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MARKOV-MODULATED INFINITE-SERVER QUEUES
DRIVEN BY A COMMON BACKGROUND PROCESS

MICHEL MANDJES
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Abstract. This paper studies a system with multiple in�nite-server queues which are modulated by a com-

mon background process. If this background process, being modeled as a �nite-state continuous-time Markov

chain, is in state j, then the arrival rate into the i-th queue is λi,j , whereas the service times of customers

present in this queue are exponentially distributed with mean µ−1
i,j ; at each of the individual queues all cus-

tomers present are served in parallel (thus re�ecting their in�nite-server nature).

Three types of results are presented: in the �rst place (i) we derive di�erential equations for the probability

generating functions corresponding to the distributions of the transient and stationary numbers of customers

(jointly in all queues), then (ii) we set up recursions for the (joint) moments, and �nally (iii) we establish a

central limit theorem in the asymptotic regime in which the arrival rates as well as the transition rates of the

background process are simultaneously growing large.
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1. Introduction

Markov-modulated queueing systems are resources at which customers arrive and depart, but with the spe-

cial feature that the corresponding interarrival times and service times depend on the state of an external

Markovian process, usually referred to as ‘background process’. In most studies, such a background process

is represented by a �nite-state irreducible continuous-time Markov chain. Markov-modulated queues have

been studied intensively over the past, say, four decades, with a primary focus on developing techniques

to determine the underlying stationary distribution. For further background we refer to the monographs

by Asmussen [2, Ch. XI] and Neuts [15]; see also e.g. [9, 13, 16].

In the case of Markov-modulated single-server queues, in which the arrival rates and services rates do not

depend on the number of customers present (i.e., they are a�ected by the state of the background process

only), the stationary distribution of the number of costumers, jointly with the state of the background pro-

cess, is of matrix-geometric form. It is noted that this property can be considered a true matrix-counterpart

of the scalar M/M/1 queue (in which the stationary distribution has a scalar-geometric distribution).

The corresponding Markov-modulated in�nite-server queue allows considerably less explicit results. In

[14] a system of partial (ordinary) di�erential equations is derived for the probability generating function

of the transient (stationary, respectively) number of customers in the system (jointly with the state of the

background process). These di�erential equations can then be exploited to set up a recursive procedure

which facilitates the computation of all moments. Importantly, the stationary number of customers does

not have some sort of ‘matrix Poisson distribution’, and in this sense the queue cannot be seen as a direct

generalization of its scalar-counterpart, the ordinary M/M/∞ queue.

When stochastic systems do not allow any explicit analysis, a common procedure to gain insight into the

system is to impose a particular parameter scaling, and to then consider the resulting asymptotic regime.

In a series of more recent articles [1, 4, 6] such an approach has been followed; in particular, by scaling the

arrival rates as well as the transition rates of the background process, it is shown that the (transient and

stationary) number of customers obeys a central limit theorem (clt). If the background process evolves

faster than the arrival process, the system essentially behaves as a scalar M/M/∞ queue in di�usion scaling,

whereas in the opposite regime the resulting Gaussian process has a more re�ned structure, in which the

deviation matrix (associated with the background process) plays a crucial role.
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The key novelty of the present paper is that it considers a system withmultipleMarkov-modulated in�nite-

server queues, which are driven by the same background process — this common background process is

denoted by J throughout this paper. The motivation behind studying this model lies in the fact that in

many practical situations individual queues react to the same ‘outer world’; one could for instance think

of a wireless network, in which users react to the same channel conditions, or a road tra�c network in

which all drivers are a�ected by the same weather conditions.

More concretely, in this paper we study a queueing model in which the arrival rate of the i-th queue is

λi,j if J is in state j, while the service times of all individual customers present in the i-th queue are

then exponentially distributed with mean µ−1i,j . At each of the queues all customers present are served in

parallel. To keep the notation light, we focus on the situation with i ∈ {1, 2}, but the analysis naturally

extends to any �nite number of Markov-modulated in�nite-server queues.

It is important to realize that for single-server models, this type of coupled models typically does not allow

any explicit analysis. This is primarily due to discontinuities that arise when (at least) one of the queues

is idle: when J is in state j, the service rate in queue i is µi,j as long as the number of customers in

this queue, say k, is in {1, 2 . . .}, and 0 if k = 0. It is observed, however, that for their in�nite-server

counterparts such discontinuity does not exist: the service rate kµi,j applies to any k ∈ {0, 1, . . .}. As we

show in this paper, it is an immediate consequence of this fact that coupled Markov-modulated in�nite-

server queues are essentially as complex as their non-coupled counterpart. It is noted that some related

results for Markov-modulated Ornstein-Uhlenbeck processes (driven by a common background process)

have recently been reported in [12]. In addition, related results on multiple queues driven by the same

underlying continuous-time Markov chain have been reported in [3].

We now detail the contributions of this paper. At a high level, the main objective is to extend the results

of [4, 14] for non-coupled Markov-modulated in�nite-server queues to their coupled counterpart. More

speci�cally, the following three types of results are presented.

(i) In the �rst place we set up systems of di�erential equations for the probability generating function

of the (joint) distribution of the numbers of customers in both queues; these are partial di�erential

equations when considering the transient distribution, and ordinary di�erential equations for its

stationary counterpart. The results are in terms of systems of equations, as they cover the number

of customers present, jointly with the state of the background process.
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(ii) In the second place we develop recursions for the (joint) moments, for both the transient and

stationary distribution. In addition, we give explicit expressions for means, variances, and covari-

ances, which turn out to simplify drastically in various particular limiting regimes.

(iii) We �nally establish a clt in the asymptotic regime in which a scaling is imposed on the arrival

rates as well as the transition rates of the background process J . Importantly, following the ideas

presented in [4], the arrival rates are in�ated by a factor N whereas the transition rates of J are

scaled asNf
for some f > 0; asN grows large, one ends up in di�erent limiting regimes, depend-

ing on the value of f . For f > 1 it is concluded that the resulting system behaves essentially as the

di�usion version of two independently operating M/M/∞ queues, while for f < 1 one obtains a

Gaussian process in which the e�ect of the common background process becomes explicitly visible.

As pointed out in detail in [4], the Markov-modulated in�nite-server queue comes in two variants, in

this paper systematically referred to as Model i and Model ii. In the former model, the departure rates at

any point in time are determined by the current state of the background process; as a consequence, this

rate may (possibly multiply) change during a customer’s stay in the system. In the latter model, however,

the departure time is determined by the state of the background process that the customer sees upon

arrival (and can therefore be sampled the moment the customer enters the system). We provide a detailed

description of these two variants in Section 2.

The rest of the paper is organized as follows. Sections 3 and 4 characterize the probability generating

functions related to the (transient and stationary) numbers of customers at both queues, as well as corre-

sponding moments, for Model i and Model ii, respectively. Then these results are used to explicitly �nd,

for both models, variances and covariances in Sections 5 and 6. Central limit theorems (when imposing

particular scalings on the arrival rates and the transition rates of the background process) are established

in Sections 7 and 8. A numerical illustration is presented in Section 9. In Section 10 the paper is concluded

by a brief discussion of the applicability of the results, as well as an outlook.

