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Abstract—Device-to-device (D2D) communications can en-
hance spectrum and energy efficiency due to direct proximity
communication and frequency reuse. However, such performance
enhancement is limited by mutual interference and energy
availability, especially when the deployment of D2D links is ultra-
dense. In this paper, we present a distributed power control
method for ultra-dense D2D communications underlaying cellu-
lar communications. In this power control method, in addition to
the remaining battery energy of the D2D transmitter, we consider
the effects of both the interference caused by the generic D2D
transmitter to others and interference from all others’ caused
to the generic D2D receiver. We formulate a mean-field game
(MFG) theoretic framework with the interference mean-field
approximation. We design the cost function combining both the
performance of the D2D communication and cost for transmit
power at the D2D transmitter. Within the MFG framework, we
derive the related Hamilton-Jacobi-Bellman (HJB) and Fokker-
Planck-Kolmogorov (FPK) equations. Then, a novel energy and
interference aware power control policy is proposed, which is
based on the Lax-Friedrichs scheme and the Lagrange relaxation.
The numerical results are presented to demonstrate the spectrum
and energy efficiency performances of our proposed approach.

Index Terms—Device-to-device communication, mean field
game, spectrum efficiency, energy efficiency.

I. INTRODUCTION

Device-to-device (D2D) communications underlying con-
ventional cellular networks improve energy and spectrum
efficiency [1]. These beneficial opportunities are achieved due
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to the proximity between the devices and frequency reuse,
however, these benefits also come with technical challenges
[2]. For instance, both intra-tier and inter-tier interferences
exist in D2D communications, which affect the system per-
formance, and thus need to be mitigated.

Since D2D devices are generally powered by batteries,
extending the battery life and saving energy are important to
improve users’ experience. Consequently, the performance of
D2D communications is limited by mutual interference and
energy availability, in particular, when the deployment of D2D
links is ultra-dense [3]–[5]. To optimize both spectrum and
energy efficiency, different techniques have been designed to
mitigate interference and save energy [5]–[7]. For instance,
interference coordination [5], interference mitigation [6], and
resource management [7] have been investigated aiming at
improving the spectrum and energy efficiency. In addition,
power control is critical to D2D communications [8]–[12], and
it is proved that optimal power control can both save energy
and mitigate interference. Power control is an interactive
process among different D2D players, which is due to the
coupled interference relationships in a full spectrum reuse
scenario.

To characterize the dynamic interactive power control, game
theory has been extensively used in the literature. In particular,
game theory has been used to model competition among trans-
mitters and interference coordination, analyze the strategic be-
havior of transmitters, and design distributed algorithms. Both
cooperative game and non-cooperative game theory have found
applications into D2D communications [14]–[23]. However,
these classical game models are difficult to analyze when the
number of D2D links becomes large.

Mean filed games (MFGs) are promising alternatives to
model and analyze a large-scale D2D communication network,
where an MFG models individual player’s interaction with
the average effect of the collective behavior of the players
[24]–[26]. This collective behavior is modelled by a mean
field, which denotes the statistical distribution of the consid-
ered system state. In this case, interactions among individual
players become the interactions of the considered player with
the mean field, which can be modelled by a Hamilton-Jacobi-
Bellman (HJB) equation in the mean field game. The dynamics
of the mean field according to the players’ actions can be mod-
elled by a Fokker-Planck-Kolmogorov (FPK) equation. These
coupled FPK and HJB equations are also called forward and
backward equations, respectively. The mean field equilibrium
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of an MFG can be obtained by solving these two equations
[27]–[29], [31]–[33].

MFGs have found wide applications, such as in cognitive
radio networks [27], green power control [28], heterogeneous
cellular networks [29], [31], cloud-based networks [32], and
smart power grids [33]. The works in references [29], [31]
are the most closely related works. In [29], a mean filed
approximation method was used to develop power control
methods for small cell base stations (BSs) in a two-tier
dense HetNet. The model did not consider the HJB and FPK
equations and sub-optimal solutions were obtained. The work
in [31] modelled the downlink power control problem for
small cell BSs in a two-tier HetNet as an MFG considering
the remaining battery power at an SBS as the system state.
Alternatively to [29] and [31], we propose a distributed power
control method for D2D transmitters that is both interference
and energy-aware. The MFG model used here considers a
two-dimensional system state in contrast to a one-dimensional
system state as in [31], which makes the MFG model more
complex and hence more difficult to solve. The contributions
of this work can be summarized as follows:
(1) An MFG framework for ultra-dense D2D networks:

We formulate an MFG theoretic framework for ultra-
dense D2D networks, where we assume that the number
of D2D links can approach infinity. In this framework, we
jointly consider the remaining energy at a D2D transmit-
ter and the interference caused by the D2D transmitter
to the other links as the state space and an optimal
distributed power control policy is obtained.

(2) Energy and interference-aware problem formulation:
In the proposed MFG framework, the problem is for-
mulated as a cost minimization problem with two kinds
of interference into consideration. The interference from
other D2D links to the generic D2D link is investigated in
the cost function, while the interference dynamics intro-
duced by the generic D2D transmitter to other D2D links
is regarded as one of the constraints. Another constraint is
the remaining energy level at the generic D2D transmitter.
To capture the effects of both types of interferences, we
use a mean-field approximation approach. This facilitates
designing a distributed power control policy for a generic
D2D transmitter. Moreover, this leads to a social optimal
power control 1.

(3) Distributed iterative algorithm to obtain the MFG
equilibrium: We derive the corresponding HJB and FPK
equations for the presented D2D MFG framework. A joint
finite difference algorithm based on the Lax-Friedrichs
scheme and Lagrange relaxation is proposed to solve the
coupled HJB and FPK equations, respectively.

