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Abstract—This paper presents a statistical assessment of 

scattered field from a building facade having random physical 
and geometrical parameters. A simple inhomogeneous model is 
considered for the building and the calculation method is based 
on Green’s functions. The basis of polynomial chaos expansion 
method is explained and applied to estimate the scattered electric 
field from a building facade having 8 random parameters, in 
specular and non-specular scenarios. Uncertainty analysis and 
total output distribution are discussed in different diffraction 
zones of the building. 
 

Index Terms—Scattering, urban environment, architectural 
details, uncertainty analysis, polynomial chaos 

I. INTRODUCTION 

IRELESS communications, particularly mobile 
networks, experienced a great expansion worldwide. 
These networks are very dense in urban areas and the 

electromagnetic field distribution is highly dependent on city 
structures. It is essential to have predictive tools to assess as 
accurately as possible the distribution of electromagnetic 
fields in order to enable optimized implementation of base 
stations and respect the constraints regarding human exposure. 
Wave propagation simulators are based on different models of 
urban environment with different assumptions on the building 
architectural details. Given the adopted model, they 
incorporate appropriate calculation methods. We can mention 
empirical, statistical, theoretical, site-specific models or a 
combination of them to generate a hybrid model  [1]. Empirical 
models  [2] are based on the extensive measurement campaigns 
and are highly related to the structure of the city. Statistical 
models  [3] are also based on measurements and are used to 
give wide band multipath model of the environment. 
Theoretical (physical)  [4] models are obtained by imposing 
some general idealized conditions on the geometry. They 
usually use physical optics with or without diffraction 
phenomena. Site-specific models  [5] depend on a large 
number of parameters which are related to a given site and 
their computing time, depending on the complexity of the 
environment, can be long. These models usually employ ray 
techniques, such as ray tracing and ray launching. Given the 
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richness of digital map databases nowadays, site-specific 
models are widely used in wave propagation simulators. 
Prediction of electromagnetic field intensity in a complex and 
variable environment is meaningful when presented with an 
acceptable amount of uncertainty. Yet this last commonly used 
category of simulators does not accept variable parameters for 
building architectural details and seldom reports extra 
information concerning the uncertainty of the results. 
Therefore, there is a real need to assess the electromagnetic 
waves in urban environment in terms of the propagation of 
uncertainties. 

Different numerical methods allow the incorporation of the 
stochastic dimension of the problem to the simulations and 
measurements. Without being exhaustive, we can mention 
Monte Carlo method, perturbation techniques, moment 
equations, operator based methods, polynomial chaos, etc  [6], 
 [7]. The final goal of all these techniques is to provide more 
reliable results concerning a complex system while the 
incomplete knowledge of the underlying physics and/or 
inevitable measurement errors naturally generate some 
imprecision in the prediction of the system's model or 
simulator. Many domains such as civil engineering, fluid 
mechanics, control, etc., dealing with large-scale complex 
systems, have made use of numerical methods for stochastic 
treatments. More specifically in the electromagnetic field and 
wave propagation domain, some recent studies have shown 
interest in different aspects of uncertainty management. 
Stochastic collocation has been used in radar problems  [8], 
human exposure estimation  [9]  and reverberation chambers 
 [10]. Polynomial chaos expansion has been introduced for 
computational electromagnetics  [11] and recently been used in 
EMC problems, for human exposure estimation  [12] and cross 
talk assessment  [13]. To our knowledge, no comprehensive 
study has focused on the propagation of uncertainties related 
to building geometrical and physical properties. However, 
these variable parameters may cause non negligible errors in 
the field estimation in the vicinity of buildings if they are all 
treated as simple homogeneous blocks.  

In a recent publication  [14], we applied the “perturbation 
technique” to the scattered field from a building facade. The 
perturbation method  [7] is based on the Taylor series 
expansion of the response function around the mean value of 
the input parameters. The approximation remains valid if the 
variations of the input parameters around their mean are small. 
If the input variables are independent, the variance can be 
decomposed into the contribution of each single input 
parameter. The sensitivity indices can be calculated using each 
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input variance, the total output variance and the first order 
derivative of the output function with respect to each input 
parameter. It is important to note that this technique is 
completely deterministic and needs no sampling and no 
important computational time. The only mathematical 
operation is a numerical estimation of the derivative of the 
function. However the first order expansion cannot always 
describe the behavior of the model. In the case of the reflected 
electric field from a building, this technique is no longer valid 
in the very near-field region where the variation of the electric 
field around its mean is important. The technique in its 
validity domain (beyond the very-near-field region) can only 
offer the simple sensitivity indices and cannot provide the total 
output distribution.  

