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Mixed electrical-heat noise spectrum in a quantum dot

Paul Eyméoud1,2 and Adeline Crépieux1
1 Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France and

2 Aix Marseille Univ, CNRS, CINAM, Marseille, France

Using the Keldysh Green function technique, we calculate the finite-frequency correlator between
the electrical current and the heat current flowing through a quantum dot connected to reservoirs.
At equilibrium, we find that this quantity, called mixed noise, is linked to the thermoelectric ac-
conductance by the fluctuation-dissipation theorem. Out-of-equilibrium, we discuss its spectrum and
find evidence of the close relationship between the mixed noise and the thermopower. We study the
spectral coherence and identify the conditions to have a strong correlation between the electrical and
heat currents. The change in the spectral coherence due to the presence of a temperature gradient
between the reservoirs is also highlighted.

I. INTRODUCTION

The electrical noise spectrum in quantum systems is ac-
cessible experimentally through very sensitive techniques
such as spectrum analyzer1,2, use of a superconductor-
insulator-superconductor tunnel junction as an on-chip
spectrum analyzers3 and measurement of photon emis-
sion spectrum4. It exists also a proposal to measure
the heat statistics in quantum devices5. Given the fast
progress of detection techniques, it is not forbidden to
imagine that in the next few years, the measurement of
the noise correlator between the electrical current and
the heat current (mixed noise) would be possible.

In parallel, calculations of finite-frequency electrical-heat
mixed noise are needed for quantum systems. There ex-
ist very few works on the zero-frequency mixed noise6–10

and not even one concerning the finite-frequency mixed
noise. Theoretically, the studies are limited to the elec-
trical noise spectrum (see11–13 and references therein),
to the energy noise spectrum14–16, to the statistics of
the energy current in the presence of time-dependent ex-
citation17,18, and to the heat noise spectrum19. This is
regrettable since it has been shown recently that the zero-
frequency mixed noise contains information on the ther-
moelectric response of the system9,10: it gives the figure
of merit in the linear response regime and it is related
to the thermoelectric efficiency in the weak transmission
regime (Schottky regime). At finite-frequency, the mixed
noise should bring information on the dynamics of the
thermoelectric conversion, in particular on the thermo-
electric response of time-modulated systems, which is the
study of an increasing number of works20–29. In this pa-
per, we fill this lacuna by calculating the mixed noise
spectrum of a quantum dot (QD) using the Keldysh out-
of-equilibrium Green function technique. We focus on the
non-symmetrized noise spectrum since this is the quan-
tity which is relevant for quantum systems, due to the
fact that the current operators do not commute with each
other3,30,31.

The paper is organized as follows: We present the model
and give the definition of electrical and heat currents in
Sec. II. The results for the noise spectra are presented in
Sec. III, and discussed in Sec. IV. We conclude in Sec. V.

II. MODEL

To model the QD connected to left (L) and right (R)
reservoirs, we use the Hamiltonian H = HL + HR +

HD + HT , where Hα=L,R =
∑

k∈α εkαc
†
kαckα describes

the energy of electrons in the reservoir α, with c†kα
(ckα), the creation (annihilation) operator, HD = εdd

†d
describes the QD with a single energy level εd, with
d† (d) the creation (annihilation) operator, and HT =∑

α=L,R

∑
k∈α(Vkαc

†
kαd + h.c.) describes the transfer of

electrons from the reservoirs to the QD and vice versa.
The left and right reservoirs are assumed to be at equilib-
rium with temperature TL,R and chemical potential µL,R

(see Fig. 1).

FIG. 1: Picture of the QD connected to left and right reser-
voirs with distinct temperatures and chemical potentials (we
take eV = µL − µR and ∆T = TL − TR). The black arrows
indicate the convention chosen for the currents’ direction.

The charge current, Î0α, and heat current, Î1α, flowing
from the reservoir α to the QD, are given by the time
derivatives32–34 of the operators number of electrons in
the reservoir α, Nα, and energy of electrons in the reser-
voir α, Hα: Î0α = −eṄα, and Î1α = −Ḣα + µαṄα,

with Nα =
∑

k∈α c†kαckα. The time derivatives of these

two quantities are equal to Ṅα = i~−1
[
H,Nα

]
, and

Ḣα = i~−1
[
H,Hα

]
, which lead after calculation to

Ṅα =
i

~

∑

k∈α

(
− Vkαc

†
kαd+ V ∗

kαd
†ckα

)
, (1)

Ḣα =
i

~

∑

k∈α

εkα
(
− Vkαc

†
kαd+ V ∗

kαd
†ckα

)
. (2)

Injecting Eqs. (1) and (2) in the definitions of Î0α and Î1α,
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we obtain:

Î0α =
ie

~

∑

k∈α

(
Vkαc

†
kαd− V ∗

kαd
†ckα

)
,

Î1α =
i

~

∑

k∈α

(εkα − µα)
(
Vkαc

†
kαd− V ∗

kαd
†ckα

)
,

which give in a compact form

Îpα =
ie1−p

~

∑

k∈α

(
εkα − µα

)p(
Vkαc

†
kαd− V ∗

kαd
†ckα

)
.

(3)

III. NOISE SPECTRUM

The non-symmetrized noise spectrum is defined as

Spq
αβ(ω) =

∫ ∞

−∞

Spq
αβ(t, 0)e

−iωtdt , (4)

where Spq
αβ(t, 0) = 〈∆Îpα(t)∆Îqβ(0)〉 is the current-current

time-correlator, and ∆Îpα(t) = Îpα(t) − 〈Îpα〉, with Îpα,
the electrical (p = 0) or heat (p = 1) current operator
from the reservoir α to the central region through the
barrier α. The finite-frequency non-symmetrized noise
Spq
αβ(ω) quantifies the correlation between the currents

Îpα and Îqβ at finite frequency ω. Such a general defi-

nition embeds three types of noise: (i) the charge noise,
S00
αβ(ω), corresponding to the correlator between the elec-

trical current and itself; (ii) the mixed noises, S01
αβ(ω)

and S10
αβ(ω), corresponding to the correlators between the

electrical current and the heat current, and (iii) the heat
noise, S11

αβ(ω), corresponding to the correlator between
the heat current and itself.
We first compute the time-correlator Spq

αβ(t, t
′) using the

Keldysh out-of-equilibrium formalism35, and next calcu-
late its Fourier transform in order to get Spq

αβ(ω). To
achieve this task, we insert the current operator, given
by Eq. (3), in the definition of the noise, given by Eq. (4),
and perform the calculation of the average of the prod-
uct of four creation/annihilation operators, making the
following assumptions: non-interacting electrons, wide-
band approximation, and symmetrical coupling strength
between the reservoirs and the QD (i.e., symmetrical left
and right barriers). The details of the calculation are
given in the Appendix A. The final expression of finite-
frequency non-symmetrized noise we obtain is

Spq
αβ(ω) =

e2−p−q

h

∫ ∞

−∞

dε

×
[
(ε− µα)

p(ε− µβ)
qAαβ(ε, ω)

+(ε− µα)
p(ε− ~ω − µβ)

qBαβ(ε, ω)

+(ε− ~ω − µα)
p(ε− µβ)

qB∗
βα(ε, ω)

+(ε− ~ω − µα)
p(ε− ~ω − µβ)

qCαβ(ε, ω)
]
, (5)

with

Aαβ(ε, ω) = T (ε− ~ω)fh
M (ε− ~ω)

[
T (ε)fe

M (ε)

+[δαβ − t(ε)]fe
α(ε) + [δαβ − t∗(ε)]fe

β(ε)
]
, (6)

Bαβ(ε, ω) = t(ε)t(ε− ~ω) [fe
α(ε)− t∗(ε)fe

M (ε)]

×
[
fh
β (ε− ~ω)− t∗(ε− ~ω)fh

M (ε− ~ω)
]
, (7)

and

Cαβ(ε, ω) = T (ε)fe
M (ε)

[
T (ε− ~ω)fh

M (ε− ~ω)

+[δαβ − t∗(ε− ~ω)]fh
α(ε− ~ω)

+[δαβ − t(ε− ~ω)]fh
β (ε− ~ω)

]
, (8)

where fe
α(ε) = [1 + exp((ε− µα)/kBTα)]

−1 is the Fermi-
Dirac distribution function for electrons, fh

α(ε) = 1 −

fe
α(ε) is the distribution function for holes, fe,h

M (ε) =

[fe,h
L (ε) + fe,h

R (ε)]/2 is the average left and right distri-
bution, t(ε) is the transmission amplitude, and T (ε) =
|t(ε)|2 is the transmission coefficient. The transmission
amplitude is related to the retarded Green function of
the QD, Gr(ε), through the relation t(ε) = iΓGr(ε),
where Γ is the coupling strength between the QD and
the reservoirs13.