(4) Improved spectrum and energy efficiency: The numer-
ical results are presented to characterize the mean field

1Traditional social optimal solution is the solution that gives the highest
aggregate payoff or minimum aggregate cost of all players, e.g., using the
minimum aggregate cost as an example, min

∑
∀i ci(t) where ci is the cost

function of user i. In our work, distributed social optimal means that each
player minimizes her own cost function but with the effects of interference
µi(t) to others into consideration, thus resulting in the distributed optimization
problem min{ci(t) − Aµi(t)}, where A is the introduced Lagrangian
parameter for the interference effects µi(t) to others.

TABLE I
LIST OF PARAMETERS

Symbol Definition
N Set of D2D links
N Number of D2D links
i, j Index of D2D links
pi(t) Power of D2D link i at time t
pj(t) Power of D2D link j at time t
gi,j Channel gain from D2D link i to j
gi,o Channel gain from D2D link i to o
gj,i Channel gain from D2D link j to i
Ii→ Interference from D2D link i to others j 6= i
Ii→o Interference from D2D link i to macrocell player o
I→i Interference to D2D link i from others j 6= i

distributions and the power control policy of a generic
D2D transmitter. The proposed algorithm can improve
both spectrum and energy efficiency when compared to
some benchmark schemes.

The remainder of this paper is organized as follows. In
Section II, we survey the related work. We introduce the
system model and formulate the problem in Section III. A D2D
differential game is presented in Section VI, and converted
to the optimal control problem in Section V. With the ultra-
dense deployment case, we propose the D2D mean field game
in Section VI. Then, in Section VII, we design an iteration
algorithm to solve it. Numerical results are given in Section
VIII, and finally we conclude the paper in Section IX. A list
of commonly used notations throughout this paper is shown
in Table I.

II. RELATED WORK

Power control for D2D communications has been investi-
gated in [8]–[12]. More specially, an iterative combinatorial
auction-based power and channel allocation algorithm was
proposed to improve energy efficiency in [8], where the
Peukert’s law was employed to characterize the non-linear
effects of the battery lifetime. In [9], a joint spectrum sharing
and power allocation problem was formulated as a non-
convex optimization problem with perfect global channel state
information assumption. With local awareness of the interfer-
ence, multiuser diversity was used to minimize interference
in [11]. The authors in [12] developed a distributed power
control algorithm, where it relies on the large-scale path-
loss measurements rather than requiring full channel states.
It was concluded that proper power control can mitigate the
interference, thus increasing the sum rate [10].

The optimization models in [8]–[12] do not characterize the
rational behaviors of the D2D transmitters and the dynamics.
Therefore, game theory has been used to model the problem
of power control and resource management in D2D commu-
nications [15]–[19]. For instance, the power control problem
in D2D communications can be modelled as both cooperative
games and non-cooperative games [19]. Meanwhile, the case
of incomplete information was modelled as an exact potential
game in [15]. To jointly address the spectrum utilization and
user-controlled mode selection, the authors in [16] proposed a
dynamic Stackelberg game framework, where the base station
and the potential D2D user act as the leader and the follower,
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respectively. The authors in [17] investigated a repeated game
theoretic resource allocation, where a D2D link was located in
the overlapping area of two neighboring cells. In [18], a de-
centralized framework of joint spectrum allocation and power
control was proposed to coordinate interference between the
D2D layer and the cellular layer.

The authors in [20] formed D2D clusters using the dis-
tributed merge-and-split algorithm from the coalition game
theory and defined a relaxation factor to give a constraint
on total energy consumption for each cluster. In [21], two
types of games were considered including the non-cooperative
Stackelberg and the cooperative Nash bargaining game. The
authors in [22] introduced a spectrum sharing model for D2D
links which was analyzed by using a Bayesian non-transferable
utility overlapping coalition formation game model. The au-
thors in [23] developed a hierarchical framework based on a
layered coalitional game for operator-controlled D2D networks
with multiple D2D operators at the upper layer and a group
of devices at the lower layer.

In summary, both non-cooperative and cooperative games
have been widely used to derive distributed resource allocation
techniques. For example, potential games [15], Stackelberg
games [16], repeated games [17], pricing-based games [18]
have found extensive applications. On the other hand, coop-
erative games in [19], [20], Bayesian overlapping coalition
games [22], the layered coalition games [23], and Nash
bargaining cooperative games [21] are cooperative games. As
has been mentioned before, these conventional games model
the interaction of each player with every other player; however,
the analysis of a system with a large number of players
(e.g., an ultra-dense D2D network) can be complex with these
traditional game models.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an ultra-dense D2D communications network
where the D2D communication pairs share uplink resources
with some existing macrocell user equipments (MUEs). We
assume that there are N D2D pairs sharing the same channel
with the cellular uplink, as shown in Fig. 1. The term "ultra-
dense" implies the following:

• The number of D2D communication pairs, denoted by
N , is very large, that is, N → +∞;

• Full frequency reuse, i.e., the D2D communication pairs
use the same frequency;

• Most of the user devices select the D2D communication
mode, and there exist relatively a small number of macro-
cell users.

We consider the effects of both the interference of a generic
D2D transmitter introduced to others, and all others’ interfer-
ence cause to a generic D2D receiver. There are termed as
intra-tier and inter-tier interference, respectively. For instance,
the D2D transmitter D2DT1 communicating with its receiver
introduces intra-tier interference to the other D2D receivers as
shown in Fig. 1. Meanwhile, due to the full frequency reuse,
D2DT1 causes inter-tier interference link to the MUE. Here,
we define the interference introduced by player i, i ∈ N to

0H1%R

7
�'�' 5

�'�'

7
�'�' 5

�'�'

7
1'�' 5

1'�'

���J

���J

���J ���J

08(R

��RJ

��RJ

�1 RJ

�1 1J

Fig. 1. A D2D network with a large number of D2D links.

others j ∈ N , j 6= i at time t as

Ii→(t) =

N∑
j=1,j 6=i

pi(t)gi,j(t), (1)

where pi(t) is the transmit power corresponding to D2D pair
i, i ∈ N , and gi,j(t) defines the channel gain from the D2D
pair i’s transmitter to the D2D pair j’s receiver, j ∈ N , j 6= i.
Here, the terms pi(t) and gi,j(t) are positive. Therefore, (1)
gives the interference introduced by player i, i ∈ N to all
other D2D receivers at time t, where player i, i ∈ N is called
the generic D2D transmitter.