In the same publication, the results are compared to Monte 
Carlo simulation  [15] which is a more universal approach to 
estimate the output distribution but may require substantial 
computer resources. A probability density function is assigned 
to each input parameter according to which they are sampled.  
Moreover, from the law of large numbers, the experiment is 
repeated a considerable number of times in order to obtain a 
large confidence in the output values. Despite the simple 
implementation of this non-intrusive method, the convergence 
rate of the statistical moments such as the mean and the 

variance is rather low ( N1 ). For the scattering problem of 

interest, this method can potentially give viable results even in 
the very near-field zone of the building but the required large 
number of simulations limits its applicability.  

In this paper, we treat the problem of variation of the 
scattered field from a building presenting several random 
physical and geometrical parameters. For the sake of 
calculation efficiency, we apply polynomial chaos expansion. 
In section II, the constitutive equations and associated 
computational model is presented and the random parameters 
are introduced. In section III, the basis of polynomial chaos 
expansions is explained. The series truncation, the method 
convergence and the quality of the approximation are 
discussed. Consequently, the sensitivity indices are introduced 
and interpreted. Finally, some numerical results for two 
different scattering scenarios are presented in section IV. 

II. SIMULATOR  

A. Method 

The use of a non intrusive technique for the stochastic 
processing allows a flexible choice of the calculating core of 
the simulator. Given our other publications, in this paper we 
continue to utilize the asymptotic method based on the Green's 
functions  [16]; however any other asymptotic, analytical or 
numerical  method commonly employed  in wave propagation 
processing can be used instead (e.g. physical optics, ray 
tracing, FDTD, etc). 

According to this method, a locally plane wave illuminating 
an object can be replaced, with respect to the induction 
theorem follows: 

is HnJ ×−= ˆ  (1) 

is EnM ×= ˆ   (2) 

wheren̂ is the, by electric ( sJ ) and magnetic ( sM ) surface 

currents at the interface between the air and the object. The 
expressions of the equivalent currents depending only on the 
incident field are as  
local surface normal vector of the object. The total radiation of 
these fictive currents in the presence of the object gives the 
scattered field from the object. In order to calculate the 

radiation of surface currents, the electric (EJG ) and magnetic 

( EMG ) Green's functions associated with the interface 
between two semi-infinite media are used. The convolution 
integral of the Green’s functions with the surface currents 
gives the reflected field at each point in space: 
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The detailed expressions and explanation on the difference 
between this type of Green’s function and the free space 
Green’s functions can also be found in  [16].  

Like any other asymptotic method, it is important to 
highlight the validity domain in the first place. The total 
radiation is calculated assuming that the surface of the object 
is large enough so that the edges do not perturb the radiation 
of the elementary dipoles. Given this assumption, the 
diffracting object has to be large enough (a few wavelengths) 
and the grazing observation angles cannot be covered. The 
minimum observation distance is directly related to the 
accuracy of the asymptotic development of the Sommerfeld 
integral in the Green's functions expression. For not too low 
permittivities, the observation distance can be chosen from 
one wavelength of the diffracting object and given the 
working frequencies (a few gigahertz), reflected electric field 
can be calculated with a very good precision in any diffraction 
zone of the building going from very near-field of the building 
to its far-field.  

B. Model 

The presented Green's functions are associated with the 
interface between two semi-infinite media. A 2D model can 
naturally be used for building facades. The choice of semi-
infinite Green’s functions applied to building walls can be 
justified by the fact that at working frequencies (about 1GHz 
and beyond), the losses through the wall are large enough so 
that the wall be considered as a semi-infinite medium. 
However for windows with thin or multilayered glass parts 
which present very low loss, the semi-infinite assumption is 
no longer valid.  In this case, we adopt a mathematical model 
 [17] which allows applying the same type of Green's functions 
on stratified media by introducing an equivalent permittivity. 
In this way and for each incidence angle, the multilayered 
dielectric is replaced by a semi-infinite medium with an 
equivalent complex permittivity having the same reflection 
properties as the original medium. Obviously, the complex 
permittivity does not necessarily represent a physical medium 
and the solution is only valid in the reflection problem and not 
in the transmission one. Consequently, the building facade can 



AP1403-0366 3

eventually be described by a 2.5D model with large scale 
discontinuities.  

In this paper, we consider 2D concrete-glass facades with 
variable physical and geometrical properties, so 3D 
geometries (e.g. balconies) are not treated. Sources of 
uncertainty in urban environment being numerous, we restrict 
the study to those coming from the architectural properties of 
the building; consequently we do not study the uncertainty on 
the source (e.g. radiating antennas) and the excitation is 
considered to be a plane wave. For the same reason, the direct 
path of the wave propagation, from the emitter to the receiver, 
or other indirect paths (e.g. ground reflection) is not taken into 
account because it does not involve buildings as reflecting 
objects. 

C. A few deterministic results 

Before integrating the stochastic approaches in the 
simulator, it is interesting to remind a few deterministic key 
results for the scattered field in the vicinity of the building. 
We consider the generic 12 m×12 m concrete-glass building 
profile presented in Fig. 1. The nominal parameter values are 
W=H=1.25m, D1=D2=0.6m and D3=D4=0.5m while the 
relative concrete and glass permittivities are equal εrC=7 and 
εrG=3.5. Later in the statistical studies, we will see that these 
values present simply the mean of the uniformly distributed 
parameters.  

