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Function Decomposition in Main and Lesser Peaks

Robin Alais, Petr Dokládal, Etienne Decencière, and Bruno Figliuzzi

PSL Research University - MINES ParisTech, CMM, Center for Mathematical Morphology
35 rue Saint Honoré - Fontainebleau, France

Abstract. This article shows how the dynamics extinction value can be used to
compute the decomposition of a function as a sum of simpler components. We
show that this decomposition induces a hierarchical segmentation of the domain
of definition, and a new partial ordering on nonnegative functions. Removing
some of the components according to different criteria leads to new morpholog-
ical operators. Their properties are discussed and illustrated in the last section.
In particular, we see that thresholding on the supports’ areas simplifies textured
zones, while retaining perceptually salient elements of the image.

Keywords: Mathematical morphology · Extinction values · Tree representation ·
Dynamics · Gray-scale thinnings

1 Introduction

Since their introduction by Vachier and Meyer [1], extinction values have been used
as a measure of importance for the extrema of a signal [2, 3]. When introduced, they
were defined with respect to a granulometry; the extinction value of a maximum is
the parameter of the smallest opening to completely erase it. The concept was then
generalized [4]; for instance, volumic extinction values can be defined, although there
is no corresponding granulometry.

While extinction values are typically used to select relevant markers, prior to water-
shed segmentation, this article introduces a new function decomposition associated to
extinction values. In this article, we focus on a specific one, dynamics [5], but the idea
can be easily extended to other ones.

The input signal can be written as a sum of simpler components that we will denote
as main and secondary peaks, following a mountain climbing analogy. Moreover, the
inclusions of the peaks’ supports define a forest structure. This representation is dif-
ferent from state-of-the-art techniques such as the max-tree [6] or the tree of shapes
[7].

Peaks are then attributed various measures of importance; removing or altering the
least important peaks (in the sense of those criteria) leads to new operators, some of
which we detail in this work. These operators differ from classic attribute openings
or thinnings [8]. In particular, they do not obey the threshold decomposition principle
[9]: we extend binary connected operators to gray-level operators by considering the
supports of our peaks, instead of considering threshold sets.

All of the methodology presented in this article is applicable on signals defined on
any finite simple graph; however, in the context of image processing, signals are usually



defined on a regular grid in a two- or three-dimensional space. The decomposition that
we introduce and all related operators have the additional attractive property of being
invariant by isometries (rotations, translations, symmetries and combinations thereof).

2 Notations

In the following, E denotes a finite, connected, simple graph. In most image processing
applications, typically E would be a subset of Z2 with a rectangular or hexagonal grid.
For 3-D images, it could as well be a subset of Z3 with any arbitrary connectivity.

For a node x ∈ E, N(x) denotes the neighborhood of x, i.e. all nodes y∈ E that share
an edge with x.

The support of a function f is the set of vertices on which it takes non-zero values:
supp( f ) = {x ∈ E| f (x) 6= 0}.

3 Decomposition in Main and Lesser Peaks

In this section, we introduce a new function decomposition, that we call the decom-
position in main and lesser peaks, by two different, equivalent ways of computing it.
The first approach is based on successive geodesic reconstructions [10] from the global
maxima of a signal - as this transformation in a way ’ignores’ maxima of lesser values,
which is in our case the desired behavior. The second approach is much more closely
related to the theory of extinction values [1, 4], and although we focus here solely on
dynamics [5], it can easily be extended to other extinction values.

3.1 Decomposition via Successive Geodesic Reconstructions

Fig. 1. Example of the elementary operation: the maximum of f is M = 9, reached at XM =
{5,24,28}. There are two connected components in the support of the reconstruction Γ ( f ), so
we obtain two functions f 1

9 and f 2
9 . One is shown in blue, the other in green.

Definition 1 (Geodesic reconstruction under the global maxima).
Let f ∈ Fun(E, IR+), f 6= 0.
Let M =max

x∈E
f (x), and XM = {x∈ E| f (x) =M} the set of points where it is reached.

We define Γ ( f ) as the geodesic reconstruction of f with markers XM .