Equation (5) gives the electrical noise when p = q = 0, it
gives the mixed noise when either p = 0 and q = 1, or vice
versa, and it gives the heat noise when p = q = 1. Spq

αβ(ω)

is a real quantity when p = q and α = β (auto-correlator),
but can be complex otherwise (cross-correlator). We have
checked that the electrical noise S00

αβ(ω) extracted from

Eq. (5) coincides with the results of the literature13,36,
and that the heat noise S11

αβ(ω) extracted from Eq. (5)
coincides with the existing results of the literature in the
limit of energy-independent transmission amplitude14.
The expressions for the mixed noises S01

αβ(ω) and S10
αβ(ω)

are novels. This is the central result of this paper. It is
valid at any frequency ω, coupling strength Γ between
the QD and the reservoirs, QD energy level εd, and for
any temperature and voltage gradients between the left
and right reservoirs.

In the following, we choose first to restrict our study to
the case where temperatures for the left and right reser-
voirs are equal, TL = TR = T , and for εd = 0 (electron-
hole symmetry point), and we discuss the mixed noise
spectrum in three situations: (i) at equilibrium, (ii) for
energy-independent transmission amplitude, and (iii) for
an Anderson-type transmission amplitude. In the latter
case, we also discuss the spectral coherence in the pres-
ence of a temperature gradient between the two reser-
voirs.
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IV. DISCUSSION

A. At equilibrium

At equilibrium, i.e., µL = µR = εF , where εF is the Fermi
energy for electrons in the reservoirs, and for equal left
and right reservoir temperatures, i.e., TL = TR = T , we
have from Eqs. (5)-(8)

Spq
αβ(ω) =

e2−p−q

h

∫ ∞

−∞

dεfe
M (ε)fh

M (ε− ~ω)

×
[
εp+qÃαβ(ε, ω) + εp(ε− ~ω)qB̃αβ(ε, ω)

+(ε− ~ω)pεqB̃∗
βα(ε, ω) + (ε− ~ω)p+q C̃αβ(ε, ω)

]
,

(9)

with

Ãαβ(ε, ω) = T (ε− ~ω) [2δαβ − T (ε)] , (10)

B̃αβ(ε, ω) = t(ε)t(ε− ~ω)

× [1− t∗(ε)] [1− t∗(ε− ~ω)] , (11)

C̃αβ(ε, ω) = T (ε) [2δαβ − T (ε− ~ω)] , (12)

since for isothermal reservoirs at equilibrium, we have

fe,h
L (ε) = fe,h

R (ε) = fe,h
M (ε). From Eq. (9), it can be

shown using Spq
αβ(−ω) = e~ω/kBTSqp

αβ(ω) that the noise
spectrum obeys the relation

Spq
αβ(ω) = N(~ω)[Sqp

αβ(−ω)− Spq
αβ(ω)] , (13)

where N(~ω) = [exp(~ω/kBT ) − 1]−1 is the Bose-
Einstein distribution function. Removing the reser-
voirs’ index and using the definitions37 of the electri-
cal ac-conductance, G(ω) = [S00(−ω) − S00(ω)]/2~ω,
the thermal ac-conductance K(ω) = [S11(−ω) −
S11(ω)]/2~ωT , and the thermoelectric ac-conductance,
X(ω) = [S10(−ω)− S01(ω)]/2~ωT which is the product
of the ac-thermopower (i.e., Seebeck coefficient) by the
electrical ac-conductance, we establish that the noises are
related at equilibrium to the ac-conductances through the
following fluctuation-dissipation relations

S00(ω) = 2~ωN(~ω)G(ω) , (14)

S01(ω) = 2~ωTN(~ω)X(ω) , (15)

S11(ω) = 2~ωTN(~ω)K(ω) . (16)

Through these relations, we can state that in a similar
way that the finite-frequency electrical noise contains in-
formation on the dynamics of the charge transfer, the
finite-frequency heat noise contains information on the
dynamic of the heat transfer (since G(ω) and K(ω) are
the response to an excitation modulated in time). More-
over, Eq. (15) confirms the key role played by the mixed
noise S01(ω) to quantify the thermoelectric conversion.
Note that in the limit of zero-frequency, Eqs. (14)-(16)
reduce to the relations given in Ref. 9, since we have in
that limit N(~ω) → kBT/~ω.

B. Energy-independent transmission

For an energy-independent transmission amplitude, t, the
real parts of the electrical, mixed, and heat noise spec-
tra are given by Fig. 2 in the low-temperature limit. We
do not plot their imaginary parts whose magnitudes are
smaller with a factor 100 comparing to the ones of the
real parts. Let us now discuss the features appearing on
Fig. 2. First, we notice that similarly to the electrical
noise, which cancels when the frequency is larger than
the voltage, ~ω > eV , the mixed and heat noises cancel
as well. The reason is the following: knowing that the
noise is called emission noise at positive frequency and
absorption noise at negative frequency38, we understand
that the system can not emit an energy larger than the
energy provided to it, here the voltage since temperature
is taken small. Second, we observe that the electrical
noise varies linearly or by plateaus with both voltage and
frequency, due to the fact that when transmission is en-
ergy independent, the system works in the linear regime.
Third, the mixed noise can change its sign whereas the
electrical and heat noises keep a single sign. Fourth, the
electrical and mixed correlators between distinct reser-
voirs, Spq

LR, are equal in absolute values to the correlators
in the same reservoir, Spq

LL, and nearly equal for the heat
correlator39.

FIG. 2: Noises spectra as a function of frequency ~ω/Γ ∈
[−10, 10] and voltage eV/Γ ∈ [−10, 10] for T = 0.01 and t =

T +i[T (1−T )]1/2, at low temperature kBT/Γ = 0.01. Spq
αβ(ω)

is plotted in units of e2−p−qΓ1+p+q/h. The right reservoir is
grounded (µR = 0).

In the limit of weak or perfect transmission, i.e., T ≪ 1
or T = 1 respectively, the integration over energy in
Eq. (5) can be performed analytically (see Appendix B
for the details of the calculation). The expressions of the
noises, which are all real in these limits, are given in Ta-
ble I. These expressions constitute a generalization of the
fluctuation-dissipation theorem to an out-of-equilibrium
situation since the Bose-Einstein distribution function is
estimated at frequency shifted by ±eV/~. Concerning
the electrical noise, its expression at T ≪ 1 is in full
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agreement with the result of perturbative calculations40.
Concerning the mixed and heat noises expressions, there
is no previous work to compare in the literature. Note
that at zero-voltage, the mixed noise cancels in both
limits (T ≪ 1 and T = 1) but not in the intermedi-
ate regime: the mixed noise is then given by Eq. (15)
which is a priori non-zero. It is also worth to notice
that S11

αβ(ω) contains a contribution which is propor-

tional to S00
αβ(ω) with a proportionality factor equal to

LT 2, where L = π2k2B/3e
2 is the Lorenz number. Since

in certain limits, the heat noise is related to the ther-
mal conductance and the electrical noise to the electri-
cal conductance, as through Eqs. (16) and (14) at equi-
librium for example, it is not surprising to find a rela-
tion which involves the Lorenz number between the heat
noise and the electrical noise thanks to the Wiedemann-
Franz law, or between the thermal conductance and the

electrical noise as obtained in Ref. 41. Table I gives
also the sum over reservoirs of the electrical, mixed,
and heat noises,

∑
αβ S

pq
αβ(ω). Contrary to the total

electrical and mixed noises, which are equal to zero in
the limits we consider (no charging effect on the QD),
the total heat noise takes a finite value which indeed
corresponds to the heat power fluctuations. At zero-
frequency, the power fluctuations are conserved, i.e., the
heat power fluctuations are equal to the electrical power
fluctuations9. It is also true at finite-frequency provided
that T = 1, since in that limit we have from Table I,∑

αβ S
11
αβ(ω) = V 2S00

αα(ω). At zero-temperature, we get

for T = 1:
∑

αβ S
11
αβ(ω) = 2|~ω|(eV )2Θ(−ω)/h, and for

T ≪ 1,
∑

αβ S
11
αβ(ω) = 4T |~ω|3Θ(−ω)/h at zero-voltage,

and
∑

αβ S
11
αβ(ω) = T |eV |3/h at zero-frequency in good

agreement with Ref. 14.