 
Fig. 1. Generic concrete-glass building facade presented  

At first, the facade is illuminated by a TE polarized plane 
wave at 900 MHz in normal (θi=0°) incidence and the 
reflected electric field is calculated in specular direction and in 
different diffraction zones of the building facade. The 
amplitude of the reflected electric field as a function of the 
observation distance is presented in Fig. 2. The observation 
distances can be referenced according to the definition of 
standard radiation/diffraction zones of a radiating/diffracting 
object. Fig. 2 also summarizes some of the most important 
existing definitions  [18]- [21] where D represents the largest 
dimension of the building and λ the free-space wavelength. 

 
Fig. 2. Evolution of the amplitude of the reflected electric field in specular 
direction as a function of the observation distance from the generic building  

As expected, in the very near-field of the building, the 
reflected electric field goes through a highly fluctuated zone. 
The variation becomes smoother further and the maximum 
radiation occurs before the end of the Rayleigh zone. After 
this peak, the amplitude decreases continuously through the 
intermediate zone (called Fresnel) into the far-field region.  

The second key result shows the angular distribution of the 
electric field at a given distance. The plane wave is normally 
incident to the building facade in Fig. 1 at 900 MHz and the 
scattered field is observed at 300 m from the building in 
Fresnel zone as a function of the observation angle. In Fig. 3, 
we notice that the scattered electric field presents a thin main 
lobe, given the large size of the building at this frequency 
(36 λ). The field amplitude falls off rapidly so that after a few 
side lobes the received field becomes significantly low. Given 
the directivity of the building, the more grazing observation 
angles are thus not shown in this figure. Similar to the first 
result, the next section describes the influence of the input 
random parameters on the angular distribution of the electric 
field. 

 
Fig. 3. Evolution of the amplitude of the reflected electric field at 300 m from 
the generic building and in non-specular directions 
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Fig. 4. Electric field overlay in the vicinity of the generic building and in the 
incidence plane 

As a final result for the generic building profile, Fig. 4 
presents the scattered field overlay in the incidence plane. The 
complexity of different diffraction zones of the building, in 
specular and non-specular directions, is very well observable 
in this figure. We will show in the next section how the 
uncertainty in the input parameters influence the amplitude of 
the scattered field and how the propagation of uncertainty can 
be studied, given the nature of the fluctuations in different 
diffraction zones. It is worth noting that for a given profile and 
with the computer used for our development, a single 
simulation with a fixed incidence and observation angle at a 
given distance takes approximately 3 seconds for a building 
discretization equal to 5 mm. 

III.  STATISTICAL APPROACH USING POLYNOMIAL CHAOS 

EXPANSION 

A first step in clarifying the complex mechanism between 
the inputs and the system response would be to underline the 
most influent parameters in a given configuration. In a very 
complex system with a large number of input random 
variables, this stage allows a smart elimination of the less 
influent parameters and thus a simplification of the whole 
process. Different types of multivariate sensitivity analysis can 
be performed  [22]. It is important to note that some techniques 
provide the first order sensitivity indices where the influence 
of each input parameter on the system output is estimated. For 
many systems, this might prove to be sufficient but for some 
physical mechanisms the relation between the input and output 
reveals to be much more complicated, in this case a second or 
third order sensitivity analysis might be needed. This means 
that the separate impact of some input parameters is less 
important than their simultaneous effect. Parallel to the 
sensitivity analysis, some important statistical moments such 

as mean, variance, etc. can also be obtained. These results 
have a variable precision depending on the model, the sample 
size, the selected approach and the desired statistical moment. 
Finally in some cases, one can be interested in the total output 
distribution which is the most comprehensive representation of 
the process. Given a limited number of sample points, not all 
stochastic approaches can provide this amount of information 
concerning the system output including higher order statistical 
moments, rare events, etc. In this section, we present the 
polynomial chaos expansion which is a good candidate for a 
parsimonious able to provide with various types of statistical 
information. 

 Let us consider an input random vector X = [X1, X2, ... , Xm 
] and the random output related to the input parameters by a 

physical model Y = M (X). The polynomial chaos (PC) is an 

advanced statistical method that gives a meta-model of the 
physical model by the polynomial expansion, provided that the 
input parameters are independent  [23]:  

 
� � ∑ ������	�∈��  (4) 
  
where ],...,[ 1 Mαα=α is the multi-index, 

α
ψ  are multivariate 

orthogonal polynomials and 
α

a  are unknown coefficients to 

be calculated. If the input random variables follow uniform 
distributions in the interval [-1, 1], the polynomials 
constituting the basis of the probabilistic space are of 
Legendre type  [24]. In this paper, in order to calculate the 
unknown coefficients, the expansion is truncated keeping a 
given set of polynomials whose multi-indices belong to a 
subset 
 ⊂ ��. Thus a regression problem is obtained: 
 
� � ∑ ������	�∈
  (5) 
 

To solve this regression problem, the coefficients of the 
truncated expansion are estimated by minimizing the mean 
square error between the actual physical model computed at a 
given point of the experimental design and the truncated 
polynomial approximation of the latter equation, i.e. an 
ordinary least square resolution is employed. Let us consider 
the following experimental design of N input points: � �
����	 …���		�, the coefficients of the truncated expansion are 
therefore approximated by the ordinary least-square estimator: 
 
�� � 	 ����	����� (6) 
 
where �� � ���� �∈


!  is the vector of the estimated coefficients, 

� � ���"�
��	#…��"�

��	#�
!