2. Model and preliminaries

We start this section by giving a detailed model description of the coupled system of Markov-modulated

in�nite-server queues. A �rst component of this model is the so-called background process (J(t))t>0, which

is an irreducible, �nite-state Markov process on a �nite state space {1, . . . , d}. Let the corresponding

transition rates be given through the transition rate matrix Q = (qij)
d
i,j=1; throughout, qij > 0 for i 6= j,
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and qi := −qii =
∑

j 6=i qij . In addition, the (unique) invariant distribution is denoted by (the column

vector) π. We adopt here and in the sequel the convention that we write vectors in bold fonts; vectors are

consistently understood as column vectors, unless stated otherwise.

In the setting studied in this paper we suppose that the process J(·) modulates two ini�nite-server systems;

as mentioned in the introduction, all results can be straightforwardly extended to the case of three or

more queues, but for reasons of transparency we have chosen to leave this out. While J(·) is in state

j ∈ {1, . . . , d}, the process that describes the number of jobs present in system i ∈ {1, 2}, in this paper

denoted by (Mi(t))t>0, locally behaves as an in�nite-server queue fed by a Poisson process of rate λi,j ,

while the service times of each of the customers present in the i-th system are exponentially distributed

with mean µ−1i,j . For ease we let both systems start o� empty: Mi(0) = 0, for i = 1, 2. Also, we let Mi

denote the stationary version of Mi(t).

As pointed out in the introduction, two variants are to be distinguished. They can be described as follows.

� In the �rst variant (in the sequel referred to as Model i) all jobs present at a certain time instant

t are subject to a hazard rate determined by the state of background chain at time t, regardless of

when they arrived. In other words, when k customers are present in queue i and J is in state j,

the in�nitesimal transition rate corresponding to a customer leaving from this queue is kµi,j .

� In the second variant (to be referred to as Model ii) the service rate is determined by the background

state as seen by the job upon its arrival. This means that if there are k customers in queue i that

have entered when J was in state j, the in�nitesimal transition rate corresponding to one of these

customers leaving is kµi,j .

For notational convenience, we introduce the d×dmatrices ∆(λi) := diag{λi} and ∆(µi) := diag{µi}.
In the sequel we frequently use the ‘time-average arrival rates’ and ‘time average departure rates’, being

de�ned by

λi,∞ :=
d∑
j=1

πjλi,j = πTλi, µi,∞ :=
d∑
j=1

πjµi,j = πTµi,

respectively. We let a be the column vector corresponding to the initial distribution of the background

process: ai := P(J(0) = i) for i = 1, . . . , d; in addition, we denote P (t) := (pij(t))
d
i,j=1, with pij(t)

denoting the transient probabilities P(J(t) = j | J(0) = i) = (eQt)ij .
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An important concept in this paper is the so-called deviation matrix, see e.g. [10] for more background.

Recall that the deviation matrix D = (Dij)
d
i,j=1 of the �nite-state Markov J(·) is de�ned through

Dij :=

∫ ∞
0

(pij(t)− πj)dt,

or, in matrix notation, D =
∫∞
0 (eQt − Π)dt, with Π := 1πT. The fundamental matrix F is given by

F := D + Π. A number of standard identities play a role below, in particular QF = FQ = Π − I ,

ΠF = FΠ = Π, and F1 = 1.

3. Model i: distribution and moments

In this section we consider the stationary and transient distribution associated to Model i, focusing on

setting up a system of di�erential equations for the corresponding probability generating functions, and

developing a recursion for all moments; for Model ii similar computations are done in the next section.

3.1. Stationary behavior. Our objective is to �nd the steady-state distribution (pk,`)
∞
k,`=1, where each

pk,` is a vector in Rd, whose j-th entry is de�ned as

[pk,`]j := P(M1 = k,M2 = `, J = j),

with j = 1, . . . , d. The vector-valued probability generating function (pgf) p(w, z) is given by, with

|w|, |z| ≤ 1, and j = 1, . . . , d,

[p(w, z)]j := E
(
wM1zM21{J=j}

)
=

∞∑
k=0

∞∑
`=0

[pk,`]jw
kz`.

It is noted that in Model i the trivariate process (M1(t),M2(t), J(t))t>0 is a continuous-time Markov

chain, attaining values in N× N× {1, . . . , d}.
To study pk,`, we �rst de�ne its transient counterpart through, for j = 1, . . . , d,

[pk,`(t)]j := P(M1(t) = k,M2(t) = `, J(t) = j).
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As an immediate consequence of the Chapman-Kolmogorov equation, it follows that

∂pk,`(t)

∂t
= pk−1,`(t) ·∆(λ1)

+pk,`−1(t) ·∆(λ2) + pk,`(t) · (Q−∆(λ1)−∆(λ2)− k∆(µ1)− `∆(µ2))

+pk+1,`(t) · (k + 1)∆(µ1) + pk,`+1(t) · (`+ 1)∆(µ2)(1)

for k, ` = 0, 1, . . . (where we put p−1,`(t) = pk,−1(t) = 0).

This identity is to be equated to 0 to obtain the stationary distribution (pk,`)
∞
k,`=1; note that in this case

we need to set p−1,` = pk,−1 = 0. Now multiply the equation by wkz` and sum over k and `, so as to

obtain, relying on standard properties of pgf s, the following di�erential equation for p(w, z):

wp(w, z) ·∆(λ1) + zp(w, z) ·∆(λ2) + p(w, z) · (Q−∆(λ1)−∆(λ2))

− (w − 1)
∂p

∂w
·∆(µ1)− (z − 1)

∂p

∂z
·∆(µ2) = 0T;

here we tacitly assumed that the pgf s are row vectors. The di�erential equation can be rewritten in the

following compact form.

Proposition 3.1. The pgf p(w, z) satis�es the di�erential equation

p(w, z)Q+ (w − 1)

(
p(w, z) ∆(λ1)−

∂p

∂w
∆(µ1)

)
+ (z − 1)

(
p(w, z) ∆(λ2)−

∂p

∂z
∆(µ2)

)
= 0T.

Our next objective is to use the di�erential equation for the pgf to develop an algorithm for computing all

(joint) moments. It relies on the property that di�erentiating the pgf and inserting the argument ‘1’ yields

the so-called ‘factorial moments’.

It takes some elementary calculus to verify that, for any ‘su�ciently di�erentiable’ function ϕ(·, ·),

(2)

∂k+`

∂wk∂z`
(w − 1)ϕ(w, z) = (w − 1)

∂k+`ϕ(w, z)

∂wk∂z`
+ k

∂k+`−1ϕ(w, z)

∂wk−1∂z`
.

De�ne the (row-)vectors of the ‘mixed factorial moments’ by Γk,` ∈ Rd; its j-th entry equals

[Γk,`]j := E
(
(M1)k (M2)` · 1{J=j}

)
,
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using the Pochhammer notation for the falling factorial, i.e.,

(N)k :=
N !

(N − k)!
= N(N − 1) · · · (N − k + 1).

The next step is to combine Prop. 3.1 with (2). It is a matter of applying standard rules for pgf s to obtain

Γk,`Q = kΓk,` ∆(µ1)− kΓk−1,` ∆(λ1) + `Γk,` ∆(µ2)− `Γk,`−1 ∆(λ2),

so that we have established the validity of the following iterative procedure.

Proposition 3.2. The factorial moments Γk,` satisfy the recursion

Γk,` = (kΓk−1,` ∆(λ1) + `Γk,`−1 ∆(λ2)) (k∆(µ1) + `∆(µ2)−Q)−1,

to be initialized with Γ0,0 = πT.

For k = 0 or ` = 0 this yields precisely the recursion found in O’Cinneide and Purdue [14] (covering the

case of a single Markov-modulated in�nite-server queue).