Let C1, C2, ... CK be the K connected components of supp(Γ ( f )), and for 1 6 k 6 K,
let f k

M be the restriction of Γ ( f ) on Ck: f k
M = Γ ( f )×1Ck

In particular, Γ ( f ) = ∑
K
k=1 f k

M .
If f is identically zero, we take Γ (0) = 0 and the above summation is empty.
If f is not identically zero, we call the f k

Ms the main peaks of function f .

Note that by construction, Γ is an anti-extensive operator: Γ ( f )6 f , so the residue
f −Γ ( f ) is a nonnegative function, to which we can apply operator Γ again. By it-
erating the process until the residue is zero, we obtain a first way of computing our
decomposition (see algorithm 1).

Algorithm 1 Reconstruction-based algorithm
Given a function f ∈ Fun(E,R+): initialize with i = 0, R0 = f .

repeat
Let di = max(Ri)

Compute the main peaks of Ri: Γ (Ri) =
Ki

∑
k=1

f k
di

Ri+1← Ri−Γ (Ri)
i← i+1

until Ri = 0

Let I be the greatest integer such that RI 6= 0; the previous algorithm yields our
decomposition:

f =
I

∑
i=0

Ki

∑
k=1

f k
di

where, by construction, d0 = M = max f .

Definition 2. We call the f k
d0

the main peaks of f , while for i > 1, we call the f k
di

lesser
peaks of f .

Figure 1 illustrates operator Γ and the notion of main peaks.
It is easy to show that the previous algorithm converges in a finite number of steps:

keeping the same notations as above, we have:

∀x ∈ XM, f (x) = Γ ( f )(x) = M (1)

If f 6= 0, XM 6= /0 and the support of f −Γ ( f ) is strictly included in the support of
f . Since we chose E to be a finite graph, the number of steps required for the algorithm
to converge is upper-bounded by the cardinal of E.

Equation 1 also implies that the sequence (di)16i6I is strictly decreasing: d0 > d1 >
.. . > dI .



3.2 Decomposition via Razings

The second way of computing the decomposition is quite similar to the watershed al-
gorithm by flooding [11], except we raze the relief instead of flooding it. The idea is
that we start from the regional maxima and gradually expand labels by following de-
scending edges. When two or more regions meet, we stop propagating the labels that
started from the lowest maxima, subtract the razed peak from the original function and
propagate the remaining label. If two or more regions meet that started at the same -
highest - altitude, we merge the regions and replace their labels by a single one. This
way of handling equality cases can lead to ’twin peaks’, like the green component in
figure 1, and it is debatable; many image processing algorithms would arbitrarily break
such ties, considering for instance the lexicographical order on the coordinates when
working on a rectangular subset of Z2, or the area extinction value, as was proposed by
Grimaud [5]. The former approach is not invariant by rotation (swapping the coordi-
nates will break ties in a different way) and is not applicable to the general case when
the domain of definition is a finite simple graph; the latter is more attractive, but does
not handle the case where the area extinction values are equal, too. Our way of handling
ties ensures invariance by rotation when working on a regular grid, is well-defined, and
as we shall see, yields interesting properties, in particular regarding the supports of the
peaks.

Let us consider again a function f ∈ Fun(E,R+). If f = 0 its decomposition in
peaks is just an empty summation; in the following, let us assume f is not identically
zero and that its support is connected (if it is not, we simply apply the following proce-
dure on each connected component).

Let us consider the set XRM of all regional maxima of f . A regional maximum of f
is a connected set X ⊂ E such that f takes the same value on each point of X and stricly
lower values on neighboring points of X .

Let X1
RM, . . .XK

RM be the K connected components of XRM , and let L = {l1, ..., lL}=
f (E) \ {0} the set of values (’levels’) taken by f on its support, sorted in increasing
order: 0 < l1 < l2 < .. . < lL.

The algorithm then goes as follows: we start by defining K functions f 1, . . . , f K

which are simply the restrictions of f on the connected components X1
RM, . . . ,XK

RM:

∀k ∈ {1, . . . ,K}, f k = f ×1Xk
RM

We will then consider the connected components of the upper level sets of f , and
progressively assign new points to one of the f ks until we have f = ∑

K
k=1 f k.