�∈

 is the matrix of the 

polynomials computed at � and � � �$"���	#…$"���	#�
!
is 

the vector of the response of the physical model at �. This 
regression solution would be less demanding in computational 
resources compared to the solution based on the projection of 
the expansion on the subspace associated to the coefficients of 
interest  [25]. We bring to attention that this approach tends to 
build an experimental design in which the number of points 
will be limited by the conditioning of the least square 
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information matrix and so by the number of polynomials kept 
in the truncation. Knowing that the truncation will certainly 
impact the quality of the meta-model, different types of 
truncation can be suggested. Besides, one needs to take on an 
iterative experimental design for which the number of points 
can be adjusted according to the desired quality of the meta-
model. In this paper Latin Hypercube Sampling (LHS design) 
will be used and will be iteratively increased by Nested Latin 
Hypercube Sampling (NLHS) technique [23]. 

A. Truncation 

In a full PC expansion, the infinite sum in equation (4) is 
reduced to a finite number P of polynomials. The set 

{ }p≤≤ α
α

0,ψ  represents all 
α

ψ which are kept in the 

truncation where p is the chosen maximal total degree of the 
retained polynomials. The number P is related to the degree p 
and the number m of input variables by  [25]: 








 +
=

p

pm
P    (7) 

If the dimension of the vector of input parameters increases 
and higher order polynomials are included, the full expansion 
meets a difficulty concerning its computational efficiency 
according to a large number of simulations in the experimental 
design. In this case, another type of truncation which results in 
a sparse polynomial chaos expansion seems to be more 
appropriate. In this second technique which is called the Least 
Angle Regression selection (LARS), only polynomials with 
the most significant impact on the model output are kept in the 
expansion  [26],  [27]. Thus this method provides a sparse 
representation of the physical model. The purpose is to 
iteratively select among a large full truncation the most 
significant polynomials depending on their correlation with 
the residual of the current meta-model. The used selection 
algorithm is detailed in  [26]. As the most influent polynomials 
are added iteratively to the truncation, it provides a collection 
of possible truncation whose size also increases iteratively. 
The least-square estimation of the coefficients is therefore 
performed for each possible set to generate as many meta-
models as possible while their quality needs to be assessed.  

B. Quality assessment 

In this paper, we use the so-called leave-one-out cross 
validation (LOOCV) technique  [28]. Thereby, one point is 
taken out of the experimental design. The meta-model is 
constructed using the remaining points and the prediction error 
is calculated for the point which was set aside: 

)(ˆ)( )()()()( iiii xMxM −−=∆   (8) 

where )(ix is the left-out point, )( )(ixM is the output value of 

the physical model for the point and )(ˆ iM − is the meta-model 
obtained from the remaining points. The leave-one-out (LOO) 
error is calculated by repeating the procedure for each and 
every point in the experimental design. 

∑
=

∆=
N

i

i

N 1

)(
LOO

21
Err  (9) 

where N is the total number of points in the experimental 
design. Using this error, a determination coefficient can be 
derived  [25]:  

)(Var

Err
1Q LOO2

Y
−=  (10) 

where Var(Y) is the estimated variance of the output sample Y. 

The closer 2Q gets to one, the better is the quality of the meta-
model in terms of generalization. The comparative study in 
 [28] shows that overall, the LOOCV technique performs well 
in terms of generalization error bias. According to the desired 
Q2, the number and order of polynomials that are kept in the 
expansion will vary. If the LOOCV is used to assess the 
accuracy of the meta-model, it is also used to select the set of 
polynomials kept in the truncation providing the most accurate 
meta-model. In the LARS methodology described previously, 
the most influent polynomials are selected iteratively and 
added in the truncation. A LOOCV is therefore performed at 
each step of the LARS selection to assess the accuracy of the 
generated meta-models. In fact, because of a low number of 
points in the experimental design, the addition of two many 
LARS polynomials in the truncation could lead to an over-
fitting phenomenon. The number of LARS polynomials 
retained in the truncation is eventually the one that provides 
the higher Q2. Depending on the nature of physical process, 
this may result in a heavy calculation process. 