Meanwhile, the transmission of player i, i ∈ N also
introduces interference to player o, where we define the only
existing uplink MUE to Macrocell evolved node B (MeNB)
pair as player o. We define the inter-tier interference introduced
by player i to player o as

Ii→o(t) = pi(t)gi,o(t), (2)

where gi,o(t) is channel gain between the D2D pair i’s
transmitter and the MeNB.

Finally, the interference perceived by the D2D pair i at time
t, which is the interference introduced by other D2D links to
the generic D2D link i, is given as

I→i(t) =

N∑
j=1,j 6=i

pj(t)gj,i(t). (3)

Here, we assume that orthogonal channels are used for differ-
ent MUEs, and we do not consider any power control policy
at the macrocell layer. In this paper, our focus is on the power
control policy for the D2D transmitters.

The achieved signal-to-interference-plus-noise ratio (SINR)
at the receiver of D2D pair i at time t is

γi(t) =
pi(t)gi,i(t)

I→i(t) + σ2
, (4)

where σ2 is the thermal noise power.
With the above definition of SINR, the power control

problem can be summarized as follows: each player i (the
transmitter for D2D pair i) will determine the optimal power
control policy Q?i (t) (t ∈ [0, T ]) considering the interference
Ii→ introduced to others, the interference introduced by others
I→i, in addition to the remaining energy. Here the power
control policy is a series of power control actions. The power
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control problem can be formulated as a differential game due
to the interference dynamics and the energy dynamics [24]–
[29]. Different from the studies in [24]–[29], we formulate
a power control differential game with two-dimensional state
space and a new cost function.

IV. DIFFERENTIAL GAME MODEL FOR POWER CONTROL

The differential game model for power control in the D2D
network described above is defined as follows:

Definition 1: The D2D differential power control game
Gs for D2D transmitters is defined by a 5-tuple: Gs =
(N , {Pi}i∈N , {Si}i∈N , {Qi}i∈N , {ci}i∈N ), where

• Player set N : N = {1, ..., N} represents the player set
of densely-deployed D2D communication pairs. They are
rational policy makers in the D2D power control differ-
ential game. The number of D2D links N is arbitrarily
large.

• Set of actions {Pi}i∈N : This is the set of possible
transmit powers. Each transmitter determines the power
pi(t) ∈ {Pi} at any time t ∈ [0, T ] to minimize the cost
function (to be defined later).

• State space {Si}i∈N : We define the state of player i
as the combination of the interference introduced by the
D2D transmitter i to other D2D links and the remaining
energy at this D2D transmitter. Thus, we have two-
dimensional states.

• Control policy {Qi}i∈N : A power control policy is de-
noted by Qi(t), with t ∈ [0, T ], to minimize the average
cost over the time interval T with two-dimensional states.

• Cost function {ci}i∈N : We will define a novel cost func-
tion, where we consider both the achieved performance,
e.g., the SINR at the receiver of a generic D2D link and
the transmit power.

To determine the control policy {Qi}i∈N , we need to define
the state space {Si}i∈N and the cost function {ci}i∈N .

A. Two-Dimensional State Space

The state space is defined based on the intra-tier and inter-
tier interferences in (1) and (2), respectively, and the energy
usage dynamics.

1) Energy Usage Dynamics: The remaining energy state
Ei(t) of the player i at time t is equal to the amount of
available energy. Meanwhile, 0 ≤ Ei(t) ≤ Ei(0), where
Ei(0) is the energy at time 0. The power control at time t
should be any pi(t) ∈ [0, pmax], where pmax is the maximum
possible transmit power. Without loss of generality, we define
the evolution law of the remaining energy in the battery as

dEi(t) = −pi(t)dt, (5)

which means that energy Ei(t) of the battery deceases with
the transmit power consumption pi(t). At the same time, in
game Gs, each player i should also consider the impact of
interference on others.

2) Interference Dynamics: With intra-tier and inter-tier
interference defined in (1) and (2), respectively, we first define
the interference function that describes the interference caused
by the generic D2D transmitter to others as follows:

µi(t) = Ii→(t) + Ii→o(t), (6)

where (6) describes all the interference introduced by player
i to other D2D pairs j ∈ N , j 6= i and the only MUE o.
According to definitions in (1) and (2), we have

µi(t) =

N∑
j=1,j 6=i

pi(t)gi,j(t) + pi(t)gi,o(t). (7)

To simplify the notation, we represent (7) as

µi(t) = pi(t)εi(t), (8)

where εi(t) =
N∑

j=1,j 6=i
gi,j(t) + gi,o(t). From (8), the total

interference at time t to others depends on pi(t) and εi(t) at
time t. Therefore, we can define the interference state as

dµi(t) = εi(t)dpi(t) + pi(t)∂tεi(t). (9)

We will introduce the mean field approximation method to
estimate the channel gains εi, i ∈ N in the following section.

We define the following state space for player i:

si(t) = [Ei(t), µi(t)] , i ∈ N , (10)

where the interference caused by the generic D2D transmitter
to other D2D links is regarded as one of the state variables.

The interference state µi(t) in (9) of the generic D2D
transmitter will affect the strategy of the players of the MeNB
and the other D2D receivers, and all others’ interference
I→i(t) introduced to the generic receiver will affect the SINR
performance. To distinguish between these two interferences,
we denote them as State1 (which is one of the state vari-
ables) and State2, respectively. Note that the formulated cost
minimization problem considers both SINR performance and
cost due to transmit power. While the former is related to
the interference caused to the generic D2D receiver from all
the other transmitters, the latter is related to the interference
caused by the generic D2D transmitter to others (i.e., the
objective function of player i implicitly captures the effects
of µi). Therefore, the objective function is affected by the
considered interference states.