Type of noise Notation T ≪ 1 T = 1

Electrical noise S00
αβ(ω)

e2T
h

(2δαβ − 1)
∑

±
(~ω ± eV )N(~ω ± eV ) e2

h
(2δαβ − 1)2~ωN(~ω)

Total electrical noise
∑

αβ S00
αβ(ω) 0 0

Mixed noise S01
αβ(ω)

eT
h
(2δαL − 1)

∑

±
∓ (~ω±eV )2

2
N(~ω ± eV ) e

h
(1− 2δαL)eV ~ωN(~ω)

Total mixed noise
∑

αβ S01
αβ(ω) 0 0

Heat noise S11
αα(ω) LT 2S00

αα(ω)
(

LT 2 + V 2

2
+ ~

2ω2

12e2

)

S00
αα(ω)

(auto-correlator) +T

h

[

~
3ω3N(~ω) +

∑

±

(~ω±eV )3

3
N(~ω ± eV )

]

+ ~
2ω2

4h

∑

±
(~ω ± eV )N(~ω ± eV )

Heat noise S11
αᾱ(ω) LT 2S00

αᾱ(ω) LT 2S00
αᾱ(ω)−

~
2ω2

12e2
S00
αα(ω)

(cross-correlator) +T

h

∑

±

(~ω±eV )3

6
N(~ω ± eV ) − ~

2ω2

4h

∑

±
(~ω ± eV )N(~ω ± eV )

Total heat noise
∑

αβ S11
αβ(ω)

T

h

[

2~3ω3N(~ω) +
∑

±
(~ω ± eV )3N(~ω ± eV )

]

V 2S00
αα(ω)

TABLE I: Expressions of the electrical, mixed, and heat noises in the energy-independent weak/perfect transmission limits42.
We have ᾱ = R when α = L, and vice versa. The total electrical, mixed and heat noises summed over both reservoirs are also
given. The details of the calculations are performed in Appendix B.

C. Anderson-type energy transmission

For an Anderson-type transmission amplitude of the form
t(ε) = iΓ/[(ε − εd) + iΓ], both the real and imaginary
parts of the electrical, mixed, and heat noise spectra are
given by Fig. 3 in the low temperature limit. Note that
the imaginary parts of S00

LL(ω) and S11
LL(ω) are both zero

since the auto-correlators are real quantities, and that
the real and imaginary parts of the cross-correlators are
of the same order of magnitude, contrary to the energy
independent transmission case. The main observation is
the dramatically distinct spectra that we have for the
auto-correlators, S00

LL(ω) and S11
LL(ω), in comparison to

the cross-correlators, Spq
αβ(ω) with p 6= q or/and α 6= β.

Whereas the auto-correlator spectra are quite similar to

the ones obtained in the case of an energy-independent
transmission amplitude (compare to Fig. 2), excepted an
additional structure in the region of small positive fre-
quency, the cross-correlator spectra exhibit the following
features: (i) their sign can change, (ii) it appears a new
region with specific behavior close to small frequency, but
(iii) we still have a cancellation of the noises for ~ω > eV ,
again due to the fact that the system can not emit en-
ergy larger than the one provided to it. We remark that
in any situations, those depicted in Figs. 2 and 3 and
those summarized in Table I, the mixed noise cancels at
zero-voltage, meaning that the cancellation of the ratio
−V/∆T , which is equal to the Seebeck coefficient ST for
open circuit, causes the cancellation of the mixed noise.
This is one evidence that thermopower and mixed noise
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FIG. 3: Noises spectra as a function of frequency ~ω/Γ ∈
[−10, 10] and voltage eV/Γ ∈ [−10, 10] for T (ε) = Γ2/(ε2 +
Γ2), at low temperature kBT/Γ = 0.01. Spq

αβ(ω) is plotted

in units of e2−p−qΓ1+p+q/h. The right reservoir is grounded
(µR = 0).

are closely connected.

To have a deeper insight in the electrical, mixed, and heat
noises, we plot their real and imaginary parts as a func-
tion of frequency at weak coupling strength Γ, for increas-
ing temperatures in Figs. 4 and 5. All the types of noise
exhibit an asymmetric spectrum at low temperature (red
curves) and a nearly symmetrical spectrum at large tem-
perature with a vanishing imaginary part (black curves),
due to the fact that when the temperature increases we
are leaving the quantum regime. Thus, at large temper-
ature, it is no longer necessary to make the distinction
between non-symmetrized and symmetrized noises since
the currents are no longer operators but just scalars (clas-
sical regime). The electrical and heat auto-correlators
(see Figs. 4(a) and 4(b)) are real and positive quanti-
ties. The electrical auto-correlator, S00

LL(ω), is strongly
frequency dependent at low temperature with a down
staircase-like behavior starting from the value 2πΓe2/h
and going to the value 0 (see red curve in Fig. 4(a)), but
resembles to a white noise at large temperature43 with a
constant value equals to πΓe2/h, except in a narrow low
frequency region (see black curve in Fig. 4(a)). At large
temperature, the heat auto-correlator, S11

LL(ω), presents
a power-law variation with frequency, given by ~

2ω2πΓ/h
(see black curve in Fig. 4(b)) whereas the real part of
S11
LR(ω) decreases linearly with temperature43. The elec-

FIG. 4: Electrical noises S00
LL(ω) and S00

LR(ω) (left column)
and heat noises S11

LL(ω) and S11
LR(ω) (right column), as a

function of frequency ~ω/eV , for T (ε) = Γ2/(ε2 + Γ2), with
Γ/eV = 0.01, and for varying values of the temperature
kBT/eV : 0.01 (red line), 0.5 (orange line), 1 (blue line),
2 (brown line), and 10 (black line). Spq

αβ(ω) is plotted in

units of e2−p−q(eV )1+p+q/h. The right reservoir is grounded
(µR = 0).

trical and heat cross-correlators, depicted in Figs. 4(c)-
4(f), are complex quantities whose imaginary parts cancel
at large temperature (black curves), making the cross-
correlators real quantities in that limit. The electrical
auto-correlator and the real part of the electrical cross-
correlator have distinct profiles but coincide at zero-
frequency in absolute value since due to charge conserva-
tion we have S00

LL(ω = 0) = −S00
LR(ω = 0) = πΓe2/2h in

that limit.

FIG. 5: Mixed noises S01
LL(ω) (left column) and S01

LR(ω) (right
column), as a function of frequency ~ω/eV . Same parameters
as in Fig. 4.

We turn now our interest to the mixed noise depicted
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in Fig. 5. Similarly than for electrical and heat noises,
increasing the temperature changes the mixed spectrum
from an asymmetric profile to a symmetric profile with
frequency, and cancels its imaginary part, again due to
the fact that we are leaving the quantum regime. At low
temperature, we also see that the imaginary parts of the
mixed noises, S01

LL(ω) and S01
LR(ω), have a staircase-like

profile which is a reminiscent of the electrical noise auto-
correlator (compare Figs. 5(c) and 5(d) to Fig. 4(a)).
Besides, the real parts of the mixed noises present quite
particular profiles at low temperature: a linear profile in
frequency for S01

LL(ω) (see the red curve in Fig. 5(a)) and
vanishing value when |~ω| > |eV | for S01

LR(ω) (see the
red curve in Fig. 5(b)). At large temperature, S01

LL(ω)
becomes frequency independent with an asymptotic value
equal to −πΓe2V/h, and S01

LR(ω) cancels43. Here again,
we find that the mixed noise is related to the Seebeck
coefficient ST , since both quantities vary linearly with
voltage.
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FIG. 6: Spectral coherence for T (ε) = Γ2/(ε2 + Γ2), for
Γ/eV = 0.02 (left column) and Γ/eV = 0.2 (right col-
umn), at kBTR/eV = 0.1 and temperature gradient equals
to: ∆T/eV = 0 (blue curve), ∆T/eV = 0.5 (green curve),
and ∆T/eV = 1 (red curve). The dashed black line shows
the maximal possible value for the spectral coherence, i.e., 1.