C. Global sensitivity and signature analysis 

Global sensitivity analysis aims at assessing the relative 
importance of each input parameter onto the output of the 
physical model. Sobol’ indices  [29] are widely used in this 
context. These sensitivity indices are usually computed by 
Monte Carlo simulation but from a polynomial chaos 
expansion, it is possible to compute global sensitivity indices 
of the model response related to the input parameters with a 
minimum computational effort  [30],  [31]. Let consider the PC 
expansion presented in (5), where 
 ⊂ ℕ

� represents the set 
of multi-indices α corresponding to the polynomials kept in 
the truncation. The total Sobol’ index to the input parameter Xi 
is then estimated by: 

[ ]∑
∑

∈

∈=
0α

α

α
α

\
2

2

T
iS

A

A

a

a
i  (11)  

where the denominator is the variance of the output, i.e. the 
sum of squares of all PC coefficients excluding 0a

representing the mean. Ai denotes the set of all multi-indices 

belonging to A with a non zero i-th component: 

{ }0, ≠∈= iiA αα A  (12) 

In other words, the nominator represents the sum of squares of 
all PC coefficients for which the input parameter Xi is present 
in the expression of the multivariate polynomial. 

Signature analysis is another way of assessing the relative 
importance of each input parameter in the output variance 
which is a direct result of the meta-model post processing. 
Considering centered and normalized polynomial, the variance 
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of the meta-model is assessed in terms of each polynomial. To 
achieve such objective, one computes the relative magnitude 
of each coefficient. The relative magnitude of the coefficient 

2
)(ia

α
is defined as follow: 

 
[ ]∑ ∈

=
0α

α

α

\
2

2
)(

is
A

a

a i  (13) 

Where the denominator is the output variance as before and 
the numerator is simply the square of the coefficient of the i th  
polynomial in the expansion. In this way, the importance of 
each parameter is assessed through the amplitude of the 
polynomials involving that parameter.  Yet the complexity of 
the phenomenon can be evaluated by the order and the 
amplitude of the higher-order polynomials. The nature of the 
interaction between parameters can be brought to light by 
looking into the relative order of the parameters composing 
the polynomial (which is not allowed by a crude sensitivity 
analysis). Thus a finer physical interpretation can be 
conducted from the polynomial-chaos meta-model.  

IV.  NUMERICAL RESULTS 

Although limited to architectural properties, several 
parameters can be identified whose variation may influence 
the scattered field and create an uncertainty on the calculated 
scattered field. In this study, we have chosen 8 random 
variables among all possible architectural variations. These 
parameters are defined for the generic 12 m×12 m concrete-
glass building illustrated in Fig. 1. 

In order to cover all possible values for different input 
parameters, no special hypothesis has been taken for the 
statistical distribution and all parameters are supposed to have 
a uniform variation over the authorized interval. The 8 
parameters are as follows: 

− Concrete relative permittivity: UεC = [5, 9]  
− Glass relative permittivity:  UεG = [2, 5] 
− Width of windows: UW = [0.5, 2] m 
− Height of windows: UH = [0.5, 2] m 
− Horizontal distance of windows from the vertical edge of 

the building: UD1 = [0.2, 1] m 
− Vertical distance of windows from the horizontal edge of 

the building: UD2 = [0.2, 1] m 
− Horizontal distance between windows in each block: 

UD3 = [0, 1] m 
− Vertical distance between windows in each block: 

UD4 = [0, 1] m 
 

It is important to note that given the large variation intervals 
of the parameters, various building profiles can be generated, 
both from the geometrical and electrical point of view. The 
building in Fig. 1 is presented for the mean values of 
geometrical parameters; two extreme profiles are also shown 
in Fig. 5. In Fig. 5 (b), for the minimum value of parameters, 
the block of four windows in the corners are merged and the 
center of the facade is clear. In Fig. 5 (a), for the maximum 
value of parameters, four windows are merged in the center of 
the facade making a big bay window. 

 

 
(a)                                              (b) 

Fig. 5. Building profiles for (a) maximum (b) minimum values of geometrical 
parameters (W, H, D1, D2, D3 and D4) 

The random variation of these parameters on one building 
(for example by a frequency change or due to an insufficient 
knowledge of the exact properties) or from one building to 
another, can cause large or small modifications in the wave 
propagation in the vicinity of buildings. As we will see, the 
impact would be more or less important according to different 
conditions such as wave polarization, incidence and 
observation angle or distance. As the scattered field behavior 
would be very different for each given condition, the latter 
parameters cannot be treated as random variables. In the 
following studies, we consider different scenarios in which the 
above parameters are fixed and the 8 random variables 
presented before change within their authorized intervals.  

In this section, we describe two scenarios for the scattering 
assessment in the vicinity of the building. In both cases, a 
sufficient number of building profiles need to be generated. 
Here the sufficient number of samples is achieved when an 
acceptable determination coefficient (Q2) is obtained for the 
polynomial chaos meta-model built with LARS selection. This 
coefficient is directly related to the acceptable root mean 
square error for the phenomenon under consideration giving a 
more physical interpretation of the model quality.  