B. Cost Function

With the above definition of state space si(t), each D2D
transmitter i will determine the optimal power control policy
Q?i (t), with t ∈ [0, T ] to minimize the cost. The commu-
nication performance of the D2D pair i is characterized by
the SINR γi(t) defined in (4). We assume an identical SINR
threshold γth for all D2D communication pairs. Meanwhile,
each D2D communication pair prefers to minimizing the
power consumption, and finally the cost function is given by

ci(t) =
(
γi(t)− γth(t)

)2
+ λpi(t), (11)

where λ is introduced to balance the units of the achieved
SINR difference and the consumed power. It is easy to prove
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that the cost function ci(t), given by (11) is convex with
respect to pi(t).

V. OPTIMAL CONTROL PROBLEM AND ANALYSIS

With the cost function including both the achieved perfor-
mance and transmit power, the problem is formulated as the
cost minimization problem taking two kinds of interferences
and the remaining energy into consideration.

A. Optimal Control Problem

We consider the problem that each D2D pair i will deter-
mine the optimal power control policy Q?i (t), with t ∈ [0, T ]
to minimize the cost function ci(t), given by (10), during a
finite time horizon [0, T ]. The general optimal control problem
can be stated as follows:

Q?i (t) = arg min
pi(t)

E

[∫ T

0

ci(t)dt+ ci(T )

]
, (12)

where ci(T ) is the cost at time T . At this time, we define the
value function as follows:

ui(t, si(t)) = min
pi(t)

E

[∫ T

t

ci(t)dt+ ui(T, si(T ))

]
, t ∈ [0, T ] ,

(13)
where ui(T, si(T )) is a value at the final state si(T ) at
time T . With the defined two-dimensional states, we have the
following lemma 1.

Lemma 1: A power control profile Q?i (t) = p?i (t), for i ∈
N is the Nash equilibrium solution of Gs if and only if [31]

Q?i (t) = arg min
pi(t)

E

[∫ T

0

ci(pi(t), p?−i)dt+ ci(T )

]

subject to:

si(t) = [µi(t), Ei(t)] ,

dEi(t) = −pi(t)dt, and

dµi(t) = εi(t)dpi(t) + pi(t)∂tεi(t),

where p?−i denotes the transmit power vector of D2D links
except D2Di. None of the players can have a lower cost by
unilaterally deviating from the current power control policy.
The Nash equilibrium of the above power control differential
game can be obtained by solving the HJB equation associated
with each player in the optimal control theory. We will derive
the HJB equation later.

Proof: The conclusion is indirectly guaranteed by the
smoothness of the HJB function. Therefore, we first derive
the HJB equation, and then we prove that the smoothness of
the derived HJB equation guarantees the existence of Nash
equilibrium in the formulated differential game. The details
can be found in Lemma 2 and Theorem 1 presented below.

B. Analysis

According to optimal control theory followed by Bellman’s
optimality principle [26], the value function in (13) should
satisfy a partial differential equation which is a HJB equation.
The solution of the HJB equation is the value function, which
gives the minimum cost for a given dynamic system with an
associated cost function.

Lemma 2: We have the HJB equation in (14)

−∂tui(t, si(t)) = min
pi(t)

[ci(t, si(t), pi(t)) + ∂tsi(t) · ∇ui(t, si(t))] ,
(14)

where we define the Hamiltonian as in (15).
Proof: Proof of Lemma 2 is given in Appendix A.

The Nash equilibrium of the above differential game can
be obtained by solving the HJB equation associated with
each player given in (37). We have following theorem on the
existence of the Nash equilibrium for the defined Gs in the
definition 1.

Theorem 1: There exists at least one Nash equilibrium for
the differential game Gs.

Proof: Existence of a solution to the HJB equation
ensures the existence of the Nash equilibrium for the game
Gs. It is known that there exists a solution to the HJB equation
if the Hamiltonian is smooth [31]. Derivatives of all the orders
exist for the Hamiltonian due to the continuity of the defined
cost function, and it is easy to derive the derivatives of the
Hamiltonian with respect to pi(t). Due to the existence of
the derivatives, the Hamiltonian is smooth. This concludes the
proof.

Obtaining the equilibrium for game Gs for a system with
N players involves solving N partial differential equations
simultaneously. However, for a dense D2D network, it is not
possible to obtain the Nash equilibrium in this manner due to
the large number of simultaneous partial differential equations.
Therefore, for modeling and analysis of a dense D2D network,
a mean field game will be introduced where the system can be
defined solely by two coupled equations. In the next section,
we show the extension of game Gs to a mean field game.

VI. MEAN FIELD GAME (MFG) FOR POWER CONTROL

The power control MFG in D2D networks is a special form
of a differential game described before when the number of
D2D links approaches infinity. The power control MFG can be
expressed as a coupled system of two equations of HJB and
FPK. On one hand, an FPK type equation evolves forward
in time that governs the evolution of the density function of
the agents. On the other hand, an HJB type equation evolves
backward in time that governs the computation of the optimal
path for each agent.

A. Mean Field and Mean Field Approximation

For the effects of both the interference of the generic D2D
transmitter introduced to others, and all others’ interference
introduced to the generic link, we first introduce the mean
field concept, and then propose the mean-field approximation
approach.
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H(pi(t), si(t),∇ui(t, si(t))) = min
pi(t)

[ci(t, si(t), pi(t)) + ∂tsi(t) · ∇ui(t, si(t))] . (15)

1) Mean Field: This is a critical concept in the defined
power control MFG, which is a statistical distribution of the
defined two-dimensional states.