For completeness, we discuss the spectral coher-
ence of the cross-correlators, defined as Cpq

αβ(ω) =

|Spq
αβ(ω)|

2/[Spp
αα(ω)S

qq
ββ(ω)], and plot their profiles on

Fig. 6. Thanks to Cauchy-Schwarz inequality, we have

0 ≤ Cpq
αβ(ω) ≤ 1, where the value zero for the spec-

tral coherence means that the currents Ipα and Iqβ are
uncorrelated, whereas the value one means that the cur-
rents Ipα and Iqβ are fully correlated. The plots on the
left column of Fig. 6 are obtained for a weak coupling
strength (Γ/eV = 0.02), whereas the plots on the right
column correspond to an intermediate coupling strength
(Γ/eV = 0.2). In the weak coupling strength limit,
we remark that Cpq

α6=β(ω) is equal to zero at negative
frequency, meaning that the absorbed signals in dis-
tinct reservoirs are uncorrelated. Moreover, we see in
Fig. 6(a) that the left and right electrical currents are
well correlated only at zero-frequency, i.e., in the large-
time limit, due to charge conservation which imposes
C00

LR(ω = 0) = C00
LL(ω = 0) = 1. When the cou-

pling strength increases, the spectral coherence C00
LR(ω) is

broadened to non-zero frequencies (see Fig. 6(b)) and can
even reach 40% at positive frequencies, an effect which
is amplified around ~ω = eV when a temperature gradi-
ent is applied (see red curve in Fig. 6(b)). The electrical
and heat currents inside a single reservoir, here L, are
well correlated at ∆T = 0 (see blue curves in Figs. 6(c)
and 6(d)) provided that ~ω > −eV , excepted in a nar-
row region around ~ω = eV where a minimum of C01

LL(ω)
is observed. At the same frequency, C01

LR(ω) exhibits a
maximum (see blue curves in Figs. 6(e) and 6(f)) mean-
ing that the left electrical current and the right heat cur-
rent are maximally correlated in that region of frequency.
The increasing of the coupling strength reinforces this ef-
fect with values of C01

LR(ω) up to 80% (see blue curve in
Fig. 6(f)). This result allows us to make the prediction
that the thermoelectric conversion could be optimal when
the voltage applied to the QD is time-modulated with a
frequency equals to the dc-voltage, i.e., eV/~. This effect
is, however, suppressed in the presence of a temperature
gradient (see green and red curves in Fig. 6(f)). On the
contrary, C11

LR(ω) can be increased at high frequency by
the application of a temperature gradient (see Fig. 6(h)).

V. CONCLUSION

We have used the Keldysh out-of-equilibrium Green func-
tion technique to calculate the finite-frequency mixed
noise, and have shown that its spectrum presents a rich
and specific profile, which differs from the ones of the
electrical and heat noises. At equilibrium, it is related
to the thermoelectric ac-conductance, meaning that the
finite-frequency mixed noise gives access to the dynamics
of the thermoelectric conversion. Out-of-equilibrium, by
a careful study of the spectral coherence, we find that
the electrical current in one reservoir is strongly corre-
lated to the heat current in the other reservoir when the
frequency is of the order of the applied voltage. The
method developed here constitutes an adequate frame-
work which can be used in future works on this quantity
in more complicated quantum systems, including multi-
terminals, multi-channels, and interactions in some ex-
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tent.

Acknowledgments

We would like to thank M. Guigou, M. Lavagna, T. Mar-
tin, F. Michelini, and R. Zamoum for useful discussions.
We acknowledge financial support from the CNRS Cel-
lule Energie funding project ICARE, and from A*Midex.

Appendix A: Correlators of charge and heat

currents in a QD

1. Computation of the time-correlator Spq
αβ(t, t

′)

We use an approach analog to the one developed by Haug
and Jauho for the calculation of electrical noise32, but in-
stead of calculating the symmetrized noise, we calculate
the non-symmetrized one since it is this latter quantity
which is accessible in the experiments measuring the elec-
trical current noise. We perform this calculation for each
type of noise, the electrical, mixed and heat ones, using
the general framework exposed in this Appendix.

a. Expression of Spq
αβ(t, t

′) in terms of the two-particle

Green function of the QD, Gdd
i

We report Eq. (3) in Eq. (4) and get

Spq
αβ(t, t

′) = −
e2−p−q

~2

∑

k∈α,k′∈β

(εkα − µα)
p
(εk′β − µβ)

q

×
[
VkαVk′β〈c

†
kα(t)d(t)c

†
k′β(t

′)d(t′)〉

−VkαV
∗
k′β〈c

†
kα(t)d(t)d

†(t′)ck′β(t
′)〉

−V ∗
kαVk′β〈d

†(t)ckα(t)c
†
k′β(t

′)d(t′)〉

+V ∗
kαV

∗
k′β〈d

†(t)ckα(t)d
†(t′)ck′β(t

′)〉
]
− 〈Îpα〉〈Î

q
β〉 . (A1)

Defining the following greater two-particle Green
functions32

Gcd,>
1 (t, t′) = i2〈Tc†kα(t)d(t)c

†
k′β(t

′)d(t′)〉 ,

Gcd,>
2 (t, t′) = i2〈Tc†kα(t)d(t)d

†(t′)ck′β(t
′)〉 ,

Gcd,>
3 (t, t′) = i2〈Td†(t)ckα(t)c

†
k′β(t

′)d(t′)〉 ,

Gcd,>
4 (t, t′) = i2〈Td†(t)ckα(t)d

†(t′)ck′β(t
′)〉 ,

and using the Keldysh formalism35, the non-equilibrium
contour-ordered counterparts of the correlation function
can be expressed in terms of Gcd

i (τ, τ ′), the contour-
ordered counterparts of the two-particle Green functions,
Gcd,>

i (t, t′), through

Spq
αβ(τ, τ

′) =
e2−p−q

~2

∑

k∈α,k′∈β

(εkα − µα)
p (εk′β − µβ)

q

×
[
VkαVk′βG

cd
1 (τ, τ ′)− VkαV

∗
k′βG

cd
2 (τ, τ ′)

−V ∗
kαVk′βG

cd
3 (τ, τ ′) + V ∗

kαV
∗
k′βG

cd
4 (τ, τ ′)

]
− 〈Îpα〉〈Î

q
β〉 .

(A2)

The next step is to express the two-particle Green func-
tions, Gcd

i , mixing c and d operators in terms of the two-
particle Green functions of the QD, Gdd

i , and of the bare
Green function of the reservoirs, gkα. We have32

Gcd
1 (τ, τ ′) = −

V ∗
kαV

∗
k′β

~2

x
dτ1dτ2

×gkα(τ1, τ)gk′β(τ2, τ
′)Gdd

1 (τ, τ ′, τ1, τ2) ,

Gcd
2 (τ, τ ′) = −δkk′δαβgkα(τ

′, τ)G(τ, τ ′)−
V ∗
kαVk′β

~2

×
x

dτ1dτ2gkα(τ2, τ)gk′β(τ
′, τ1)G

dd
2 (τ, τ ′, τ1, τ2) ,

Gcd
3 (τ, τ ′) = −δkk′δαβgkα(τ, τ

′)G(τ ′, τ) +
VkαV

∗
k′β

~2

×
x

dτ1dτ2gkα(τ, τ1)gk′β(τ2, τ
′)Gdd

3 (τ, τ ′, τ1, τ2) ,

Gcd
4 (τ, τ ′) = −

VkαVk′β

~2

x
dτ1dτ2

×gkα(τ, τ1)gk′β(τ
′, τ2)G

dd
4 (τ, τ ′, τ1, τ2) ,

with

Gdd
1 (τ, τ ′, τ1, τ2) = i2〈TCd(τ)d(τ

′)d†(τ1)d
†(τ2)〉 ,

Gdd
2 (τ, τ ′, τ1, τ2) = i2〈TCd(τ)d

†(τ ′)d(τ1)d
†(τ2)〉 ,

Gdd
3 (τ, τ ′, τ1, τ2) = i2〈TCd

†(τ)d(τ ′)d(τ1)d
†(τ2)〉 ,

Gdd
4 (τ, τ ′, τ1, τ2) = i2〈TCd

†(τ)d†(τ ′)d(τ1)d(τ2)〉 .