A. Observation distance 

Each random building profile is illuminated by a TE 
polarized plane wave at 900 MHz. The incidence and 
observation angles are fixed (θi=θr=0°).  A few number of 
observation distances, from 50 m to 800 m, representative of 
different diffraction zones, are selected to be studied.  

The number of polynomials increases with the number of 
input parameters and the complexity of the model. Given the 
dramatic field fluctuations in the closest diffraction zone of the 
building, the chaos polynomial expansion becomes applicable 
only at the end of the very near-field region (54 m for a 12 m 
by 12 m building at 900 MHz). Indeed, below this limit, the 
high complexity of the output process results in a too low 
accuracy for a reasonable number of points.   The first results 
can be obtained for the reflected field at 50 m from the 
building. The convergence of the PC expansion is verified for 
this worst case distance in Fig. 6. We can observe that an 
acceptable Q2=0.95 can be obtained using 300 samples. For 
this distance, the total number of polynomials selected by 
LARS algorithm is P=178 from the total number of 

)!!/()!( mpmpP +=  where p=15. This experimental design is 
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kept for the other observation distances and guarantees the 
convergence of the technique for the further diffraction zones 
where the variation of the electric field is quite smooth. For a 
better comprehension, the Root Mean Square Error estimation 
associated to the value of Q²=0.95 obtained for 300 simulation 
points is equal to: RMSELOO = 7.3×10-3 V/m. 

 
Fig. 6. Evolution of the determination coefficient as a function of the number 
of sample points in the LHS design calculated at 50 m 

Using this meta-model, the confidence intervals are 
calculated every 50 meters from the generic building facade. 
Fig. 7 shows the median and the distance between the 0.025 
and 0.975 quantiles of the electric field superposed to the 
deterministic curve of Fig. 2 obtained by the mean values of 
the input architectural parameters. For a few distances the 
quantiles are compared to a 20000-sample Monte Carlo 
simulation. The medians indicated by a circle are very close to 
the mean values. The confidence interval decreases as the 
observation distance increases. This can be rather intuitive; for 
a far observer the field reflected from the building is a result 
of the influence of a set of physical and geometrical 
parameters attenuated by the distance which has the role of a 
predominant factor. This result shows the joint influence of all 
variables, yet we cannot distinguish which parameters are 
more influent in different region. A sensitivity analysis of the 
result can thus be useful.  

 
Fig. 7. Median, 0.025 and 0.975 quantiles of the reflected electric field using 
the meta-model constructed by the experimental design of 300 samples in 
different diffraction zones 

As described in the previous section, the total Sobol’ 
indices describe the importance of each input variable on the 
output variance. The total Sobol’ indices are calculated for 
each input parameter and presented in Table I arranged in 
descending order. It appears that at 100 m the concrete 
permittivity is the input parameter that has the greatest 
influence on the output variance followed by the height and 
the width of the windows. The permittivity of glass appears far 
after these 3 variables. Other input parameters, involving the 
distribution of windows, do not have great influence. These 
results are in accordance with those of  [14] where Sobol’ 
indices were computed with perturbation technique. 

Further details of the output variance expansion by 
computing the signature analysis of the expansion can now be 
presented. Fig. 8 makes a summary of the signature analysis 
for the most influent polynomials (only those which contribute 
for 95% of the output variance of the meta-model) at 100 
meters from the building. 

TABLE I 
TOTAL SOBOL’  INDICES FOR THE SPECULAR REFLECTION AT 100 M OF THE 

BUILDING FACADE 
Input parameter Total Sobol’ index 
SεC 

SH 

SW 

SεG 

SD1 

SD2 

SD4 
SD3 

0.5364 
0.2094 
0.2010 
0.0906 
0.0454 
0.0363 
0.0123 
0.0075 

Fig. 8 presents the polynomials selected by LARS 
algorithm and arranged with regard to the LARS selection 
order. The values of the relative magnitude of the coefficients 
of the corresponding polynomials are presented by the height 
of color bars and can be read over the left axis. The order of 
the polynomials is indicated by the width of the bars and their 
contents (in terms of input parameters) by different colors 
introduced in the legend. Consequently the weight of each 
input parameter can be easily determined by the colors 
composing the bars. For instance, consider a polynomial of 
chaos selected at the 10th position by LARS algorithm, 
involving the concrete permittivity (εG) at order 1 and the 
width of windows (W) at order 1. The resulting multivariate 
polynomial of chaos will be the product of the univariate 
Legendre polynomial of order 1 involving εG and the 
univariate Legendre polynomial of order 1 involving W. Thus 
the total order will be equal to 2. This polynomial is shown in 
Fig. 8 by a bar of width 2, composed of the two corresponding 
colors, each of which of width 1. The relative magnitude of 
this polynomial is represented by the height of the bar and is 
equal to 6×10-3. 
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Fig. 8. Signature analysis of the most influent polynomials in the LARS expansion associated to the order of polynomials and the weight of each input parameter 
calculated at 100 m from building facade 