Definition 2: Given the state space si(t) = [µi(t), Ei(t)]
in the defined power control MFG, we define the mean field
m(t, s) as

m(t, s) = lim
N→∞

1

N

N∑
i=1

1{si(t)=s}, (16)

where 1 denotes an indicator function which returns 1 if the
given condition is true and zero, otherwise. For a given time
instant, the mean field is the probability distribution of the
states over the set of players.

With the defined mean field, the power control differential
game can be formulated as the new power control MFG, if
the following requirements are satisfied. In the context of an
ultra-dense D2D network, the D2D transmitters, which act as
players, have the following properties:
• Rationality: Each D2D transmitter can individually take

rational power control decision to minimize the cost
function.

• The existence of a continuum of the players (i.e.,
continuity of the mean field): The presence of a large
number of D2D pairs in the defined power control game
ensures the existence of the continuum of the players.

• Interchangeability of the states among the players (i.e.,
permutation of the states among the players would
not affect the outcome of the game): We derive the cost
function via mean-field approximation of the interference
in order to ensure the interchangeability of the actions
among the players.

• Interaction of the players with the mean field: Each
D2D player interacts with the mean field instead of
interacting with all the other players.

The mean field defined above will be obtained based on
mean field approximation described below.

2) Mean Field Approximation: With respect to the inter-
ference summations Ii→(t) and I→i(t) defined in (1) and (3),
respectively, we assume that each interferer is infinitesimal and
contributes little interference power to the summation. The
infinite mass of other players, which is called as the mean-
field value, dominates the interference effects when studying
a typical player. We first derive the interference mean field via
a special technique of the mean field approximation [29]. For
both State1 Ii→(t) and State2 I→i(t) defined in (1) and (3),
we can use the same method. Here, we use State2 I→i(t) as
an example. We know that

Î→i(t) =

N∑
j=1,j 6=i

pj(t)gj,i(t) ≈ (N − 1) p̂j(t)ĝj,i(t), (17)

where p̂i(t) is the known test transmit power and we assume
that all the players involved in the game are using the same test

transmit power. The term ĝi,j(t) defines the mean interference
channel gain of ultra-dense infinitesimal D2D effects, which
can be estimated by the following idea. If we use p̂i(t) at the
transmit power for D2D pair i’s transmitter, then the power
received at the corresponding receiver is

pRi (t) = p̂i(t)gi,i(t) + Î→i(t), (18)

where gi,i(t) is the effective channel gain, and p̂i(t)gi,i(t)
is the effective received power, and Î→i(t) is the received
interference power from all the others.

Combining (17) and (18), we can derive the only unknown
variable ĝj,i(t) as

pRi (t) = p̂i(t)gi,i(t) + (N − 1) p̂j(t)ĝj,i(t), (19)

and we have

ĝj,i(t) =
pRi (t)− p̂i(t)gi,i(t)

(N − 1) p̂j(t)
. (20)

With the above mean field approximation,

γ̂i(t) =
pi(t)gi,i(t)

(N − 1) p̂j(t)ĝj,i(t) + σ2
, (21)

with ĝj,i(t) estimated by the above method during the practical
implementation. The mean field cost function is then defined
as

ĉi(t) =
(
γ̂i(t)− γth(t)

)2
+ λpi(t). (22)

In the following sections, we will use the mean field cost
function and the approximated interference mean field. We
can similarly achieve the mean field approximation of State1
Ii→(t).

B. Mean Field Game

Based on the above definition of mean field and mean field
approximation, we derive the FPK equation first.

Lemma 3: The FPK equation of the defined MFG is given
by

∂tm(t, s) +∇ (m(t, s) · ∂ts(t)) = 0, (23)

where s is the state.
Proof: Proof of Lemma 3 can be found in [24].

The FPK equation describes the evolution of the defined
mean field with respect to time and space. At this time, with
the derived HJB and FPK equations, we formulate the D2D
MFG as follows.

Definition 3: The D2D MFG is defined as the combination
of derived HJB and FPK equations, where the HJB equation
is

−∂tu(t, s(t)) = min
p(t)

[c(t, s(t), p(t)) + ∂ts(t) · ∇u(t, s(t))] ,

(24)
and the FPK equation is in (23).

Their interactions with each other are shown in Fig. 2.
The HJB equation governs the computation of the optimal
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Fig. 2. D2D mean field game with HJB and FPK equations.

control path of the player, while the FPK equation governs the
evolution of the mean field function of players. Here, the HJB
and FPK equations are termed as the backward and forward
functions, respectively. Backward means that the final value
of the function is known, and we determine the value of u(t)
at time [0, T ]. Therefore, the HJB equation is always solved
backwards in time, starting from t = T , and ending at t = 0.
When solved over the the entire state space, the HJB equation
is a necessary and sufficient condition for the optimum. The
FPK equation evolves forward with time. The interactive
evolution finally leads to the mean field equilibrium.

C. Mean Field Equilibrium

We define the mean field equilibrium, which can be achieved
by using the finite difference method [31].

Definition 4: Mean field equilibrium (MFE) represents sta-
ble combination of both the control policy u?(t, s) and the
mean field m?(t, s) at any time t and state s in Fig. 2.

At any time t and state s, the control policy u(t, s) and the
mean field m(t, s) interact with each other, where u(t, s) is
also termed as the value function. The value function u(t, s)
determines the control policy Q(t, s). The term u(t, s) is
the solution of the HJB equation in (24) and m(t, s) is the
solution of the FPK equation in (23). The term u(t, s) affects
the evolution of the mean field, and m(t, s) determines the
decision-making of optimal policy u(t, s).

VII. DISTRIBUTED SOCIAL-OPTIMAL POWER CONTROL
POLICY BASED ON THE FINITE DIFFERENCE METHOD

Similar to [31], we resort to the finite difference method.
We have three different schemes to discretize the advection
equation including Upwind, Lax-Friedrichs, and Lax-Wendroff
[30] schemes. Different schemes have different rates of con-
vergence. We select the Lax-Friedrichs scheme to guarantee
the positivity of the mean field with first-order accuracy in
both time and space [31].