Injecting the above expressions of Gcd
i in Eq. (A2), we

get

Spq
αβ(τ, τ

′) =
e2−p−q

~2

(
δαβ

∑

k∈α

(εkα − µα)
p+q

×|Vkα|
2
[
gkα(τ

′, τ)G(τ, τ ′) + gkα(τ, τ
′)G(τ ′, τ)

]

+
∑

k∈α,k′∈β

(εkα − µα)
p (εk′β − µβ)

q |VkαVk′β |2

~2

×
x

dτ1dτ2

[
− gkα(τ1, τ)gk′β(τ2, τ

′)Gdd
1 (τ, τ ′, τ1, τ2)

+gkα(τ2, τ)gk′β(τ
′, τ1)G

dd
2 (τ, τ ′, τ1, τ2)

−gkα(τ, τ1)gk′β(τ2, τ
′)Gdd

3 (τ, τ ′, τ1, τ2)

−gkα(τ, τ1)gk′β(τ
′, τ2)G

dd
4 (τ, τ ′, τ1, τ2)

])
− 〈Îpα〉〈Î

q
β〉 ,

(A3)

where G(τ, τ ′) = −i〈TCd(τ)d
†(τ ′)〉 is the one-particle

Green function of the QD.
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P0(t, t
′) g<kα(t

′, t)G>(t, t′) + g>kα(t, t
′)G<(t′, t)

P1(t, t
′) −

∫

dt1
[

Gr(t′, t1)g
<
kα(t1, t) +G<(t′, t1)g

a
kα(t1, t)

] ∫

dt2
[

Gr(t, t2)g
>
k′β(t2, t

′) +G>(t, t2)g
a
k′β(t2, t

′)
]

P2(t, t
′) G>(t, t′)

s
dt1dt2

[

grk′β(t
′, t1)G

r(t1, t2)g
<
kα(t2, t)

+grk′β(t
′, t1)G

<(t1, t2)g
a
kα(t2, t) + g<k′β(t

′, t1)G
a(t1, t2)g

a
kα(t2, t)

]

P3(t, t
′) G<(t′, t)

s
dt1dt2

[

grkα(t, t1)G
r(t1, t2)g

>
k′β(t2, t

′)

+grkα(t, t1)G
>(t1, t2)g

a
k′β(t2, t

′) + g>kα(t, t1)G
a(t1, t2)g

a
k′β(t2, t

′)
]

P4(t, t
′) −

∫

dt1
[

grkα(t, t1)G
>(t1, t

′) + g>kα(t, t1)G
a(t1, t

′)
]

×
∫

dt2
[

grk′β(t
′, t2)G

<(t2, t) + g<k′β(t
′, t2)G

a(t2, t)
]

TABLE II: Expressions of the Pi(t, t
′) coefficients appearing in Eq. (A7).

P0(ω)
∫

dε
(

g<kα(ε)G
>(ε− ~ω) + g>kα(ε− ~ω)G<(ε)

)

P1(ω) −
∫

dε
[

Gr(ε)g<kα(ε)G
r(ε− ~ω)g>k′β(ε− ~ω) +Gr(ε)g<kα(ε)G

>(ε− ~ω)gak′β(ε− ~ω)

+G<(ε)gakα(ε)G
r(ε− ~ω)g>k′β(ε− ~ω) +G<(ε)gakα(ε)G

>(ε− ~ω)gak′β(ε− ~ω)
]

P2(ω)
∫

dεG>(ε− ~ω)
[

grk′β(ε)G
r(ε)g<kα(ε) + grk′β(ε)G

<(ε)gakα(ε) + g<k′β(ε)G
a(ε)gakα(ε)

]

P3(ω)
∫

dεG<(ε)
[

grkα(ε− ~ω)Gr(ε− ~ω)g>k′β(ε− ~ω)

+grkα(ε− ~ω)G>(ε− ~ω)gak′β(ε− ~ω) + g>kα(ε− ~ω)Ga(ε− ~ω)gak′β(ε− ~ω)
]

P4(ω) −
∫

dε
[

grkα(ε− ~ω)G>(ε− ~ω) + g>kα(ε− ~ω)Ga(ε− ~ω)
][

grk′β(ε)G
<(ε) + g<k′β(ε)G

a(ε)
]

TABLE III: Expressions of the Pi(ω) coefficients appearing in Eq. (A8).

Aαβ(ε, ω) − 1
2

[

fh
α(ε− ~ω) + fh

ᾱ (ε− ~ω)
](

[fe
α(ε)− fe

β(ε)]t(ε)T (ε− ~ω)− 1
2
[fe

β̄(ε)− 3fe
β(ε)]T (ε)T (ε− ~ω)

)

Bαβ(ε, ω) fe
α(ε)f

h
β (ε− ~ω)t(ε)t(ε− ~ω)− 1

2
fe
α(ε)

[

fh
α (ε− ~ω) + fh

ᾱ(ε− ~ω)
]

t(ε)T (ε− ~ω)

− 1
2
fh
β (ε− ~ω)

[

fe
α(ε) + fe

ᾱ(ε)
]

T (ε)t(ε− ~ω) + 1
4

[

fe
α(ε) + fe

ᾱ(ε)
][

fh
α(ε− ~ω) + fh

ᾱ (ε− ~ω)
]

T (ε)T (ε− ~ω)

Cαβ(ε, ω) − 1
2
fh
β (ε− ~ω)

[

fe
β(ε) + fe

β̄(ε)
]

T (ε)t(ε− ~ω)− 1
2
fh
α(ε− ~ω)

[

fe
β(ε) + fe

β̄(ε)
]

T (ε)t∗(ε− ~ω)

+ 1
4

[

fe
β(ε) + fe

β̄(ε)
][

fh
β (ε− ~ω) + fh

β̄ (ε− ~ω)
]

T (ε)T (ε− ~ω)

Dα(ε, ω) fe
α(ε)

[

fh
α(ε− ~ω) + fh

ᾱ (ε− ~ω)
]

T (ε− ~ω)

Eα(ε, ω)
[

fe
α(ε) + fe

ᾱ(ε)
]

fh
α (ε− ~ω)T (ε)

TABLE IV: Expressions of the coefficients appearing in Eq. (A14).

b. Evaluation of the two-particle Green functions Gdd
i using

decoupling procedure

In the absence of Coulomb interactions, we can ex-
press fully the two-particle Green functions of the QD,
Gdd

i (τ, τ ′, τ1, τ2), in terms of the one-particle Green func-

tion of the QD, G(τ, τ ′), through

Gdd
1 (τ, τ ′, τ1, τ2) = G(τ, τ2)G(τ ′, τ1)−G(τ, τ1)G(τ ′, τ2) ,

Gdd
2 (τ, τ ′, τ1, τ2) = G(τ, τ ′)G(τ1, τ2)−G(τ, τ2)G(τ1, τ

′) ,

Gdd
3 (τ, τ ′, τ1, τ2) = G(τ1, τ)G(τ ′, τ2)−G(τ ′, τ)G(τ1, τ2) ,

Gdd
4 (τ, τ ′, τ1, τ2) = G(τ2, τ)G(τ1, τ

′)−G(τ1, τ)G(τ2, τ
′) .

Injecting these four expressions in Eq. (A3), we obtain a
result which can be separated into two parts, a connected



9

part and a disconnected part32

Spq
αβ(τ, τ

′) = Spq
αβ,disc(τ, τ

′) + Spq
αβ,conn(τ, τ

′)− 〈Îpα〉〈Î
q
β〉 ,

(A4)

with

Spq
αβ,disc(τ, τ

′) =
e2−p−q

~2

×
∑

k∈α,k′∈β

(εkα − µα)
p (εk′β − µβ)

q |VkαVk′β |2

~2

×

[∫
dτ1gkα(τ1, τ)G(τ, τ1)

∫
dτ2gk′β(τ2, τ

′)G(τ ′, τ2)

−

∫
dτ2gkα(τ2, τ)G(τ, τ2)

∫
dτ1gk′β(τ

′, τ1)G(τ1, τ
′)

−

∫
dτ1gkα(τ, τ1)G(τ1, τ)

∫
dτ2gk′β(τ2, τ

′)G(τ ′, τ2)

+

∫
dτ1gkα(τ, τ1)G(τ1, τ)

∫
dτ2gk′β(τ

′, τ2)G(τ2, τ
′)

]
,

(A5)

and

Spq
αβ,conn(τ, τ

′) =
e2−p−q

~2

[
δαβ

∑

k∈α

(εkα − µα)
p+q |Vkα|

2

×
[
gkα(τ

′, τ)G(τ, τ ′) + gkα(τ, τ
′)G(τ ′, τ)

]