3.2. Transient behavior. Where the previous subsection studied the stationary behavior of Model i, we

now consider the corresponding transient behavior. As will turn out, the system of ordinary di�eren-

tial equations becomes a system of partial di�erential equations (as was of course to be expected). In

addition, each iteration in the recursion for the factorial moments now requires solving a system of non-

homogeneous linear di�erential equations.

We �rst focus on characterizing the pgf p(t, w, z), de�ned in the obvious way. In the same manner as

before, from the Chapman-Kolmogorov equation (1) we �nd the following system of partial di�erential

equations.

Proposition 3.3. The pgf p(t, w, z) satis�es the di�erential equation

p(t, w, z)Q + (w − 1)

(
p(t, w, z) ∆(λ1)−

∂p

∂w
∆(µ1)

)
+ (z − 1)

(
p(t, w, z) ∆(λ2)−

∂p

∂z
∆(µ2)

)
=
∂p

∂t
.
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Let Γk,`(t) be the time-dependent counterpart of Γk,`. It is a matter of straightforward calculus to obtain

that

Γk,`(t)Q− Γ′k,`(t) = kΓk,`(t) ∆(µ1)− kΓk−1,`(t) ∆(λ1) + `Γk,`(t) ∆(µ2)− `Γk,`−1(t) ∆(λ2),

or, equivalently,

Γ′k,`(t) = Γk,`(t) (Q− k∆(µ1)− `∆(µ2)) + kΓk−1,`(t) ∆(λ1) + `Γk,`−1(t) ∆(λ2).

We thus conclude that for Γk−1,`(t) and Γk,`−1(t) given, Γk,`(t) can be determined by solving a non-

homogeneous system of linear di�erential equations; cf. [14, Thm. 3.2] for the case of a single Markov-

modulated in�nite-server system. As a consequence, this provides us with a recursive scheme to evaluate

the transient factorial moments Γk,`(t); recall that we assumed that Mi(0) = 0 for i = 1, 2.

Proposition 3.4. The factorial moments Γk,`(t) satisfy the recursion

Γ′k,`(t)=Γk,`(t) (Q− k∆(µ1)− `∆(µ2)) + kΓk−1,`(t) ∆(λ1) + `Γk,`−1(t) ∆(λ2), Γk,`(0)=0T,

to be initialized with Γ0,0(t) = aTP (t).

4. Model ii: distribution and moments

As we did for Model i in the previous section, we now analyze the stationary and transient distributions

associated with Model ii, again by setting up di�erential equations for the probability generating functions,

as well as a recursive procedure that generates all moments.

4.1. Stationary behavior. First observe that for Model ii the trivariate process (M1(t),M2(t), J(t))t>0

is not Markov, as for each customer one needs to know what state J was in when it arrived. This is why

we here use a description with a slightly more general state space: we keep track of the number of jobs

present of each type, where ‘type’ refers to the state of the background process as seen by the customer

upon arrival. To this end, we work with the d-dimensional stochastic process

M i(t) = (Mi,1(t), . . . ,Mi,d(t))t>0,

where the k-th entry of this vector denotes the number of customers of type k in the i-th system at time t,

for i = 1, 2; the vector M i = (Mi,1, . . . ,Mi,d) is its stationary counterpart. The transient total number
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of customers in queue i is (obviously) equal to Mi(t) :=
∑d

m=1Mi,m(t), and the stationary total number

equal to Mi :=
∑d

m=1Mi,m.

The j-th entry of the pgf p(t,w, z) is de�ned by, for j = 1, . . . , d and |wm|, |zm| < 1,

[p(t,w, z)]j = E

(
d∏

m=1

w
M1,m(t)
m z

M2,m(t)
m 1{J(t)=j}

)
.

In addition, Em is a matrix for which [Em]mm = 1, and whose other entries are zero (or, in other words,

the matrixEm equals diag{em}, where em is them-th unit vector, having a one on them-th position and

zeros elsewhere); the multiplication pEm thus results in a (row-)vector which leaves them-th entry of the

row-vector p unchanged while the other entries become zero.

With the pgf p(w, z) de�ned in the obvious way, the system of di�erential equations for the stationary

case turns out to be the following.

Proposition 4.1. The pgf p(w, z) satis�es the di�erential equation

p(w, z)Q+
d∑

m=1

(wm − 1)

(
λ1,m p(w, z)Em + µ1,m

∂p

∂wm

)

+
d∑

m=1

(zm − 1)

(
λ2,m p(w, z)Em + µ2,m

∂p

∂zm

)
= 0T.

The proof of this proposition is straightforward, and follows the same lines as before: we consider the

generator of the Markov process, and transform the Chapman-Kolmogorov equation.

Also the corresponding moments can be computed as before. To this end, we �rst de�ne the factorial

moments using the Pochhammer notation introduced earlier:

[Γk,`]j := E

(
d∏

m=1

(M1,m)km ·
d∏

m=1

(M2,m)`m · 1{J=j}
)
,

as well as the di�erential operator D(k, `)[·]:

D(k, `)[f(w, z)] :=
∂k1+···+kd+`1+···+`d

∂wk11 · · · ∂wkdd ∂z`11 · · · ∂z`dd
f(w, z).
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Clearly, Γk,` = D(k, `)[p(1,1)]. Now apply the operator D(k, `) to the di�erential equation in Prop. 4.1.

Abbreviate dk,` ≡ dk,`(w, z) := D(k, `)[p(w, z)]. We thus obtain

dk,`Q+
d∑

m=1

(wm − 1) (λ1,mdk,`Em + µ1,mdk+em,`) +
d∑

m=1

km (λ1,mdk−em,`Em + µ1,mdk,`)

+
d∑

m=1

(zm − 1) (λ2,mdk,`Em + µ2,mdk+em,`) +
d∑

m=1

`m (λ2,mdk,`−emEm + µ2,mdk,`) = 0T.

Now plugging in w = z = 1 yields the relation

Γk,`Q+
d∑

m=1

km (λ1,mΓk−em,`Em + µ1,mΓk,`) +
d∑

m=1

`m (λ2,mΓk,`−emEm + µ2,mΓk,`) = 0T.

De�ne Λi,m := λi,m diag{em} andMi,m := µi,mI. We obtain the following recursion.

Proposition 4.2. The factorial moments Γk,` satisfy the recursion

Γk,` =

(
d∑

m=1

kmΓk−em,`Λ1,m +

d∑
m=1

`mΓk,`−emΛ2,m

)(
d∑

m=1

kmM1,m +

d∑
m=1

`mM2,m −Q
)−1

,

to be initialized with Γ0,0 = πT.

4.2. Transient behavior. We now shift our attention from the steady-state distribution to the corre-

sponding transient behavior. As in Model i, the factorial moments can be found by a recursion, where in

each step a non-homogeneous system of linear di�erential equations needs to be solved.

The following di�erential equation has been derived in a similar way as the other di�erential equations

that we presented so far.

Proposition 4.3. The pgf p(t,w, z) satis�es the di�erential equation

p(t,w, z)Q+

d∑
k=1

(wk − 1)

(
λ1,kp(t,w, z)Ek + µ1,k

∂p

∂wk

)

+

d∑
k=1

(zk − 1)

(
λ2,kp(t,w, z)Ek + µ2,k

∂p

∂zk

)
=
∂p

∂t
.