In the framework of the finite difference method, the investi-
gated time interval [0, T ], the energy state space [0, Emax], and
the interference state space [0, µmax] should be discretized into
X×Y ×Z spaces, as shown in Fig. 3. In Fig. 3, we illustrate
three curves in the three-dimensional discretized time and
space. The optimal control policy covers the decision-making
over a period in the discretized mean field game framework.

�

�

�

��� ���
� � � �� � �

�������

��������	
���
�����

Fig. 3. Optimal control of the discretized mean field game in time and space,
where there exist several potential control paths. Here, we should design the
method to find the optimal control path.

Therefore, there exist several potential control paths. Here, we
should design the method to find the optimal control path as
indicated in the figure. Thus, we first define the iteration steps
of time, energy, and interference spaces as

δt =
T

X
, δE =

Emax

Y
, δµ =

µmax

Z
.

Therefore, the FPK equation will evolve in the space of
three dimensions of (0, T ) × (0, Emax) × (0, µmax) with the
steps of δt, δE , and δµ, respectively. At the same time, the
optimal control path is achieved by solving the HJB equa-
tion backward accordingly. A joint finite difference algorithm
is then developed based on the Lax-Friedrichs scheme and
Lagrange relaxation to solve the corresponding coupled HJB
and FPK equations to obtain the optimal power control policy
(e.g., the optimal control path as shown in Fig. 3).

A. Lax-Friedrichs Scheme to Solve FPK Equation

We solve the FPK equation using the Lax-Friedrichs
method, where we first solve the FPK equation

∂tm(t, s) +∇Em(t, s)E(t) +∇µm(t, s)µ(t) = 0. (25)

By applying the Lax-Friedrichs scheme, we have (26).
Here M(i, j, k), P (i, j, k), ε(i, j, k) are the values of the

mean field, the power, and the interference gain at time instant
i with the energy level j and the interference state k in the
discretized grid.

B. Discretized Lagrange Relaxation to HJB

The finite difference method cannot be used to solve the
HJB equation due to the Hamiltonian. Here, we reformulate
the HJB equation using its corresponding optimal control
problem, where the newly-defined problem is

min
pi(t)

E
[∫ T

0
ci(t)dt+ ci(T )

]
,

subject to : ∂tm(t, s) +∇Em(t, s)E(t) +∇µm(t, s)µ(t) = 0.

(27)
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M (i+ 1, j, k) =
1

2
[M (i, j − 1, k) +M (i, j + 1, k) +M (i, j, k − 1) +M (i, j, k + 1)]

+
δt

2δE
[M (i, j + 1, k)P (i, j + 1, k)−M (i, j − 1, k)P (i, j − 1, k)]

+
δt

2δµ
[M (i, j, k + 1)P (i, j, k + 1) ε (i, j, k + 1)−M (i, j, k − 1) ε (i, j, k − 1)P (i, j, k − 1)] ,

(26)

L (m(t, s), p(t, s), λ(t, s))

= E

[∫ T

0

ci(t)dt+ ci(T )

]
+

T∫
t=0

Emax∫
E=0

µmax∫
µ=0

λ(t, s) (∂tm(t, s) +∇Em(t, s)E(t) +∇µm(t, s)µ(t)) dtdEdµ

=

T∫
t=0

Emax∫
E=0

µmax∫
µ=0

[c(t, s)m(t, s) + λ(t, s) (∂tm(t, s) +∇Em(t, s)E(t) +∇µm(t, s)µ(t))] dtdEdµ.

(28)

At this time, we obtain the Lagrangian
L (m(t, s), p(t, s), λ(t, s)) by introducing a Lagrange
multiplier λ(t, s) as (28), where we assume that c(T ) = 0.

Similar to the method to solve the FPK equation, we
propose a finite difference method to solve (28). We first
discretize the Lagrangian to solve the newly-defined optimal
control problem, and the discretized Lagrangian is given by
(29). Here Υ, Φ, and Ψ are given by (30), (31), and (32),
respectively.

Here, M(i, j, k), P (i, j, k), λ(i, j, k), and C(i, j, k) are the
values of the mean field, the power, Lagrange multiplier, and
cost function at time instant i, energy level j, and interference
state k in the discretized grid.

The optimal decision variables include P ?, M?, and λ?.
We derive the optimal power control as ∂Ld

∂P (i,j,k) = 0 for any
arbitrary point (i, j, k) in the discretized grid, where ∂Ld

∂P (i,j,k)
is given by (33).

Furthermore, for any arbitrary point (i, j, k) in the dis-
cretized grid, we update the Lagrange multiplier λ(i, j, k) by
calculating ∂Ld

∂M(i,j,k) = 0, and then we have λ (i− 1, j, k)
given by (34).

C. Distributed Social-Optimal Power Control Policy

Following the above derivations, a joint finite difference
algorithm based on the Lax-Friedrichs scheme and Lagrange
relaxation is proposed to solve the coupled HJB and FPK
equations, respectively. We name it as the distributed social-
optimal power control policy.

For the proposed distributed algorithm, we have the follow-
ing comments:

• First, the mean filed is jointly influenced by the energy
dynamics and interference dynamics (State1). Basically,
the energy dynamic function is a linear function with
respect to the transmit power. However, interference
function is not linear. At each time step, we assume that
the interfering link gains estimated by the mean field
approximation approach do not change.

Algorithm 1: Distributed social-optimal power control
policy

1 Initialization:
2 M(0, 0, 0):= joint mean field distribution;
3 λ(X + 1, 0, 0):= initial Lagrangian parameters;
4 P (X + 1, 0, 0):= initial power levels.
5 for i = 1 : X , j = 1 : Y , and k = 1 : Z do
6 Update mean field:
7 Using M(i+ 1, j, k) (26)
8 if P(i,j+1,k)=0 then
9 M(i+ 1, j + 1, k + 1) = M(i, j, k)

10 else
11 M(i+ 1, j + 1, k + 1) = 0
12 end
13 Update Lagrangian parameter:
14 λ(i− 1, j, k) using (34)
15 Update power levels:
16 P (i− 1, j, k) using (33)
17 end

• Second, we choose the algorithm termination condition
as the difference between the final-two mean field values,
and we set the gap as 10−5.