+
∑

k∈α,k′∈β

(εkα − µα)
p
(εk′β − µβ)

q |VkαVk′β |2

~2

×
x

dτ1dτ2

[
− gkα(τ1, τ)gk′β(τ2, τ

′)G(τ, τ2)G(τ ′, τ1)

+gkα(τ2, τ)gk′β(τ
′, τ1)G(τ, τ ′)G(τ1, τ2)

+gkα(τ, τ1)gk′β(τ2, τ
′)G(τ ′, τ)G(τ1, τ2)

−gkα(τ, τ1)gk′β(τ
′, τ2)G(τ2, τ)G(τ1, τ

′)
]]

. (A6)

The disconnected part can be calculated directly. We
obtain Spq

αβ,disc(τ, τ
′) = 〈Îpα〉〈Î

q
β〉, thus finally Spq

αβ(τ, τ
′) =

Spq
αβ,conn(τ, τ

′).

c. Analytic continuation of the connected part

We perform now the analytic continuation of Eq. (A6) to
get its τ > τ ′ component

Spq
αβ(t, t

′) =
e2−p−q

~2

[
δαβ

∑

k∈α

(εkα − µα)
p+q |Vkα|

2

×
[
gkα(τ

′, τ)G(τ, τ ′) + gkα(τ, τ
′)G(τ ′, τ)

]
τ>τ ′︸ ︷︷ ︸

P0(t,t′)

+
∑

k∈α,k′∈β

(εkα − µα)
p
(εk′β − µβ)

q |VkαVk′β |2

~2

×

(
−
[x

dτ1dτ2G(τ ′, τ1)gkα(τ1, τ)G(τ, τ2)gk′β(τ2, τ
′)
]
τ>τ ′

︸ ︷︷ ︸
P1(t,t′)

+
[
G(τ, τ ′)

x
dτ1dτ2gk′β(τ

′, τ1)G(τ1, τ2)gkα(τ2, τ)
]
τ>τ ′

︸ ︷︷ ︸
P2(t,t′)

+
[
G(τ ′, τ)

x
dτ1dτ2gkα(τ, τ1)G(τ1, τ2)gk′β(τ2, τ

′)
]
τ>τ ′

︸ ︷︷ ︸
P3(t,t′)

−
[x

dτ1dτ2gkα(τ, τ1)G(τ1, τ
′)gk′β(τ

′, τ2)G(τ2, τ)
]
τ>τ ′

︸ ︷︷ ︸
P4(t,t′)

)]
.

The five Pi(t, t
′) contributions are computed using ana-

lytic continuation rules32. Their expressions are given in
Table II. Using these notations, the noise reads as

Spq
αβ(t, t

′) =
e2−p−q

~2

[
δαβ

∑

k∈α

(εkα − µα)
p+q |Vkα|

2P0(t, t
′)

+
∑

k∈α
k′∈β

(εkα − µα)
p
(εk′β − µβ)

q |VkαVk′β|
2

~2

4∑

i=1

Pi(t, t
′)

]
.

(A7)

2. Finite-frequency non-symmetrized noise Spq
αβ(ω)

a. Fourier transform of Spq
αβ(t, t

′) and exact result for

Spq
αβ(ω)

Performing the Fourier transform of Eq. (A7) and using
the fact that in the stationary case the Green functions
depend on the difference of their time arguments only,
we obtain:

Spq
αβ(ω) =

e2−p−q

~

[
δαβ

∑

k∈α

(εkα − µα)
p+q |Vkα|

2P0(ω)

+
∑

k∈α
k′∈β

(εkα − µα)
p
(εk′β − µβ)

q |VkαVk′β|
2

4∑

i=1

Pi(ω)

]
,

(A8)
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where the expressions of Pi(ω) are given in Table III.
Using the expressions of the bare Green functions of the
reservoirs, g>kα(ε) and g<kα(ε), in terms of the Fermi-Dirac
distribution function for electrons, fe

α(ε), and Fermi-
Dirac distribution function for holes, fh

α(ε) = 1− fe
α(ε),

g<kα(ε) = 2πife
α(ε)δ(ε− εkα) , (A9)

g>kα(ε) = −2πifh
α(ε)δ(ε− εkα) , (A10)

we can rewrite Eq. (A8) under the form

Spq
αβ(ω) =

e2−p−q

h

∫
dε

[
δαβiF

p+q
α (ε)fe

α(ε)

×
[
G<(ε− ~ω) +Gr(ε− ~ω)−Ga(ε− ~ω)

]

−δαβiF
p+q
α (ε− ~ω)fh

α(ε− ~ω)G<(ε)

−Gr(ε)Gr(ε− ~ω)fe
α(ε)f

h
β (ε− ~ω)F p

α(ε)F
q
β (ε− ~ω)

−Ga(ε)Ga(ε− ~ω)fe
β(ε)f

h
α(ε− ~ω)F p

α(ε− ~ω)F q
β (ε)

+iGr(ε)G>(ε− ~ω)fe
α(ε)F

p
α(ε)H

q∗
β (ε)

+iG<(ε)Gr(ε− ~ω)fh
β (ε− ~ω)F q

β (ε− ~ω)Hp
α(ε)

+iGa(ε)G>(ε− ~ω)fe
β(ε)F

q
β (ε)H

p
α(ε)

+iG<(ε)Ga(ε− ~ω)fh
α(ε− ~ω)F p

α(ε− ~ω)Hq∗
β (ε)

+G<(ε)G>(ε− ~ω)Hp
α(ε, p)H

q∗
β (ε)

]
, (A11)

where we have introduced the two following functions

F p
α(ε) = 2π

∑

k∈α

(εkα − µα)
p |Vkα|

2δ(ε− εkα)

= (ε− µα)
p
2π|Vα(ε)|

2ρα(ε)︸ ︷︷ ︸
=Γα(ε)

, (A12)

and

Hp
α(ε) =

∑

k∈α

(εkα − µα)
p |Vkα|

2
[
gakα(ε)− grkα(ε− ~ω)

]
,

(A13)

with ρα(ε) the density of states associated to the reser-
voirs α, and Γα = 2π|Vα(ε)|

2ρα(ε), the coupling strength
between the QD and the reservoir α. Note that
Eq. (A11), given Spq

αβ(ω), has been obtained without
making any approximation at this stage: it is the exact
result for a non-interacting QD.

b. Spq
αβ(ω) for symmetrical barriers in the wide-band limit

To continue further the calculation, we make two sim-
plifying assumptions: (i) wide-band limit, i.e., we are
working on an interval of energy in which the density of
states is constant, ρα(ε) = cst, and we assume as well
that Vα(ε) is energy independent, consequently, we have

Γα(ε) = 2π|Vα(ε)|2ρα(ε) ≡ Γα, and (ii) symmetrical bar-
riers, i.e., we assume that the left and right barriers are
symmetrical (ΓL = ΓR ≡ Γ). In that case, we have
the remarkable relation13: t(ε) + t∗(ε) = 2T (ε), with
t(ε) = iΓGr(ε), the transmission amplitude and T (ε),
the transmission coefficient. Within these two simplify-
ing assumptions, we have

F p
α(ε) = Γ(ε− µα)

p ,

and

Hp
α(ε) =

iΓ

2
[(ε− µα)

p + (ε− ~ω − µα)
p] .

Injecting these two last expressions in Eq. (A11), rear-
ranging the terms, and using the relations32,44

G>(ε)−G<(ε) = Gr(ε)−Ga(ε) ,

G<(ε) = iΓGr(ε)Ga(ε)
[
fe
α(ε) + fe

ᾱ(ε)
]
,

Gr(ε)−Ga(ε) = −2iΓGr(ε)Ga(ε) ,

T (ε) = Γ2Gr(ε)Ga(ε) .

We finally get

Spq
αβ(ω) =

e2−p−q

h

∫
dε

[
δαβ (ε− µα)

p+q
Dα(ε, ω)

+δαβ (ε− ~ω − µα)
p+q

Eα(ε, ω)

+ (ε− µα)
p (ε− µβ)

q Aαβ(ε, ω)

+ (ε− µα)
p
(ε− ~ω − µβ)

q
Bαβ(ε, ω)

+ (ε− ~ω − µα)
p
(ε− µβ)

q
B∗

βα(ε, ω)

+ (ε− ~ω − µα)
p
(ε− ~ω − µβ)

q
Cαβ(ε, ω)

]
, (A14)

where the coefficients Aα(ε, ω), Bα(ε, ω), Cα(ε, ω),
Dα(ε, ω), and Eα(ε, ω) are given in Table IV. Equa-
tion (A14) leads to the Eqs. (5)-(8) once we define

Aαβ(ε, ω) = Aαβ(ε, ω) + δαβDα(ε, ω) ,

Bαβ(ε, ω) = Bαβ(ε, ω) ,

Cαβ(ε, ω) = Cαβ(ε, ω) + δαβEα(ε, ω) ,

fe,h
M (ε) =

1

2

[
fe,h
α (ε) + fe,h

ᾱ (ε)
]
,

where ᾱ = R when α = L, and ᾱ = L when α = R.