The moments can be in principle derived in the same way as for Model i; it leads to a recursive scheme

of inhomogeneous linear di�erential equations. There is a more compact alternative though, based on
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a di�erent system of di�erential equations. Precisely as is done in [6] for the case of a single Markov-

modulated in�nite-server system, we can derive the following result. We de�ne

[p̄(t, w, z)]j := E
(
wN1(t)zN2(t)

∣∣∣ J(0) = j
)
,

which is now assumed to be a column vector. De�ne

∆(µi, t) := diag{e−µi,1t, . . . , e−µi,dt}.

Proposition 4.4. The pgf p̄(t, w, z) satis�es the di�erential equation

Q p̄(t, w, z) + (w − 1)∆(λ1) ∆(µ1, t) p̄(t, w, z) + (z − 1)∆(λ2) ∆(µ2, t) p̄(t, w, z) =
∂p̄

∂t
.

Observe that this system of di�erential equations just implicitly provides us with information about the

stationary behavior, as sending t→∞ yields 0 = 0.

The column vector Γ̄k,`(t) is de�ned as

[Γ̄k,`(t)]j := E ((M1(t))k (M2(t))` | J(0) = j) .

It takes a basic computation to verify the following recursion.

Proposition 4.5. The factorial moments Γk,`(t) satisfy the recursion

Γ̄
′
k,`(t) = QΓ̄k,`(t) + k∆(λ1)∆(µ1, t)Γ̄k−1,`(t) + `∆(λ2)∆(µ2, t)Γ̄k,`−1(t), Γ̄k,`(0) = 0T,

to be initialized with Γ̄0,0(t) = 1T.

5. Model i: explicit calculation of mean, variance, and covariance

In this section we further analyze the mean and variance of the (transient and stationary) numbers of

customers in both in�nite-server queues, as well as the covariance between them.

According to Prop. 3.4, the mean of Mk(t) can be found by solving a non-homogeneous linear di�erential

equation. With (row vector!)

mk(t) :=
(
E(Mk(t)1{J(t)=1}), . . . ,E(Mk(t)1{J(t)=d})

)
,
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we are to solve

m′k(t) = m(t) (Q−∆(µk)) + aTP (t) ∆(λk).

This can be done by standard techniques; we do not include the explicit expression here. It is noted that

we evidently have that EMk(t) = mk(t)1. Using the resulting expression for the mk(t), we can also

identify, again using Prop. 3.4, VarMk(t) and Cov (M1(t),M2(t)).

Stationarity. The expressions drastically simplify in stationarity. It is readily checked from Prop. 3.2 that,

in accordance with the results of [14], for k = 1, 2,

EMk = πT∆(λk)(∆(µk)−Q)−11,

whereas

EMk(Mk − 1) = 2πT∆(λk)(∆(µk)−Q)−1∆(λk)(2∆(µk)−Q)−11.

The covariance Cov (M1,M2) = EM1M2 − EM1 EM2 between the stationary number of jobs in both

systems can be easily computed, too; realize that

EM1M2 = πT
(
∆(λ2)(∆(µ2)−Q)−1∆(λ1) + ∆(λ1)(∆(µ1)−Q)−1∆(λ2)

)
×

(∆(µ1) + ∆(µ2)−Q)−11.

The formula for Cov (M1,M2) further simpli�es if ∆(µi) = miI (that is, for each of the two in�nite-

server queues there are uniform departure rates). To this end, de�ne the entries of the exponentially

γ-weighted (for γ > 0) deviation matrix [10, Section 4] by

Dij(γ) :=

∫ ∞
0

e−γv (pij(v)− πj) dv,

and let Ďij(γ) := Dij(γ) + πj/γ. Integration by parts yields, for γ > 0,

QĎ(γ) =

∫ ∞
0

QP (v)e−γvdv =

∫ ∞
0

P ′(v)e−γvdv = −I +

∫ ∞
0

γP (v)e−γvdv = −I + γĎ(γ).

As a consequence, −(Q− γI)Ď(γ) = I, so that (miI −Q)−1 = −Ď(mi). In addition, for any α,

(αI −Q)−11 =
1

α

∞∑
i=0

1

αi
Qi1 =

1

α
1.
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It is now concluded that

Cov (M1,M2) = − 1

m1 +m2
πT
(
∆(λ2)Ď(m2)∆(λ1) + ∆(λ1)Ď(m1)∆(λ2)

)
1

−
(
πT∆(λ1)1

m1

)(
πT∆(λ2)1

m2

)
.

It requires elementary algebra to verify that this expression equals

(3) Cov (M1,M2) =
πT (∆(λ2)D(m2)∆(λ1) + ∆(λ1)D(m1)∆(λ2)) 1

m1 +m2
.

Time scalings. Under a speci�c parameter scaling the expressions for the transient mean and variance

can be computed in closed form. We include these computations, as they directly relate to those that we

use later when establishing central limit theorems.

We focus on the regime in which we speed up the background process by a factor Nf
(for some f > 0),

meaning that we replaceQ byNfQ, and at the same time the arrival rates byN , meaning that we replace

λi by Nλi for i = 1, 2. In this context, we write M
(N)
k (t) rather than Mk(t) to re�ect the dependence on

N ; the background process becomes J (N)(·). Below we work with

[m
(N)
k (t)]j :=

1

N
E
(
M

(N)
k (t)1{J(N)(t)=j}

)
.

From Prop. 3.4, we immediately have

(m
(N)
k )′(t) = m

(N)
k (t)(NfQ−∆(µk)) + aT P (Nf t)∆(λk).

Postmultiply the equation by the fundamental matrix F and N−f , so as to obtain

m
(N)
k (t) = m

(N)
k (t)Π− (m

(N)
k )′(t)FN−f −m(N)

k (t)∆(µk)FN
−f + aTP (Nf t)∆(λk)FN

−f .

Iterate this relation once, and realize that due to Π = 1πT
it follows that m

(N)
k (t)Π = m̄

(N)
k (t)πT

for

some (single-dimensional) function m̄
(N)
k (·). We thus obtain

(m̄
(N)
k )′(t)πTN−f = −m̄(N)

k (t)πT ∆(µk)FN
−f + aTP (Nf t) ∆(λk)FN

−f + o(N−f ),
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where it is also used that ΠF = Π. Now postmultiply by 1Nf
, recalling that F1 = 1, and observing that

aTP (Nf t)→ πT
, we arrive when sending N →∞ at the di�erential equation

m̄′k(t) = −m̄k(t)µk,∞ + λk,∞,

with m̄k(t) de�ned as limN→∞m
(N)
k (t). This trivial di�erential equation is evidently solved by m̄k(t) =

(λk,∞/µk,∞) (1− e−µk,∞t). We conclude that

lim
n→∞

EM (N)
k (t)

N
= %(I)

k (t) :=
λk,∞
µk,∞

(1− e−µk,∞t).

Essentially the same procedure can be followed to determine the asymptotics of the variances and covari-

ances related to the M
(N)
K (t). After considerable algebra (which is left out here), it eventually turns out

that, with β := max{1/2, 1− f/2}, as N →∞,

1

N2β

 VarM
(N)
1 (t) Cov (M

(N)
1 (t),M

(N)
2 (t))

Cov (M
(N)
1 (t),M

(N)
2 (t)) VarM

(N)
2 (t)

→ Σ(I)(t),

with the covariance matrix Σ(I)(t) to be de�ned in (8). From the form of Σ(I)(t), as given in (8), we observe

that the system behaves crucially di�erent for f > 1 and f < 1:

� For f > 1, we have β = 1
2 : the variances grow essentially linearly, but the covariance sublinearly.