• Third, during iterations i − 1 and i + 1 and similarly
for other indices in the proposed algorithm, we introduce
a simple computation method. For instance, i − 1 may
not be positive, when i ≤ 1. In this situation, we set
λ(i− 1, j, k) = 1

2 [λ(i, j + 1, k) + λ(i, j − 1, k)].
• Our algorithm jointly considers the Emax and the toler-

able interference µmax
2. Therefore, it is easy to extend

as the other schemes, for instance, it can be termed as
the ’blind’ scheme when Emax → +∞ and µmax → 0.
For the cases of µmax → 0 and Emax → +∞, we
make the following assumptions during simulations. We
assume that if the maximum energy is set more than ten

2Tolerable interference µmax is a predefined value, which constrains the
total interference power that can be tolerated.
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Ld = δtδEδµ

X+1∑
i=1

Y+1∑
j=1

Z+1∑
k=1

[
M (i, j, k)C (i, j, k) + λ(i, j, k)(Υ + Φ + Ψ)

]
, (29)

Υ =
1

δt

[
M (i+ 1, j, k)− 1

2
(M (i, j + 1, k) +M (i, j − 1, k) +M (i, j, k + 1) +M (i, j, k − 1))

]
, (30)

Φ =
1

2δµ
[M (i, j, k + 1)P (i, j, k + 1) ε (i, j, k + 1)−M (i, j, k − 1)P (i, j, k − 1) ε (i, j, k − 1)] , (31)

Ψ =
1

2δE
[M (i, j + 1, k)P (i, j + 1, k)−M (i, j − 1, k)P (i, j − 1, k)] . (32)

times higher than that of practical situation, then it can be
regarded as the case of Emax → +∞. While the normal
setting is Emax = 0.5, the case of Emax = 5 can be seen
as the case of Emax → +∞.

VIII. NUMERICAL RESULTS

In this section, we first illustrate the simulation scenarios
and the basic settings with relevant simulation parameters. We
characterize the mean field distributions and the power control
policy using the Matlab software.

A. Basic Simulation Settings

The downlink transmission of an OFDMA D2D network,
with the radius of D2D links uniformly distributed between
10 m to 30 m is considered. We set the system parameters
as the bandwidth w = 20 MHz, and background noise power
is 2 × 10−9 W as the noise power spectral density is κ =
-174 dBm/Hz. Without special instructions, we choose the
standardized case with 500 LTE frames, the maximum energy
is 0.5 J, the number of D2D links will vary from N = 50 to N
= 200. The path-loss exponent for D2D links is 3. The duration
of one LTE radio frame is 10 ms, and for 500 frames, T = 5
s. We also pick, Emax to be 0.5 J. The tolerable interference
level of each player µmax is assumed to be 5.8× 10−6 W.

B. Characteristics of Mean Field Distributions and Power
Control Policy

To illustrate the properties of our proposed power control
scheme, we show the distributions of the mean field and the
power control policy in different cases.

First, we describe three dimensional mean field distributions
and power policy, as shown in Fig. 4. However, mean field and
power policy are four dimensional vectors. Therefore, we plot
mean field and power policy for three cases, i.e., (a) mean
field distributions with varying interference and energy but
fixed time; (b) mean field distributions with varying time and
energy but fixed interference; and (c) mean field distributions
with varying time and interference but fixed energy. Similarly,
we illustrate the power control policies for these three cases.
Basically, we can see that both the remaining energy and the

interference dynamics affect the mean field distributions and
power control policy.

Second, to further demonstrate the properties of our pro-
posed scheme, the cross sections of mean field distributions
and power policy at the energy states after convergence but
with varying times are depicted in Fig. 5. Here, as in the
previous settings, we discretize the time interval, the energy
space, and the interference space into 20× 20× 20 grids. To
reflect the reasons why the mean field distributions and power
policy in Fig. 4 are random, we describe Fig. 5, where we
first show the distributions of the mean field with respect to
the interference space at the energy states after convergence.
In addition, we select three cases: (a) distributions of mean
field with respect to the varying interference at time interval
13; (b) distributions of mean field with respect to the varying
interference at time interval 15; and (c) distributions of mean
field with respect to the varying interference at time interval
20. Meanwhile, we depict the distributions of power policy
accordingly in (d), (e), and (f), respectively.

From Fig. 5, we have the following observations. On one
hand, the randomness of the distributions of mean fields and
powers are introduced by the random interference space. On
the other hand, our proposed scheme can achieve the power
equilibrium as shown in Fig. 5, which is the final power
control policy at the final energy and time interval states after
convergence. Also, our proposed scheme can always achieve
the equilibrium powers, regardless of the interference states.

In Fig. 6, we illustrate the mean field distributions and power
control policy with respect to time toward the convergence.
We can see that we can always achieve the target SINR with
the varying power control policy according to the mean field
distributions.

C. Spectrum and Energy Efficiency Performance

• Spectrum efficiency: The average spectrum efficiency
πaverage is in the unit of bps/Hz, which is calculated by

πaverage = log2

(
1 +

p

I + w × κ

)
,

where κ is the noise power density and w is the total
bandwidth.
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∂Ld
∂P (i, j, k)

=

Y+1∑
j=1

Z+1∑
k=1

M (i, j, k)
∂C (i, j, k)

∂P (i, j, k)

+

[
M (i, j, k)

2δE
+
M(i, j, k)ε(i, j, k)

2δµ

]
[λ (i, j + 1, k)− λ (i, j − 1, k)] .