Let us denote by F l = {x ∈ E| f (x) > l} the upper set of function f at level l; for
each i from L to 1, for each connected component C of F li , let us consider all k’s such
that supp( f k)⊂C (there is at least one such k).

There are two cases to consider: if only one of the f k has a maximum strictly greater
than all others (max( f k)> maxk′ 6=k max( f k′)), we consider it a potential main peak and
assign to the others, which are necessarily secondary peaks, their final values:



∀k′ 6= k :
{

f k′ ← f k′ − li
Finalize f k′

f ← f − ∑
k′ 6=k

f k′

f k← f ×1C

If there is only one f k whose support is a subset of C, obviously we would just
assign it the value f ×1C. Else, if there is a tie between two or more peaks (max( f k1) =
max( f k2) = . . . = max( f km) = maxk max( f k)), we first merge all these higher peaks
together:

f k1 ← f k1 ∨ f k2 ∨ . . .∨ f km

f k2 ← 0
f k3 ← 0
. . .
f km ← 0

then as before:

∀k′ /∈ {k1,k2, . . . ,km} :
{

f k′ ← f k′ − li
Finalize f k′

f ← f − ∑
k′ 6=k1

f k′

f k1 ← f ×1C

In the previous instructions, ’finalize’ f k′ means that when a peak f k′ is overtaken
by a higher peak f k at level li, we subtract li from it at this iteration, but then we will
not change its value at any subsequent iteration.

After the last iteration, we have f = ∑
K
k=1 f k; this does not mean there are neces-

sarily K peaks, as some terms of the summation can be zero. After removing those,
regrouping the terms with the same maximum value di and reindexing, we can rewrite
the summation as

f =
I

∑
i=0

Ki

∑
k=1

f k
di

as we had before. When we are not concerned with the values di, we may skip the

double summation and write f =
J
∑
j=1

f j for ease of reading.

Note that although this algorithm is mathematically valid for any finite simple graph
E and for any nonnegative real-valued function f , it can be more easily rewritten in the
more restrictive - but more often encountered - case where E is a regular grid and f
takes values in a finite set, typically {0, . . . ,255} for 8-bit images. Efficient algorithms
exist for simulating floodings or razings, based on hierarchical queues [10]. Although
this paper does not aim at providing a thorough algorithmic study, this remark means
that computing the decomposition using this algorithm is roughly as time-expensive as
computing the watershed transformation of an image.



Fig. 2. Example of the decomposition

3.3 Properties of the Decomposition

Let f =
I
∑

i=0

Ki
∑

k=1
f k
di

, as obtained by one of the previous algorithms, for a function f : E→

IR+.

Proposition 1 Nature of the peaks
Every peak p obtained by our decomposition (p = f k

di
for some i and k) satisfies the

properties that:

1. supp(p) is connected
2. Γ (p) = p

Conversely, each function q satisfying these properties is by itself its own peak de-
composition.

Proof. The first point is obvious by construction of the second algorithm. The fact that
Γ (p) = p comes from the fact that a function f k obtained by the second algorithm can-
not have local maxima that are not global maxima, else they would have been assigned
another component f k′ .

The reciprocal sense is basically the definition given in the first algorithm. ut

We denote by P the set of functions from E to IR+ satisfying those properties. In
particular, peaks have no local maxima that are not global maxima.

A function c : P→ {0,1} will be referred to as an intrinsic criterion. In particular,
any binary criterion [8] T (defined not on the space of functions but on the space of
subsets of E) can be associated a criterion cT on P by considering the support of a peak
p:

cT (p) = T (supp(p)).

Proposition 2 If xm is the index of a local maximum of f with dynamics d, then xm is
the index of a global maximum of f k

d for some k, and f k
d (xm) = d.

The proof can be found in the original article defining the notion of dynamics [5],
as the original proposed algorithm is similar to the second algorithm we propose; the
originality of ours lies in the decomposition it computes along with the dynamics.



A noticeable difference is how equality cases are handled: in [5], the author con-
siders that two close maxima of the same value being assigned the same dynamics is
undesirable behavior, since dynamics are often used as a way to select markers prior to
segmentation, typically using the watershed algorithm. In this context, selecting many
similar close extrema (usually minima, actually) is indeed undesirable behavior.