This re�ects that, when the background process jumps at a faster timescale than the arrival pro-

cesses, the individual queues roughly behave as two independent M/M/∞ systems. It suggests that

in the clt we have to normalize by the usual

√
N.

� For f < 1, on the other hand, all entries of the covariance matrix grow like N2−f
, that is, super-

linearly. As a consequence, in this scaling the two queues behave dependently, and in the clt a

normalization by N1−f/2
is anticipated.

In the next section it is shown that the variances and covariances in Model ii have the same qualitative

behavior. It is this dichotomy that plays an important role in the central limit theorems that we derive

later in this paper.
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6. Model ii: explicit calculation of mean, variance, and covariance

For Model ii, the mean and variance of the numbers of customers have been explicitly found in [6]. In this

section, we show that, with computations resembling those featuring in [6], one can also �nd the covari-

ance between the numbers of jobs present in both systems. The underlying type of reasoning heavily relies

on the representation of the number of customers present as a Poisson random variable with stochastic

parameter, as observed in [11]. The reasoning behind it, however, provides intuition as to why deviation

matrices appear in variances and covariances under certain scalings, and that is why we have chosen to

include these computations here.

For ease we assume the background process starts o� in equilibrium at time 0, but it can be veri�ed that

this is not necessary. In [6] it was observed that, with J ≡ (J(s) : s ∈ [0, t]),

(E(M1(t) | J) =

∫ t

0
λk,J(s)e

−µk,J(s)(t−s)ds.

In line with what was found in [6], the mean EMk(t) is therefore given by, for k = 1, 2,

%(II)

k (t) := EMk(t) =

d∑
i=1

πi
λk,i
µk,i

(
1− e−µk,it

)
.

Now focus on the evaluation of Cov (M1(t),M2(t)). The law of total covariance entails that

Cov (M1(t),M2(t)) = E(Cov ((M1(t),M2(t)) | J)) + Cov (E(M1(t) | J),E(M2(t) | J)).

The �rst of these terms cancels: given the path of J , there is no systematic e�ect of the Mi(t) on each

other. Plugging in expressions we found earlier for E(Mi(t) | J), the second term equals

Cov

(∫ t

0
λ1,J(s)e

−µ1,J(s)(t−s)ds,

∫ t

0
λ2,J(s)e

−µ2,J(s)(t−s)ds

)
,

which can be rewritten as∫ t

0

∫ t

0
Cov

(
λ1,J(r)e

−µ1,J(r)(t−r), λ2,J(s)e
−µ2,J(s)(t−s)

)
dr ds.
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Now we split the double integral into the cases r < s and r ≥ s. The contribution of the �rst of these two

cases is ∫ t

0

∫ s

0

d∑
i=1

d∑
j=1

λ1,iλ2,je
−µ1,i(t−r)e−µ2,j(t−s)Cov

(
1{J(r)=i}, 1{J(s)=j}

)
dr ds

=

∫ t

0

∫ s

0

d∑
i=1

d∑
j=1

λ1,iλ2,je
−µ1,i(t−r)e−µ2,j(t−s)πi (pij(s− r)− πj) dr ds.

Using elementary algebra (put v := s − r and interchange the order of the integrals), we �nd that this

equals

(4)

d∑
i=1

d∑
j=1

λ1,iλ2,j
µ1,i + µ2,j

∫ t

0

(
e−µ1,iv − e−(µ1,i+µ2,j)t+µ2,jv

)
πi (pij(v)− πj) dv.

It is veri�ed that the contribution due the other case (r ≥ s, that is) equals (4), but with the roles of the

two processes interchanged. We thus end up with the following result:

Cov (M1(t),M2(t)) =
d∑
i=1

d∑
j=1

λ1,iλ2,j
µ1,i + µ2,j

∫ t

0

(
e−µ1,iv − e−(µ1,i+µ2,j)t+µ2,jv

)
πi (pij(v)− πj) dv

+
d∑
i=1

d∑
j=1

λ1,jλ2,i
µ1,j + µ2,i

∫ t

0

(
e−µ2,jv − e−(µ2,j+µ1,i)t+µ1,jv

)
πi (pij(v)− πj) dv,

which simpli�es to

d∑
i=1

d∑
j=1

λ1,iλ2,j
µ1,i + µ2,j

∫ t

0

(
e−µ1,iv − e−(µ1,i+µ2,j)t+µ2,jv

)
(πi (pij(v)− πj) + πj (pji(v)− πi)) dv.

As mentioned above, in [6] an expression for the variance of the transient distribution was already estab-

lished: relying on the law of total variance it is found that, for k = 1, 2,

VarMk(t) = %k(t) + 2
d∑
i=1

d∑
j=1

λk,iλk,j
µk,i + µk,j

∫ t

0

(
e−µk,jv − e−2µk,jt+µk,jv

)
πi (pij(v)− πj) dv.

As we did in the previous section, we now consider a few special cases that provide us with interesting

insights. In the �rst special case we let t grow large, while in the second special case we scale the arrival

rates and the transition rates of the background process in a particular manner.
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Stationarity. In stationarity we obtain

Cov (M1,M2) =

d∑
i=1

d∑
j=1

λ1,iλ2,j
µ1,i + µ2,j

∫ ∞
0

(
e−µ1,ivπi (pij(v)− πj) + e−µ2,jvπj (pji(v)− πi)

)
dv.

Recalling the de�nition of the γ-weighted deviation matrix, we obtain the appealing expression

Cov (M1,M2) =
d∑
i=1

d∑
j=1

λ1,iλ2,j
µ1,i + µ2,j

(πiDij(µ1,i) + πjDji(µ2,j)) ,

whereas, for k = 1, 2,

VarMk =

d∑
i=1

πi
λk,i
µk,i

+ 2

d∑
i=1

d∑
j=1

λk,iλk,j
µk,i + µk,j

πiDij(µk,j).

It takes a short, direct computation to verify that the expression for Cov (M1,M2) coincides with (3) in

case ∆(µi) = miI.

Time scalings. We again consider the regime in which we speed up the background process by a factor

Nf
(for some f > 0), meaning that we replace Q by NfQ, and the arrival rates by N , meaning that we

replace λi by Nλi for i = 1, 2; as before, we write M
(N)
k (t) rather than Mk(t). It is readily veri�ed that,

with D := D(0) the (ordinary, non-weighted) deviation matrix, for k = 1, 2,

VarM
(N)
k (t) := N%(II)

k (t) +N2−fv(II)

k (t),

with %k(t) as before, and

(5) v(II)

k (t) := 2
d∑
i=1

d∑
j=1

λk,iλk,j
µk,i + µk,j

(
1− e−(µk,i+µk,j)t

)
πiDij ,

whereas the covariance equals

Cov (M
(N)
1 (t),M

(N)
2 (t)) = N2−fc(II)(t)

with

(6) c(II)(t) :=
d∑
i=1

d∑
j=1

λ1,iλ2,j
µ1,i + µ2,j

(
1− e−(µ1,i+µ2,j)t

)
(πiDij + πjDji) .
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Just like we have seen in Model i, for f > 1 the variances grow linearly, while the covariance behaves

sublinearly. As a consequence the two processes e�ectively decouple; it is therefore expected that in the

clt we need to normalize by the usual

√
N . For f < 1, on the contrary, the entire covariance matrix

behaves as N2−f
, so that it is anticipated that in the clt we have to scale by N1−f/2. In the next sections

we study clt results for both models.

