave polarization and theesbation
plane (zy), this will more involve the horizontaéagmetrical
parameters W, Pand D compared to the specular reflection.

45
40
351
30
251

PC (800-sample exp. design )| |
— — — MC (20000 samples)

10°
V'

20t 0

15
101

Probability Density Function

0.3
IEJ (vim)

0 0.1 0.2 0.4 0.5 0.6

Fig. 14. Statistical distribution of the amplitudéthe reflected electric field
for a few number of observation angles obtaine&6y
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V. CONCLUSION [15]

In this paper we have implemented the polynomiaosh [16]
expansion in order to estimate the influence ofeutainties in
geometrical and physical properties of a buildiagafde on the
scattered electric field. This technique allows efficient (17
multivariate sensitivity analysis for a complex lplem. The
number of chosen input random variables is 8 amaguthis
technique, the number of required input samples e [1g]
reduced by more than one order of magnitude cordp@are
Monte Carlo approach for the same precision in wutp(°]
distribution. Presented confidence intervals of tuattered |oq;
field show considerable variation in different sagas and
different diffraction zones. By adding a statistidamension
to a deterministic calculation and using the teghas of the
propagation of uncertainties in a complex scenafield
distribution as an output of a wave propagationusaor can [22]
be presented by a confidence interval making tealtrenore
meaningful for subsequent decision making. [23]

[21]
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