Since we chose not to break ties, our definition of the dynamics of a maximum is the
one usually found in the literature: it is the difference in altitude between this maximum
and the maximal lowest altitude of a point on a path joining it to another, strictly higher,
maximum.

The dynamics of the global maximum (or global maxima) of a function f is ill-
defined; the most common convention is to assign it the value max( f )−min( f ); other
authors assign it an infinite value; if dynamics are to be used for ranking extrema by
order of importance, the essential point is just to assign it a higher value than all local
ones. In order to be consistent with the definitions of our algorithms, we will adopt
the convention that the dynamics of the global maximum is simply its value. This is
consistent with the fact that the value 0 plays a specific role in our decomposition. For
instance, if the support of f is not connected, f and f +λ , where λ > 0 may not have the
same main peaks ( f may have several, while f +λ necessarily has only one). Following
our mountain-climbing analogy, the value 0 can be thought of as the sea level; even if
the support of f is equal to the entire domain E, meaning that for all x in E, f (x) > 0,
our reference level is not the minimum of f , but 0.

Proposition 3 For any two components f k
di

and f k′
d j

, supp( f k
di
) and supp( f k′

d j
) are either

nested or disjoint.
In particular, if supp( f ) is connected, then the number of main peaks K0 = 1,

Γ ( f ) = fd0 and:

∀i > 1,∀k ∈ {1, . . . ,Ki} supp( f k
di
)⊂ supp( fd0)

This can be proved by induction; consider the razing-based algorithm: at the be-
ginning, all supports are disjoint. Supports can only increase with iterations, and when
peaks meet at level li, they are either merged together (if there is a tie) or some are
finalized and the greater is assigned the value li > 0 on the supports of the other.

Proposition 4 For any two components fdi and fd j :

supp( fdi)⊂ supp( fd j)⇒ di < d j

Proposition 5 Stability by truncation
Let us consider a function f ∈ Fun(E, IR+) and its decomposition in main and lesser

peaks f = ∑
I
i=0 ∑

Ki
k=1 f k

di
.

Let us now consider a function g = ∑
I
i=0 ∑

Ki
k=1 δ k

i f k
di

, where δ k
i ∈ {0,1}, that is, g is

a truncated summation of the components of f .
The peaks of g, as defined in the first section, are simply the peaks of f that appear

in the summation; the decomposition of g can be written:



g =
I

∑
i=0

∑
16k6Ki

δ k
i =1

f k
di

In section 4, we present several operators based on the idea of keeping only certain
peaks, depending on certain criteria. The previous proposition asserts that, provided the
criteria only depend on intrinsic properties (that is, the choice of δ k

i only depends on
f k
di

), these operators are idempotent.

3.4 Induced Tree Structure

Definition 3. If supp( f ) is connected, then supp( f1) = supp( f ), so proposition 3 natu-
rally defines a tree structure on the components. Let fd j be a child node of fdi (we drop
the superscripts for ease of reading) if:

– supp( fd j)⊂ supp( fdi)
– There is no k such that supp( fd j)⊂ supp( fdk)⊂ supp( fdi)

If supp( f ) is not connected, the previous relationship yields a forest structure, with
a tree for each connected component.

f7

f 1
2 f 2

2 f4

f1

Fig. 3. Example of the decomposition and its associated tree: we have f7 in blue, f4 in yellow, f 1
2

and f 2
2 in green and red, f1 in cyan.

Proposition 6 Stability by anamorphosis
The forest decomposition is stable by any nonnegative anamorphosis that goes

through the origin; if u is an increasing, invertible function from IR+ to IR+ with
u(0) = 0, then f and u( f ) yield the same forest structure.



3.5 Ordering Induced by the Decomposition

Let us consider f and g two functions from E into IR+, and their decompositions in
main and lesser peaks, with the peaks labeled respectively from 1 to J f and from 1 to
Jg:

f =
J f

∑
j=1

f j, g =
Jg

∑
j=1

g j

We write f � g if there exists α : {1, . . . ,J f }→ {1, . . . ,Jg} such that:

∀ j ∈ {1, . . . ,Jg}, ∑
i|α(i)= j

f i 6 g j (2)

It can be easily seen that f � g⇒ f 6 g, but the reverse is not true in general.
Unfortunately, the couple (Fun(E, IR+),�) is not a lattice, nor even a semi-lattice:

neither the infimum nor supremum of two functions are guaranteed to exist.