As we see, only 6 input parameters appear in the pure order 
category. The vertical and horizontal distances between 
windows (D3, D4) are not part of the most important 
parameters which influence singly the reflected electric field 
form the building at this distance. Among the 6 present 
parameters, the concrete permittivity (εC) has the most 
important impact with an associated relative magnitude of 
0.51, followed by the dimensions of windows (H, W) with 
0.14 and 0.13 relative magnitudes. As for the higher order 
polynomials, the interactions are limited to 2 parameters 
among the first 4 parameters (εC, εG, W, H). All corresponding 
relative magnitudes are less important than the first order 
relative magnitudes, which means that the physical 
phenomenon has essentially a linear behavior with respect to 
the 6 first variables. We also point out that beyond this linear 
aspect, the most influent polynomials on output variance are 
the interaction polynomials and none of the pure order 
polynomials of level 2 appears in the list. Knowing that the 
reflected field behaves differently in different diffraction 
zones, the most influent parameters vary according to the 
distance. The relative magnitudes should thus be performed 
for different distances.  

With the best meta-model available as a polynomial 
expansion, we can easily obtain the statistical distribution of 
the reflected field at different distances. The probability 
density functions for a few observation distances are traced in 
Fig. 9. Given the quality of the model (Fig. 6), we expect that 
these distributions be very close to the reality. The results are 
compared to an enriched Monte Carlo simulation with 20000 
samples in the LHS design. It is important to remind that the 
PDF obtained by PC is a result of a meta-model constructed 
with 300 samples in the experimental design. As can be 
observed in Fig. 9, the distributions obtained from the PC 
expansions are almost exactly equal to the reference ones 
obtained by MCs. Note that the standard deviation is 
consistent with the confidence intervals obtained in Fig. 7. 

 
Fig. 9. Statistical distribution of the amplitude of the reflected electric field for 
a few number of observation distances obtained by Polynomial Chaos (PC) 
and Monte Carlo (MC)  

In order to highlight the slow convergence of the Monte 
Carlo method, the PC results are compared to that of a poor 
MC simulation. For two distances (r=50m and r=800m), the 
PC probability density functions are compared to two different 
runs for a 300-sample crude Monte Carlo in Fig. 10. We can 
observe that the pdf changes considerably between the first 
and the second run. For each different 300-run, we would 
obtain a quite different result among which we can eventually 
find a result which is close to the result predicted by PCE. We 
can conclude that the statistical moments do not converge for 
300 samples. In the Monte Carlo method, the higher the 
moment, the slower would be the convergence as a function of 
sample number. While an acceptable accuracy may be 
obtained for mean, whole distributions, especially the tails are 
far from being precise using 300 samples. In other words, the 
variance of the 300-sample estimators is not negligible and 
cannot be represented by the results of a single run. 
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Fig. 10. Probability density functions obtained by Polynomial Chaos (PC) and 
two different runs of crude Monte Carlo (MC) with 300 sample points 

B. Observation angle 

Each random building profile is illuminated by a TE 
polarized plane wave at 900 MHz and in normal incidence 
(θi=0°). The angular distribution of the electric field is studied 
at a fixed observation distance.   

The radiation pattern of the building facade is highly 
directive and the field level for the side lobes decreases 
rapidly (Fig. 3). We can fix a deviation limit from the specular 
direction (θr=0°) beyond which the field level is negligible. 
According to the distribution, θr=10° (in zy plane of Fig. 1) 
can be a reasonable limit in this study. As the field goes 
through different local maxima and minima and as the level is 
globally low, non-specular reflections present a challenge for 
the polynomial chaos expansion. For 10°, the evolution of the 
leave-one-out Q2 as a function of the number of samples in the 
experimental design is shown in Fig. 11. For the same meta-
model quality Q2=0.95 as the previous scenario, we need a 
larger sample size N=800.  We note that the Root Mean 
Square Error estimation associated to this Q value is equal 
2.4×10-3 V/m. The total number of polynomials selected by 
LARS algorithm in this case is P=434. For a few observation 
angles, the confidence intervals are calculated using the 800 
points in the LHS design and are superposed in Fig. 12 to the 
angular distribution of electric field obtained by the mean 
values of the input parameters of the building facade.  

 
Fig. 11. Evolution of the determination coefficient as a function of the number 
of sample points in the LHS design calculated at 100 m for θr=10° 

 
Fig. 12. Median, 0.025 and 0.975 quantiles of the reflected electric field using 
the experimental design of 800 samples at 100 m for different observation 
angles 

In order to complete the information conveyed by the 
confidence intervals, signature and relative magnitude 
analyses can be added to identify the most important 
parameters. A similar illustration to the previous scenario is 
presented in Table II and Fig. 13 for the largest studied 
observation angle of (θr=10°) at 100 m from the building 
facade. In Table II are presented the total Sobol' indices for 
this case. The relative importance of the input parameters is 
not the same as the previous study. Particularly variables 
involving lateral modifications in the geometry (W, D1 and 
D3) become clearly more important than the previous study.  