7. Model i: central limit theorem

In this and the next section, our aim is to derive a clt under the scaling of the transition rate matrix and

arrival rates that we have considered earlier in this paper, that is, Q 7→ NfQ, λi 7→ Nλi. As before, we

add the superscript
(N)

to the random variables Mi(t) and Mi, to express the dependence of these objects

on the scaling.

In principle, we could analyze clt s for all four variants discussed earlier in this paper: Model i and ii, and

stationary and transient regimes. Such an analysis, however, by and large follows the approach carried out

in [4] for the case of a single (non-coupled, that is) in�nite-server system with Markov-modulated input,

and also the results strongly resemble those presented in [4]. To prove the clt s, in [4] the ‘single-system

counterparts’ of Props. 3.1, 3.3, 4.1, and 4.3 are intensively relied on.

Motivated by the above considerations, we present in this section and the next section the full analyses

for just the transient cases of both models. More precisely, the contents of these sections is:

• In this section we treat Model i with a derivation that mimics the one used to analyze the single-

system counterpart in [4]; as it turns out, the stationary result follows directly from the transient

result.

• The next section gives a detailed analysis of the transient of Model ii, but relies on the charac-

terization of the pgf featuring in Prop. 4.4, instead of the one appearing in Prop. 4.3; this means

that the type of argumentation used now has not been presented in [4]. The choice of relying on

Prop. 4.4, instead of Prop. 4.3, has the advantage that we have to deal with a system of ordinary

di�erential equations (with respect to time), rather than a system of partial di�erential equations,

which makes the analysis slightly easier. Formally, the clt for the stationary number of jobs in

the system for Model ii does not follow directly from the transient result; it is pointed out how the

stationary result should be rigorously derived (and this stationary result is also stated).
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The procedure, as followed in this and the next section, can be summarized as follows. In the clt s it

is established that a centered and scaled (or: normalized) version of (M
(N)
1 (t),M

(N)
2 (t)) converges to a

bivariate Normally distributed random variable. The �rst step is to use the systems of (partial) di�erential

equations, as presented in Section 3 and 4, that relate to the non-centered and non-scaled model, to set

up the corresponding di�erential equations for the centered and scaled model, under the scaling under

consideration. Then Taylor approximations are used to study their behavior for large N . The resulting

(single-dimensional) di�erential equation can be solved, and yields the claimed Normality. After having

established the claim for the transient distribution, we can also identify its stationary counterpart.

Importantly, the clt s featuring in this and the next section are non-standard in the sense that the nor-

malization imposed is not necessarily the ‘classical’

√
N scaling: if f > 1 then we should indeed use

√
N ,

but if f < 1 we have to scale by N1−f/2
, as indicated earlier.

� Model i, transient case. In the clt setting it is more convenient to work with moment generating

functions (mgf s) rather than probability generating functions. For that reason introduce the bivariate mgf

p̌(t,ϑ), with ϑ = (ϑ1, ϑ2)
T

. It is an elementary exercise that the partial di�erential equation in Prop. 3.3

translates into

p̌(t,ϑ)Q+

2∑
j=1

(
(eϑj − 1)p̌(t,ϑ) ∆(λj)− (1− e−ϑj )∂p̌(t,ϑ)

∂ϑj
∆(µj)

)
=
∂p̌(t,ϑ)

∂t
.

The scaling amounts to replacing Q by NfQ and ∆(λj) by N∆(λj); to stress the dependence of the mgf

on the scaling parameter N we write p̌(N)(t,ϑ) rather than p̌(t,ϑ).

Recall that %(I)

j (t) = %(I)

j · (1 − e−µj,∞t) with %(I)

j := λj,∞/µj,∞, and consider the random variable, with

β := max{1/2, 1− f/2},

(7) ϑ1

(
M

(N)
1 (t)−N%(II)

1 (t)

Nβ

)
+ ϑ2

(
M

(N)
2 (t)−N%(II)

2 (t)

Nβ

)
,
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with mgf g(N)(t,ϑ) (jointly with the event J (N)(t) = i, for i = 1, . . . , d, so that g(N)(t,ϑ) is a d-

dimensional row vector). It is readily veri�ed that

∂g(N)(t,ϑ)

∂t
=

∂p̌(N)(t,ϑ/Nβ)

∂t
exp

− 2∑
j=1

ϑj%
(I)

j (t)

− g(N)(t,ϑ)N1−β
2∑
j=1

ϑj(%
(I)

j )′(t),

∂g(N)(t,ϑ)

∂ϑi
= N−β

∂p̌(N)(t,ϑ/Nβ)

∂ϑi
exp

− 2∑
j=1

ϑj%
(I)

j (t)

− g(N)(t,ϑ)N1−β%(I)

i (t).

We thus arrive at, suppressing the arguments of g(N)(t,ϑ),

2∑
j=1

(
N
(
eϑj/N

β − 1
)
g(N) ∆(λj)−

(
1− e−ϑj/Nβ

)(
Nβ ∂g

(N)

∂ϑj
+Ng(N)%(I)

j (t)

)
∆(µj)

)

=
∂g(N)

∂t
+N1−βg(N)

2∑
j=1

ϑj(%
(I)

j )′(t)− g(N)QNf .

Now replace the exponential functions by the �rst two terms of their Taylor expansions, and postmultiply

with F , to obtain

g(N) = g(N)Π−N−f ∂g
(N)

∂t
F −N1−f−βg(N)F ·

2∑
j=1

ϑj(%
(I)

j )′(t)

+N−f
2∑
j=1

(
N

(
ϑj
Nβ

+
ϑ2j

2N2β

)
g(N)∆(λj)

−
(
ϑj
Nβ
−

ϑ2j
2N2β

)(
Nβ ∂g

(N)

∂ϑj
+Ng(N)%(I)

j (t)

)
∆(µj)

)
F + o(N1−f−2β).

Now the next steps (which resemble those that will be used when analyzing the clt for Model ii) are: �rst

we iterate this equation, and then postmultiply by 1 ·Nf
, leading to four relevant terms, viz. of orders 1,

N1−β
, N2−f−2β

, and N1−2β. Let h(N)
denote g(N)1, so that g(N)Π = h(N) · πT. The term of order 1 is

(use e.g. F1 = 1)

−∂h
(N)

∂t
−

2∑
j=1

ϑj
∂h(N)

∂ϑj
µj,∞.

The term of order N1−β
cancels, due to

g(N)Π
(

∆(λj)1− 1 · (%(I)

j )′(t)−∆(µj)F1 · %(I)

j (t)
)

= h(N)
(
λj,∞ − (%(I)

j )′(t)− %(I)

j (t)µj,∞

)
= 0.
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The term of order N2−f−2β
has the form h(N)(t,ϑ) · k(t,ϑ), with

k(t,ϑ) := πT

 2∑
j=1

ϑjAj(t)

F

 2∑
j=1

ϑjAj(t)

1,

whereAj(t) := −(%(I)

j )′(t)I+ ∆(λj)−%(I)

j (t)∆(µj). A simpli�cation can be made: using e.g. F = Π +D

and πTD = 0T
, it is straightforward to conclude that

k(t,ϑ) := πT

 2∑
j=1

ϑjBj(t)

D

 2∑
j=1

ϑjBj(t)

1,

where Bj(t) := ∆(λj)− %(I)

j (t)∆(µj). Finally, the term of order N1−2β
equals h(N)(t,ϑ) · `(t,ϑ), with

`(t,ϑ) :=
2∑
j=1

ϑ2jλj,∞

(
1− 1

2
e−µj,∞t

)
.