Appendix B: Noise spectrum for t and T
independent of energy

In case of independent energy transmission amplitude
and coefficient, Eqs. (5)-(8) reduce to

S00
αβ(ω) =

e2

h

∑

γδ

∫ ∞

−∞

dεMγδ
αβf

e
γ (ε)f

h
δ (ε− ~ω) ,

(B1)
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S01
αβ(ω) =

e

h

∑

γδ

∫ ∞

−∞

dε
[
(ε− µβ)M

γδ
αβ − ~ωN γδ

αβ

]

×fe
γ(ε)f

h
δ (ε− ~ω) , (B2)

S10
αβ(ω) =

e

h

∑

γδ

∫ ∞

−∞

dε
[
(ε− µα)M

γδ
αβ − ~ω(N γδ

βα)
∗
]

×fe
γ(ε)f

h
δ (ε− ~ω) , (B3)

and

S11
αβ(ω) =

1

h

∑

γδ

∫ ∞

−∞

dε
[
(ε− µα)(ε− µβ)M

γδ
αβ

−~ω(ε− µα)N
γδ
αβ − ~ω(ε− µβ)(N

γδ
βα)

∗

+~
2ω2Oγδ

αβ

]
fe
γ (ε)f

h
δ (ε− ~ω) , (B4)

with the coefficients Mγδ
αβ , N

γδ
αβ , and Oγδ

αβ given in Ta-

bles V-VII, where Z = [T (1−T )]1/2 is the imaginary part
of t, T being the real part of t. These real and imaginary
parts are extracted from the two relations: tt∗ = T and
t+ t∗ = 2T .

Mγδ
αβ γ = δ = L γ = δ = R γ = L, δ = R γ = R, δ = L

α = β = L T 2 T 2 T (1− T ) T (1− T )

α = β = R T 2 T 2 T (1− T ) T (1− T )

α = L, β = R −T 2 −T 2 −T (1− T ) −T (1− T )

α = R,β = L −T 2 −T 2 −T (1− T ) −T (1− T )

TABLE V: Expressions of the coefficients Mγδ
αβ appearing in Eqs. (B1)-(B4).

N γδ
αβ γ = δ = L γ = δ = R γ = L, δ = R γ = R, δ = L

α = β = L T
2

2
+ iZT T

2

2
− iZT

2
T (1− T )− iZT

2

α = β = R T 2

2
T 2

2
+ iZT T (1− T )− iZT

2
− iZT

2

α = L, β = R −T
2

2
−T

2

2
− iZT −T (1− T ) + iZT

2
iZT

2

α = R,β = L −T
2

2
− iZT −T

2

2
iZT

2
−T (1− T ) + iZT

2

TABLE VI: Expressions of the coefficients N γδ
αβ appearing in Eqs. (B2)-(B4).

Oγδ
αβ γ = δ = L γ = δ = R γ = L, δ = R γ = R, δ = L

α = β = L T
2

4
+ T (1− T ) T

2

4
T

2

4
T

2

4
+ T (1− T )

α = β = R T
2

4
T

2

4
+ T (1− T ) T

2

4
+ T (1− T ) T

2

4

α = L, β = R −T
2

4
+ iZT

2
−T

2

4
− iZT

2
−T

2

4
− iZT

2
−T

2

4
+ iZT

2

α = R,β = L −T
2

4
− iZT

2
−T

2

4
+ iZT

2
−T

2

4
+ iZT

2
−T

2

4
− iZT

2

TABLE VII: Expressions of the coefficients Oγδ
αβ appearing in Eq. (B4).

1. Preliminary calculations

In the following sections, we will meet the integral

I
(n)
γδ =

∫ ∞

−∞

εndεfe
γ(ε)f

h
δ (ε− ~ω) , (B5)

with n = 0, 1 or 2. Here, we calculate this integral con-
sidering the isothermal case, TL = TR ≡ T , thus
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I
(n)
γδ = N(~ω + µδ − µγ)

×

∫ ∞

−∞

εndε
sinh

(
~ω+µδ−µγ

2kBT

)

2 cosh
(

ε−µγ

2kBT

)
cosh

(
ε−µδ−~ω

2kBT

) ,(B6)

where we have introduced the Bose-Einstein distribution
function: N(~ω) = [exp(~ω/kBT )−1]−1. Using the iden-
tity: sinh(a−b)/[cosh(a) cosh(b)] = tanh(a)−tanh(b), we
end up with

I
(n)
γδ =

N(~ω + µδ − µγ)

2

×

∫ ∞

−∞

εndε

[
tanh

(
ε− µγ

2kBT

)
− tanh

(
ε− µδ − ~ω

2kBT

)]
.

(B7)

To go further, we perform a Taylor expansion up to the
third order with x = ω, µγ or µδ. It leads to

I
(n)
γδ =

N(~ω + µδ − µγ)

2

[
µγ − µδ − ~ω

2kBT
L
(n)
1

+
µ2
γ − (µδ + ~ω)2

4k2BT
2

L
(n)
2 +

µ3
γ − (µδ + ~ω)3

24k3BT
3

L
(n)
3

]
,

(B8)

with L
(n)
1 =

∫∞

−∞
εndε[tanh2(ε/2kBT ) − 1], L

(n)
2 =

∫∞

−∞
εndε[tanh3(ε/2kBT ) − tanh(ε/2kBT )], and L

(n)
3 =∫∞

−∞
εndε[1 + 3 tanh4(ε/2kBT )− 4 tanh2(ε/2kBT )]. The

calculation of these integrals gives

L
(n)
1 =





−4kBT (n = 0)

0 (n = 1)

−4π2k3BT
3/3 (n = 2)

, (B9)

L
(n)
2 =





0 (n = 0)

−4k2BT
2 (n = 1)

0 (n = 2)

, (B10)

and

L
(n)
3 =






0 (n = 0)

0 (n = 1)

−16k3BT
3 (n = 2)

. (B11)

Finally, we get

I
(0)
γδ = (~ω + µδ − µγ)N(~ω + µδ − µγ) , (B12)

I
(1)
γδ =

(~ω + µδ)
2 − µ2

γ

2
N(~ω + µδ − µγ) , (B13)

I
(2)
γδ =

[
(~ω + µδ − µγ)π

2k2BT
2

3

+
(~ω + µδ)

3 − µ3
γ

3

]
N(~ω + µδ − µγ) . (B14)

2. Limit of weak transmission T ≪ 1

In this subsection, we give the calculation of the expres-
sions appearing in the first column of Table I.

a. Electrical noise spectrum

We calculate only S00
LL(ω) since when t and T are inde-

pendent of energy, we have the relations

S00
LL(ω) = S00

RR(ω) = −S00
LR(ω) = −S00

RL(ω) .

At weak T , we have

S00
LL(ω) =

e2

h

∑

γδ

∫ ∞

−∞

dεMγδ
LLf

e
γ(ε)f

h
δ (ε− ~ω)

=
e2T

h

∫ ∞

−∞

[fe
L(ε)f

h
R(ε− ~ω) + fe

R(ε)f
h
L(ε− ~ω)]dε

=
e2T

h

[
I
(0)
LR + I

(0)
RL

]
, (B15)

which gives

S00
LL(ω) =

e2T

h

[
(~ω − eV )N(~ω − eV )

+(~ω + eV )N(~ω + eV )
]
. (B16)

It reduces at equilibrium (zero-voltage) to

S00
LL(ω) =

2e2T

h
~ωN(~ω) , (B17)

and at zero-temperature to

S00
LL(ω) =

e2T

h

[
(eV − ~ω)Θ(eV − ~ω)

−(~ω + eV )Θ(−eV − ~ω)
]
, (B18)

since we have N(x) = −Θ(−x) when T → 0.

b. Mixed noise spectrum

We start from

S01
αβ(ω) =

e

h

∑

γδ

∫ ∞

−∞

dε
[
(ε− µβ)M

γδ
αβ

−~ωN γδ
αβ

]
fe
γ(ε)f

h
δ (ε− ~ω) . (B19)

We calculate only S01
LL(ω) since at weak T , we have:

S01
LL(ω) = −S01

RR(ω) = S01
LR(ω) = −S01

RL(ω) .