TABLE II   
TOTAL SOBOL’  INDICES FOR THE NON SPECULAR REFLECTION (10°) AT 100 M 

OF THE BUILDING FACADE 
Input parameter Total Sobol’ index 
SεC 

SD1 

SW 

SεG 

SD3 

SH 

SD4 

SD2 

0.3415 
0.3031 
0.2950 
0.2346 
0.1758 
0.1309 
0.0807 
0.0611 

 
Concerning the signature analysis presented in Fig. 13, the 

interpretation is much more complicated than the previous 
study. In order to simplify the readability of the graph, we 
deliberately fixed the importance of the polynomials to 80% of 
the output variance.  For instance, consider a polynomial of 
chaos selected at 15th position by LARS algorithm, involving 
the width of windows (W) at order 2 and the height of 
windows (H) at order 1. The resulting multivariate polynomial 
of chaos will be the product of the univariate Legendre 
polynomial of order 2 involving W and the univariate 
Legendre polynomial of order 1 involving H. Thus the total 
order will be equal to 3 and the polynomial will be represented 
at 15th position in this figure by a bar of width 3 and 
composed of the two corresponding colors. The relative 
magnitude of this polynomial is represented by the bar’s 
height and is equal to 15×10-3. 
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Fig. 13. Signature analysis of the most influent polynomials in the LARS expansion associated to the order of polynomials and the weight of each input 
parameter calculated for θr=10° at 100m from building facade 

We observe that in non-specular reflection, the global level 
of sensitivity indices is lower than the specular reflection 
while the order of the most influent polynomials varies from a 
pure to the 6th order. All of the input parameters except for D2 
appear in the pure order category among which the concrete 
and glass permittivities (εC, εG)  occupy the first ranks 
followed by the lateral distance of windows from the edge of 
the building (D1) and the width of the windows (W). Both of 
parameters represent horizontal distances. Given the deviation 
of the observation point from the specular direction and the 
wave polarization, the influence of horizontal distances and 
dimensions is obviously more important than that of a vertical 
distance or dimension. As far as higher order polynomials are 
concerned, we note a strong presence of the width of the 
windows (W) in different interactions and a rare presence of 
the vertical distances (D2 and D4). Although the level of each 
sensitivity index of higher order polynomial is low when 
considered separately, some of them are of the same order as 
that of the pure order polynomials. It is important to note that 
if in this case we display the polynomials participating up to 
95% of output variance, as in the previous scenario, the figure 
would be much more loaded with higher order polynomials up 
to order 15. As mentioned previously, for the sake of 
comparison between the model qualities in the two scenarios, 
we built the second model using 800 samples. Given the low 
amplitude of electric field in the non-specular case, we 
examined the validity of results by 1200 samples which results 
in a higher Q2 (Fig. 11). No fundamental differences have 
been observed except that the two Sobol’ indices SεC  and SW 
were interchanged in Table II and the signature analysis of 
Fig. 13 stops at 6th order polynomials. Since the first three 
sensitivity indices are of the same order, the conclusions 
remain the same. 

The statistical distribution of the reflected electric field at 
100m from the building is presented for different observation 

angles in Fig. 14 and compared to a 20000-sample Monte 
Carlo simulation. As expected, the probability density function 
for large non-specular angles (6° and 10°) is very narrow 
resulting in low dispersion. Given the very small value of the 
electric field for these angles, no significant information can 
be obtained from the field distribution. For θr=2°, the 
distribution is similar to the specular reflection and the 
signature analysis is less complex than those of large 
reflection angles. In this case, the polynomials contributing up 
to 95% of output variance are of pure order and first order 
interaction. The more the observation angle deviates from the 
specular direction, the larger gets the order of most important 
polynomials. Given the wave polarization and the observation 
plane (zy), this will more involve the horizontal geometrical 
parameters W, D3 and D1 compared to the specular reflection. 

 

 

Fig. 14. Statistical distribution of the amplitude of the reflected electric field 
for a few number of observation angles obtained by PC 
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V. CONCLUSION 

In this paper we have implemented the polynomial chaos 
expansion in order to estimate the influence of uncertainties in 
geometrical and physical properties of a building facade on the 
scattered electric field. This technique allows an efficient 
multivariate sensitivity analysis for a complex problem. The 
number of chosen input random variables is 8 and using this 
technique, the number of required input samples has been 
reduced by more than one order of magnitude compared to a 
Monte Carlo approach for the same precision in output 
distribution. Presented confidence intervals of the scattered 
field show considerable variation in different scenarios and 
different diffraction zones. By adding a statistical dimension 
to a deterministic calculation and using the techniques of the 
propagation of uncertainties in a complex scenario, field 
distribution as an output of a wave propagation simulator can 
be presented by a confidence interval making the result more 
meaningful for subsequent decision making. 
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