We obtain the limiting partial di�erential equation (as N →∞)

∂h(t,ϑ)

∂t
+

2∑
j=1

ϑj
∂h(t,ϑ)

∂ϑj
µj,∞ = h(t,ϑ) ·

(
k(t,ϑ)1{f61} + `(t,ϑ)1{f>1}

)
.

Now two cases need to be distinguished: f > 1 and f < 1 (with f = 1 corresponding to a boundary case

that needs to be handled separately).

� Now try for f 6 1 the solution h+(t,ϑ) = exp(ϑ21v
(I)

1 (t)/2 + ϑ1ϑ2c
(I)(t) + ϑ2v(I)

2 (t)/2). After

straightforward calculus we obtain that, for k = 1, 2,

v(I)

k (t) = 2πT

(∫ t

0
e−2µk,∞(t−s)Bk(s)DBk(s) ds

)
1,

c(I)(t) = πT

(∫ t

0
e−(µ1,∞+µ2,∞)(t−s) (B1(s)DB2(s) +B2(s)DB1(s)) ds

)
1.

� The case f > 1 is solved analogously (and obviously does not have a cross term):

h+(t) := exp

(
1

2

(
%(I)

1 (t)ϑ21 + %(I)

2 (t)ϑ22

))
.

� In case f = 1, it is seen that both terms should be taken into account; we thus �nd h(t) =

h−(t) + h+(t).
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De�ne

(8) Σ(I)(t) :=

 v(I)

1 (t) c(I)(t)

c(I)(t) v(I)

2 (t)

 1{f61} +

 %(I)

1 (t) 0

0 %(I)

2 (t)

 1{f>1}.

Theorem 7.1. Consider Model i. For any t > 0, the random variable(
M

(N)
1 (t)−N%(I)

1 (t)

Nβ
,
M

(N)
2 (t)−N%(I)

2 (t)

Nβ

)

converges to a bivariate Normal distribution with mean 0 and covariance matrix Σ(I)(t) as N →∞.

� Model i, stationary case. Recall %(I)

k = limt→∞ %
(I)

k (t) = λk,∞/µk,∞. In addition, we introduce the

notation Σ(I) := limt→∞Σ(I)(t); it takes a bit of calculus to verify that

Σ(I) :=

 v(I)

1 c(I)

c(I) v(I)

2

 1{f61} +

 %(I)

1 0

0 %(I)

2

 1{f>1},

with Bj := ∆(λj)− %(I)

j ∆(µj) and, for k = 1, 2,

v(I)

k :=
1

µk,∞
· πTBkDBk1, c(I) :=

1

µ1,∞ + µ2,∞
· πT (B1DB2 +B2DB1) 1.

The following result is shown just like Thm. 7.1, ignoring in the proof the partial derivative with respect

to time.

Theorem 7.2. Consider Model i. The random variable(
M

(N)
1 −N%(I)

1

Nβ
,
M

(N)
2 −N%(I)

2

Nβ

)

converges to a bivariate Normal distribution with mean 0 and covariance matrix Σ(I) as N →∞.

8. Model ii: central limit theorem

In this section the clt s for Model ii are established. The �rst subsection treats the transient case, and

relies on the system of (ordinary) di�erential equations presented in Prop. 4.4. In the second subsection it

is pointed out how the corresponding stationary clt can be found.
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� Model ii, transient case. To derive the clt, we are to analyze the limiting behavior (N →∞) of the

random variable, with again β := max{1/2, 1− f/2},

(9) ϑ1

(
M

(N)
1 (t)−N%(II)

1 (t)

Nβ

)
+ ϑ2

(
M

(N)
2 (t)−N%(II)

2 (t)

Nβ

)
,

conditional on the background process starting in state i ∈ {1, . . . , d}. This random variable has moment

the generating function (being a d-dimensional column vector — the values of ϑ1 and ϑ2 are held �xed

throughout this derivation, and therefore suppressed)

g(N)(t) = p̄
(
t, eϑ1/N

β
, eϑ2/N

β
)

exp
(
−N1−βϑ1%

(II)

1 (t)−N1−βϑ2%
(II)

2 (t)
)

;

here the pgf p̄ is the one featuring in Prop. 4.4. A straightforward application of the chain rule yields

d

dt
g(N)(t) =

(
d

dt
p̄
(
t, eϑ1/N

β
, eϑ2/N

β
))

exp
(
−N1−βϑ1%

(II)

1 (t)−N1−βϑ2%
(II)

2 (t)
)

−
(
N1−βϑ1(%

(II)

1 )′(t) +N1−βϑ2(%
(II)

2 )′(t)
)
g(N)(t).

De�ne

∆j,t := diag
{
λj,1e

−µj,1t, . . . , λj,de
−µj,dt

}
.

Now take the di�erential equation for the pgf from Prop. 4.4, apply the scaling introduced above, and

rewrite the resulting equation in terms of the moment generating function g(N)(t), to obtain

NfQ g(N)(t) +

2∑
j=1

(
N(eϑj/N

β − 1)∆j,t −N1−βϑj(%
(II)

j )′(t)
)
g(N)(t) =

d

dt
g(N)(t).

Let D be the deviation matrix introduced earlier, and F the corresponding fundamental matrix, de�ned

through F := D + Π, with Π := 1πT. Now premultiply the above di�erential equation by N−fF ; recall

the standard property of the fundamental matrix [10] that FQ = QF = Π− I . In addition, we de�ne

∆j,t := diag
{
λj,1e

−µj,1t, . . . , λj,de
−µj,dt

}
.
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Using a Taylor expansion, the resulting di�erential equation can be rewritten as

g(N)(t) = Πg(N)(t) +N1−f−βF

 2∑
j=1

ϑj

(
∆j,t − (%(II)

j )′(t)
) g(N)(t)

+N1−f−2βF

 2∑
j=1

ϑ2j
2

∆j,t

 g(N)(t)−N−f F d

dt
g(N)(t) + o(N1−f−2β).

Iterating this relation, we obtain

g(N)(t) = Πg(N)(t) +N1−f−βF

 2∑
j=1

ϑj

(
∆j,t − (%(II)

j )′(t)
)Πg(N)(t)

+N2−2f−2βF

 2∑
j=1

ϑj

(
∆j,t − (%(II)

j )′(t)
)F

 2∑
j=1

ϑj

(
∆j,t − (%(II)

j )′(t)
) g(N)(t)(10)

+N1−f−2βF

 2∑
j=1

ϑ2j
2

∆j,t

Πg(N)(t)

−N−f FΠ
d

dt
g(N)(t) + o(N2−2f−2β) + o(N1−f−2β).

It is noticed that this relation remains valid with g(N)(t) is replaced by Πg(N)(t) in the term (10); this is

seen when iterating the relation once more. Premultiply the resulting relation with 1TΠ ·Nf = πTNf
.

Observing that immediately from the de�nition of %(II)

j (t)

1TΠF
(

∆j,t − (%(II)

j )′(t)
)

Π = 1TΠ
(

∆j,t − (%(II)

j )′(t)
)

1π = 0,

using ΠF = FΠ = Π (see e.g. [10]), we thus obtain

0 = N2−f−2βπT

 2∑
j=1

ϑj

(
∆j,t − (%(II)

j )′(t)
)F

 2∑
j=1

ϑj

(
∆j,t − (%(II)

j )′(t)
)Πg(N)(t)

+N1−2βπT

 2∑
j=1

ϑ2j
2

∆j,t

Πg(N)(t)− πT d

dt
g(N)(t) + o(N2−f−2β) + o(N1−2β).