We have

S01
LL(ω) =

eT

h

∫ ∞

−∞

dε
[
(ε− µL)[f

e
L(ε)f

h
R(ε− ~ω)

+fe
R(ε)f

h
L(ε− ~ω)]− ~ωfe

R(ε)f
h
L(ε− ~ω)

]

=
eT

h

[
I
(1)
LR − µLI

(0)
LR + I

(1)
RL − (µL + ~ω)I

(0)
RL

]
,

(B20)
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which gives

S01
LL(ω) =

eT

2h

[
(~ω − eV )2N(~ω − eV )

−(~ω + eV )2N(~ω + eV )
]
. (B21)

It reduces to S01
LL(ω) = 0 at equilibrium (zero-voltage)

and to

S01
LL(ω) =

eT

2h

[
− (~ω − eV )2Θ(eV − ~ω)

+(~ω + eV )2Θ(−eV − ~ω)
]
, (B22)

at zero-temperature.

c. Heat noise spectrum

We start from

S11
αβ(ω) =

1

h

∑

γδ

∫ ∞

−∞

dε
[
(ε− µα)(ε− µβ)M

γδ
αβ

−~ω(ε− µα)N
γδ
αβ − ~ω(ε− µβ)(N

γδ
βα)

∗

+~
2ω2Oγδ

αβ

]
fe
γ (ε)f

h
δ (ε− ~ω) , (B23)

which gives for S11
LL(ω)

S11
LL(ω) =

T

h

∫ ∞

−∞

dε
[
(ε− µL)

2[fe
L(ε)f

h
R(ε− ~ω)

+fe
R(ε)f

h
L(ε− ~ω)]− 2~ω(ε− µL)f

e
R(ε)f

h
L(ε− ~ω)

+~
2ω2[fe

L(ε)f
h
L(ε− ~ω) + fe

R(ε)f
h
L(ε− ~ω)]

]

=
T

h

[
I
(2)
LR + I

(2)
RL − 2µL(I

(1)
LR + I

(1)
RL) + µ2

L(I
(0)
LR

+I
(0)
RL)− 2~ω(I

(1)
RL − µLI

(0)
RL) + ~

2ω2(I
(0)
LL + I

(0)
RL)

]
.

(B24)

We report the expressions of the integrals given by
Eqs. (B12)-(B14) and factorize the various contributions.
It gives

S11
LL(ω) =

T

h

[
(~ω)3N(~ω)

+
π2k2BT

2

3

[
(~ω − eV )N(~ω − eV )

+(~ω + eV )N(~ω + eV )
]

+
(~ω − eV )3

3
N(~ω − eV )

+
(~ω + eV )3

3
N(~ω + eV )

]
, (B25)

which reduces at equilibrium (zero-voltage) to

S11
LL(ω) =

T

h

[
5

3
(~ω)3 +

2π2k2BT
2

3
~ω

]
N(~ω) ,

(B26)

and at zero-temperature to

S11
LL(ω) =

T

h

[
− (~ω)3Θ(−~ω) +

(eV − ~ω)3

3
Θ(eV − ~ω)

−
(~ω + eV )3

3
Θ(−eV − ~ω)

]
, (B27)

since we have N(x) = −Θ(−x) when T → 0. Note that
S11
RR(ω) is obtained from the expression of S11

LL(ω) by
inverting the voltage V → −V , as a consequence we have
S11
RR(ω) = S11

LL(ω). We now calculate

S11
LR(ω) =

T

h

∫ ∞

−∞

dε
[
− (ε− µL)(ε− µR)

×[fe
L(ε)f

h
R(ε− ~ω) + fe

R(ε)f
h
L(ε− ~ω)]

+~ω(ε− µL)f
e
L(ε)f

h
R(ε− ~ω)

+~ω(ε− µR)f
e
R(ε)f

h
L(ε− ~ω)

]

=
T

h

[
− I

(2)
LR − I

(2)
RL + (µL + µR)

[
I
(1)
LR + I

(1)
RL

]

−µLµR

[
I
(0)
LR + I

(0)
RL

]
+ ~ω

[
I
(1)
LR + I

(1)
RL

]

−~ωµLI
(0)
LR − ~ωµRI

(0)
RL

]
. (B28)

We report the expressions of the integrals given by
Eqs. (B12)-(B14) and factorize the various contributions.
It gives

S11
LR(ω) =

T

h

[
−

π2k2BT
2

3

[
(~ω − eV )N(~ω − eV )

+(~ω + eV )N(~ω + eV )
]

+
(~ω − eV )3

6
N(~ω − eV )

+
(~ω + eV )3

6
N(~ω + eV )

]
, (B29)

which reduces at equilibrium (zero-voltage) to

S11
LR(ω) =

T

h

[
1

3
(~ω)3 −

2π2k2BT
2

3
~ω

]
N(~ω) ,

(B30)

and at zero-temperature to

S11
LR(ω) =

T

6h

[
(eV − ~ω)3Θ(eV − ~ω)

−(~ω + eV )3Θ(−eV − ~ω)

]
, (B31)

since we have N(x) = −Θ(−x) when T → 0. Note that
S11
RL(ω) is obtained from the expression of S11

LR(ω) by
inverting the voltage V → −V , as a consequence we
have S11

RL(ω) = S11
LR(ω).
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3. Limit of perfect transmission T = 1

In this subsection, we give the calculation of the expres-
sions appearing in the second column of Table I.

a. Electrical noise spectrum

For T = 1, we have

S00
αβ(ω) =

e2

h
(2δαβ − 1)

∫ ∞

−∞

dε[fe
L(ε)f

h
L(ε− ~ω)

+fe
R(ε)f

h
R(ε− ~ω)]

=
e2

h
(2δαβ − 1)[I

(0)
LL + I

(0)
RR]

=
e2

h
(2δαβ − 1)2~ωN(~ω) . (B32)

b. Mixed noise spectrum

For T = 1, we have

S01
LL(ω) =

e

h

∫ ∞

−∞

dε

(
ε− µL −

~ω

2

)

×
[
fe
L(ε)f

h
L(ε− ~ω) + fe

R(ε)f
h
R(ε− ~ω)

]

=
e

h

[
I
(1)
LL + I

(1)
RR −

(
µL +

~ω

2

)
[I

(0)
LL + I

(0)
RR]

]
.

(B33)

After simplification, it leads to

S01
LL(ω) = −

e

h
~ωeV N(~ω) . (B34)

A similar calculation leads to S01
RR(ω) = e

h~ωeV N(~ω).

Moreover, we have S01
LR(ω) = −S01

RR(ω), and S01
RL(ω) =

−S01
LL(ω).

c. Heat noise spectrum

For T = 1, we have

S11
LL(ω) =

1

h

∫ ∞

−∞

dε

(
[(ε− µL)

2 − ~ω(ε− µL)]

×[fe
L(ε)f

h
L(ε− ~ω) + fe

R(ε)f
h
R(ε− ~ω)]

+
~
2ω2

4

∑

γδ

fe
γ(ε)f

h
δ (ε− ~ω)

)

=
1

h

[
I
(2)
LL + I

(2)
RR − (2µL + ~ω)[I

(1)
LL + I

(1)
RR]

+µL(µL + ~ω)[I
(0)
LL + I

(0)
RR] +

~
2ω2

4

∑

γδ

I
(0)
αβ

]
.

(B35)
It gives

S11
LL(ω) =

1

h

[(
2~ωπ2k2BT

2

3
+

~
3ω3

6
+ ~ωe2V 2

)
N(~ω)

+
~
2ω2

4

∑

±

(~ω ± eV )N(~ω ± eV )

]
. (B36)

A similar calculation leads to

S11
LR(ω) = −

1

h

[(
2~ωπ2k2BT

2

3
+

~
3ω3

6

)
N(~ω)

+
~
2ω2

4

∑

±

(~ω ± eV )N(~ω ± eV )

]
. (B37)

In addition, we have S11
RR(ω) = S11

LL(ω) and S11
RL(ω) =

S11
LR(ω).
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