(33)

λ (i− 1, j, k) =
1

2
[λ (i, j + 1, k) + λ (i, j − 1, k)] +

1

2
[λ (i, j, k + 1) + λ (i, j, k + 1)]

− 1

2
δtP (i, j, k)

[
ε (i, j, k)

δµ
+

1

δE

]
[λ (i, j + 1, k)− λ (i, j − 1, k)]

+ δtC (i, j, k) .

(34)

Fig. 4. Three dimensional mean field distributions and power policy varying in time and space. For the distributions of mean field we have three cases with
(a) T = 5; (b) µmax = 5.8× 10−6; (c) Emax = 0.1 fixed, respectively. Similarly, for the distributions of powers we also have three cases with (d) T = 5;
(e) µmax = 5.8× 10−6; and (f) Emax = 0.1, respectively.

• Energy efficiency: The average energy efficiency ηaverage
is defined as the ratio between the total throughput and
the consumed energy, which is given by

ηaverage =
wπaverage

ptotal
,

which is in the unit of bit/J.

To illustrate the impacts of various interference constraints,
we simulate two other cases as benchmarks of the normal
settings in our work: (1) µmax → +∞, which means that
the interference tolerance is very large; (2) µmax → 0, which

means that the interference tolerance is very small. Meanwhile,
to illustrate the impacts of various energy constraints, in
addition to the normal settings, we simulate the case of
Emax → +∞, which means that the battery is always fully
powered.

We set µmax = 5.8×10−6 as the normal setting. Moreover,
the case µmax ≤ 10−5× normal setting is considered as the
case of µmax → 0. The case µmax ≥ 102× normal setting
is considered as the case of µmax → +∞. Here, we set the
normal setting is Emax = 0.5, while the case of Emax = 5
can be seen as the case of Emax → +∞.
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Fig. 5. Cross sections of mean field distributions and power policy at the
states after convergence but with varying times. For the distributions of mean
field we have three cases at different time slots (a) T = 3.25s; (b) T = 3.75s;
(c) T = 5s, respectively. Similarly, for the distributions of powers we also
have three cases with at different time slots (d) T = 3.25s; (e) T = 3.75s;
(f) T = 5s, respectively.

� � �� �� �� ��
����

�

���

�

��	

��

	
�

� � �� �� �� ��
�

����

���

��	

��

�
�
�


�

� � �� �� �� ��
�

����

����

����

��	

��

�
��
�

Fig. 6. Cross-sections of mean field distributions and power policy at the
interference µmax = 5.8 × 10−6 and energy state Emax = 0.5J after
convergence.

We illustrate the spectrum efficiency π performance of the
two cases in Fig. 7(a) and Fig. 7(b), respectively. We observe
that:
• The spectrum efficiency decreases with the increasing

numbers of the D2D links. This is due to the increased
mutual interference with increasing number of D2D links.

• Minimizing the tolerable interference can always improve
the spectrum efficiency; however, maximizing the avail-
able energy, i.e., Emax does not always improve the
spectrum efficiency. Minimizing the tolerable interference
means that the power used at each state is not allowed to
be too large, which leads to the reduced SINR. Thus,
maximizing the tolerable interference means that the

Fig. 7. Spectrum efficiency, which is measured in the unit of bps/Hz.

Fig. 8. Energy efficiency, which is measured in the unit of b/J.

power used at each state can be large, therefore, the
spectrum efficiency is improved.

• Maximizing the available energy can first help maximiz-
ing the effective received energy; however, at some points
increasing the energy also means increasing the inter-
ference power, and consequently, decreases the spectrum
efficiency.

In Fig. 8, we illustrate the improved energy efficiency
performance of the proposed interference and energy-aware
power control compared to the blind power control scheme.
Here, we term the blind power control scheme as the case
of Emax → +∞, which can be seen as the scheme without
the energy constraint. Therefore, D2D transmitter in the blind
power control scheme can individually increase the transmis-
sion power, which will both introduce the interference to others
and exhaust the battery soon.

It can be concluded from Fig. 8 that the proposed interfer-
ence and energy-aware power control can achieve higher en-
ergy efficiency compared with the blind power control scheme.
Meanwhile, the benefits decrease with the increasing number
of D2D links, which is mainly because that the increasing
number of D2D links means introducing more interference,
and thus decreases the spectrum efficiency.
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IX. CONCLUSION

We have investigated the effects of both interference and
energy on the power control in ultra-dense D2D commu-
nications. We have formulated a mean filed game theoretic
framework with the two-dimensional dynamics states. For the
MFG framework, we have derived the coupled HJB and FPK
equations. Then, a joint finite difference algorithm has been
used to solve the coupled HJB and FPK equations of the
corresponding MFG, which is based on the Lax-Friedrichs
scheme and the Lagrange relaxation method. Then we have
developed an interference and energy-aware distributed power
control. Numerical results have been presented to characterize
the mean field distributions and the power control policy. The
spectrum and energy efficiency performances of the proposed
distributed power control scheme have been illustrated. The
proposed model can be implemented in practical systems by
solving the MFG model offline using the measured (historical)
information about interference dynamics as well as the energy
availability at the terminals in a dense D2D network. The
obtained power control policies can be stored in look-up tables
to be used by the D2D transmitters.

APPENDIX A
DERIVATION OF HJB

Intuitively, an HJB can be derived as follows. If ui(t) is
the value function of power pi(t) and the state si(t), and then
by the Richard Bellman’s principle of optimality, increasing
time t to t + dt, we have (35). Further, we compute the
Taylor expansion of ui(t + dt), and we have (36). Here ∂tu
is the differential function with t, and ∇u is the gradient of
the function u with s. o(dt) denotes the terms of the Taylor
expansion of higher order than one, and we omit it during the
following analysis.

Substituting (36) into (35), and canceling ui(t, si(t)) on
both sides, dividing by dt, and taking the limit with dt
approaches zero, we have the following HJB equation (37).
Here, we define the Hamiltonian as (38).
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