Now remark that Πg(N)(t) can be written as 1πTg(N)(t) = 1h(N)(t) for a scalar moment generating

function h(N)(t). We now compute h(t), de�ned as limN→∞ h
(N)(t). Again two cases need to be dis-

tinguished: f > 1 and f < 1 (with, as before, f = 1 being a boundary case that needs to be handled

separately).
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� If f < 1, then β = 1− f/2 > 1/2. As N →∞, the above equation becomes

πT

 2∑
j=1

ϑj

(
∆j,t − (%(II)

j )′(t)
)F

 2∑
j=1

ϑj

(
∆j,t − (%(II)

j )′(t)
)1 · h(t) = h′(t).

It is readily veri�ed that, using F = D + Π and the de�nitions of %(II)

j (t) and ∆j,t, for i, j = 1, 2,

πT
(

∆i,t − (%(II)

i )′(t)
)
F
(

∆j,t − (%(II)

j )′(t)
)

1

= πT∆i,tF∆j,t1− (%(II)

i )′(t) · (%(II)

j )′(t) = πT∆i,tD∆j,t1.

Recalling the de�nitions of v(II)

k (t) and c(II)(t) from (5) and (6), respectively, and taking into account

the obvious boundary conditions, it is now veri�ed that the above di�erential equation is solved

by

h−(t) := exp

(
1

2

(
v(II)

1 (t)ϑ21 + 2c(II)(t)ϑ1ϑ2 + v(II)

2 (t)ϑ22

))
.

� If f > 1, then β = 1/2, and we obtain

πT

 2∑
j=1

ϑ2j
2

∆j,t

1 · h(t) = h′(t).

Imposing the appropriate boundary conditions, it is elementary to check that this di�erential equa-

tion is solved by

h+(t) := exp

(
1

2

(
%(II)

1 (t)ϑ21 + %(II)

2 (t)ϑ22

))
.

� In case f = 1, both terms contribute, leading to h(t) = h−(t) + h+(t).

De�ne

Σ(II)(t) :=

 v(II)

1 (t) c(II)(t)

c(II)(t) v(II)

2 (t)

 1{f61} +

 %(II)

1 (t) 0

0 %(II)

2 (t)

 1{f>1}.

We have proven the following result.

Theorem 8.1. Consider Model ii. For any t > 0, the random variable(
M

(N)
1 (t)−N%1(II)(t)

Nβ
,
M

(N)
2 (t)−N%2(II)(t)

Nβ

)

converges to a bivariate Normal distribution with mean 0 and covariance matrix Σ(II)(t) as N →∞.
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� Model ii, stationary case. As could be anticipated on the basis of Thm. 8.1, the clt for the stationary

case is as follows. De�ne

Σ(II) := lim
t→∞

Σ(II)(t) =

 v(II)

1 c(II)

c(II) v(II)

2

 1{f61} +

 %(II)

1 0

0 %(II)

2

 1{f>1},

with

v(II)

k := 2
d∑
i=1

d∑
j=1

λk,iλk,j
µk,i + µk,j

πiDij , c(II) :=
d∑
i=1

d∑
j=1

λ1,iλ2,j
µ1,i + µ2,j

(πiDij + πjDji) .

Theorem 8.2. Consider Model ii. The random variable(
M

(N)
1 −N%1(II)

Nβ
,
M

(N)
2 −N%2(II)

Nβ

)

converges to a bivariate Normal distribution with mean 0 and covariance matrix Σ(II) as N →∞.

It is important to notice that this result does not follow directly from Thm. 8.1, as that would involve

interchanging the limits t → ∞ and N → ∞, for which a formal justi�cation is lacking. The way to

rigorously prove this result is analogous to the corresponding result for the single-system case in [4], viz.

using the di�erential equations featuring in Prop. 4.1. We omit the full derivation of this result.

9. Numerical illustration

As a numerical illustration of the dichotomy, we plot for Model I the variance and covariance of the system

contents; these are computed using the results from Section 3. The numerics correspond to the stationary

numbers of jobs in the system, imposing the scaling studied in detail in Section 7, i.e., M
(N)
1 and M

(N)
2 , in

the regime N →∞.

In the experiment the background Markov chain has two states, with transition rates q12 = 2 and q21 = 3.

The (unscaled) arrival and departure rates are as follows:

λ1 = [2 1], λ2 = [1 2], µ1 = [1 5], µ2 = [5 1].

As is directly seen from the graphs, using the scaling λi 7→ Nλi for i = 1, 2, and Q 7→ NfQ, we indeed

observe an intrinsically di�erent limit behavior for f < 1 and f > 1. The (normalized) variance peaks

at f = 1, in line with the ‘spike’ that the limiting variance has at f = 1; see Thm. 7.2. The covariance is

negative for f < 1 and vanishes for f > 1 (as N →∞), as desired.
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10. Discussion and concluding remarks

This paper has extended the results of [4, 14] to the situation of multiple Markov-modulated in�nite-

server queues driven by a common background process. These results concern the probability generating
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1 and M
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2 .
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function for the transient and stationary distributions, recursive procedures to generate the corresponding

moments, and central limit theorems under a speci�c scaling.

The model that we analyzed has the potential to be applied in a wide variety of settings. For instance in the

context of mathematical �nance, a key problem concerns the composition of portfolios. A portfolio consists

of a set of, typically correlated, �nancial assets, such as stocks and bonds, or potentially also options. The

objective is to compose a portfolio such that the revenue is maximized, while the corresponding risk is kept

at an acceptable level. Noticing that the asset prices are (partly) a�ected by the same economic forces, it

becomes clear that models in the spirit of the one discussed in this paper can be used; see also the exposition

in [12].

A second example can be found in biology. As argued in e.g. [17] the in�nite-server model can be used

to describe the concentration of mRNA in cells: molecules are generated, and remain present for some

random duration. The generation and decay processes, however, are subject to external factors, such

as temperature; those factors can be captured by imposing Markov modulation. Clearly, when studying

multiple ‘nearby’ cells, which react to the same external factors, our model can be used.

A third example concerns wireless communication networks. The channel conditions in adjacent cells are

typically highly correlated, which could be described by Markov modulation. Modelling the number of

clients in the individual cells as in�nite-server queues (as an approximation to queues that can accommo-

date a �nite but relatively large number of clients), our model can be used to study the joint distribution

of the number of users present.

In the �rst part of this paper we have derived di�erential equations that characterize the probability gen-

erating function of the numbers of jobs in both queues. In principle, these (ordinary or partial) di�erential

equations uniquely de�ne the probabilistic properties of our queueing system, but they do not allow an

explicit solution (except in very special cases). As is often done in such situations, we consider scalings

under which closed-form asymptotic results can be derived. In our setup we scale both the arrival rates

and the transition rates of the modulating Markov process. Scaling the arrival rates by a factor N , for N

large, can be interpreted as considering a system that is used by a large superposition of users. Interest-

ingly, we speed up the transition rates by a di�erent factor, i.e., Nf
; this allows us to obtain insight into

the e�ect of these di�erent speeds.
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Possible topics for follow-up research include (i) functional versions of the central limit theorems, in the

spirit of [1], (ii) networks of Markov-modulated in�nite-server queues (where the output of one queue can

serve as input for a next queue), (iii) large deviations results under the scaling we have considered in this

paper, similar to those derived in [5, 7, 8] for non-coupled Markov-modulated in�nite-server queues.
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