4 Morphological Operators on (Fun(E, IR+),�)

In this section, we present some operators based on intrinsic criteria. All these operators
are anti-extensive and idempotent; however, they lack the property of being increasing
when considering the usual ordering on functions, so they are not morphological filters
on the lattice (Fun(E, IR+),6) (they are only thinnings).

They are increasing, though, if considering the order � introduced in the previous
section. It must be kept in mind that since (Fun(E, IR+),�) is not a lattice, they stand
outside the usual framework of mathematical morphology, but they can be thought of
as morphological filters on a poset.

Definition 4. General form for criterion-defined operators
Given a function f , its peak decomposition

f =
I

∑
i=0

Ki

∑
k=1

f k
di

and an intrinsic criterion c, we define:

γc :
{

Fun(E, IR+)→ Fun(E, IR+)

f 7→ ∑
I
i=0 ∑

Ki
k=1 c( f k

di
) f k

di

It is straightforward that any such operator is anti-extensive and idempotent; it is
not, in general, increasing, be it for the usual order 6 or the peak-induced order �; we
must add the constraint that the intrinsic criterion c is itself increasing (for either order,
as they are the same on P). Fortunately, this requirement is easily met.



Definition 5. Peak dynamics thresholding
This tranformation has a parameter δ , which is the minimum dynamics of peaks to

be kept; the intrinsic criterion is a threshold above this value. Formally:

cδ : P→ {0,1}

p 7→
{

1 if max(p)> δ

0 else

Definition 6. Peak area thresholding
This tranformation has a parameter A, which is the minimum area (cardinal of the

support) of peaks to be kept; the intrinsic criterion is simply a threshold above this area.
Formally:

cA : P→ {0,1}

p 7→
{

1 if #supp(p)> A
0 else

Definition 7. Peak volume thresholding
This time, the parameter V is the minimal volume (sum of the values) of peaks to be

kept; the intrinsic criterion is again a simple threshold above this parameter. Formally:

cA : P→ {0,1}

p 7→

{
1 if ∑

x∈E
p(x)>V

0 else

These operators are illustrated in Fig. 4, in one dimension. Figure 5 illustrates peak
area thresholding in two dimensions, and compares it to area opening, as defined by
Vincent [12]. Gray-scale area opening razes all maxima until they become large enough
flat zones, reducing the overall contrast of the image. Peak area thresholding, on the
other hand, does not affect high or isolated maxima, thus preserving the most salient
bright structures.

5 Conclusions and perspectives

In this article, we presented the methodology and mathematical foundations for obtain-
ing a function decomposition based on a particular extinction value: dynamics. Instead
of assigning a scalar value to each maximum, we assign it a function, that we call a peak,
associated to this maximum. Those peaks can in turn be assigned different measures:
maximum value, area, volume; binary criteria can also be computed on their supports.
We exhibit some properties of our decomposition, and present a new order on functions
induced by it.

Although we focused here on a dynamics-driven decomposition, similar decompo-
sitions can as easily be obtained by considering other extinction values in the definition
of section 3.2. Area or volume extinction values will lead to different decompositions,
and may be more sensible than dynamics, depending on the application and on the
expected type of noise.



Fig. 4. From top to bottom: original signal, peak dynamics thresholding with δ = 3, peak area
thresholding with A = 3, peak volume thresholding with V = 15.

Fig. 5. Comparison between classical area opening and peak area thresholding; the original image
is shown on the top left, the second column shows the result of a gray-scale area opening of size
350 and its residue; the rightmost column shows the result of a peak area thresholding of size 350
and its residue (the contrast of the residues has been enhanced for better visualization). We can
see that peak area thresholding flattens textured zones, such as the hair, forehead and right cheek,
but does not alter the most salient ones, such as the right eye or the reflection on the hat.



In order to introduce the concepts, we considered nonnegative functions and the
value zero as our reference level; however, it is easily generalized to real-valued func-
tions by considering the positive and negative part and applying the decomposition to
each, yielding self-dual operators.
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