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Rigid fibers suspended in a viscous, Newtonian fluid at high concentrations can be
aligned in the direction perpendicular to the flow-gradient plane (vorticity direc-
tion) by applying an oscillatory shear flow. A simple model, which considers only
excluded volume and self-mobilities, can accurately predict the orientation distri-
butions measured in experiments by Franceschini et al. [“Transverse alignment of
fibers in a periodically sheared suspension: An absorbing phase transition with a
slowly varying control parameter,” Phys. Rev. Lett. 107, 250603 (2011)]. Further-
more, simulations reveal that the alignment of the fibers in the vorticity direction
depends strongly on the presence of the bounding walls. C© 2012 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4770141]

The rheological and mechanical properties of suspensions composed of rod-like particles are
sensitive to the spatial and orientational distribution of the particles within the suspension. Under-
standing and controlling the flow-induced alignment of these elongated particles is of fundamental
importance and has implications for numerous material processing applications, such as the manu-
facture of paper1 and fiber composites.2

Recent measurements3 indicated that the orientation distribution in semi-concentrated suspen-
sions of non-colloidal fibers can be controlled by altering the strain amplitude within an oscillatory
shear flow. The orientation distribution changes little from the initial state at sufficiently small am-
plitudes of strain. At large strain amplitudes, the fibers align in the direction of the flow, similarly to
the steady shearing flow of a suspension of rigid fibers.4, 5 While these results might be expected, the
experiments also measured a strongly preferred alignment of the fibers in the vorticity (transverse to
both the flow and gradient planes) direction for intermediate strain amplitudes. This surprising result
remains to be understood. Alignment with the vorticity direction is observed when oscillating fibers
suspended in a weakly elastic fluid.6 However, the experiments3 of interest here were performed
with a Newtonian fluid. For an elastic fluid, the orientation of even a single fiber spins toward the
vorticity direction,7, 8 whereas the orientation of a single fiber oscillated in a Newtonian fluid traces
a reversible path defined by the Jeffery orbit corresponding to the initial orientation.9

The irreversible dynamics of suspensions of non-colloidal particles suspended and sheared in
Newtonian fluids has been studied extensively; the vast majority of work has focused on spherical
particles, but early work used fibers.9–11 The reversibility of the Stokes equations implies that
the particles should retrace their paths upon reversal of the flow. However, any small source of
irreversibility in a physical system (e.g., Brownian motion, particle surface roughness, particle
deformability, or inertia) causes a loss of memory. Oscillating the suspensions provides a particularly
convenient format for studying irreversibility in suspension systems.12, 13 For sufficiently large strains
and concentrations, particles do not return to their starting configurations after one or more cycles and
their displacements exhibit a chaotic, random motion. The need for relatively large concentrations
of particles implies that short-range interactions are the primary origin of the chaotic behavior.

This work addresses the origin of the unexpected and irreversible alignment of the fibers
in the direction of vorticity, which cannot be attributed to the elasticity of the suspending fluid.
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FIG. 1. (a) Each fiber of aspect ratio A = L/d is described by its center of mass xi and orientation pi . A repulsive force acts
between two fibers i and j at the points of closest approach separated by the distance hij. (b) The x-direction is that of the
flow; the flow varies linearly in the y-direction, or gradient direction, and the vorticity axis is in the z-direction. The fiber’s
projection on the flow-vorticity plane and the flow direction forms the angle α: cos2(α) = p2

x/(p2
x + p2

z ).

Rather the vorticity alignment, and other behaviors of the orientation distribution, was attributed
by Franceschini et al.3 to short-range interactions between fibers in a process that can drive the
system into a reversible, or “absorbing,” state. A simple algorithm demonstrates that short-range
interactions between particles can account for alignment in the vorticity direction, depending upon the
concentration and strain amplitude. The model reveals that the extent of alignment depends strongly
on whether or not the suspension of fibers is confined in the gradient direction by closely-spaced
bounding walls. Only those simulations with a wall-spacing matching that used in the experiments
accurately predict the mean orientation reported by Franceschini et al.3

The model is similar to that used by Sundararajakumar and Koch5 to simulate the steady shear
of semi-concentrated suspensions of rigid fibers. The motion of each fiber is determined by a balance
between the hydrodynamic drag forces and short-range forces used to maintain the excluded volume.
Inertia is ignored in these calculations, since both the maximum Reynolds number and frequency
of oscillation were small in the experiments. Long range fluid disturbances, or hydrodynamic
interactions, are neglected within the model, as they have little impact on dynamics in the semi-
concentrated regime;5 comparing results of steady shear from this model with simulations with
hydrodynamic interactions14 confirms the assertion.

The motion of each rigid fiber, i, is fully described by the center-of-mass velocity, ẋi , and the
rotational velocity, ṗi , where xi and pi are the center-of-mass position and unit vector parallel to
the fiber’s major axis as shown in Fig. 1. The center-of-mass motion is

ẋi = u (xi ) + ξ−1
(
I + pi pi

) · Fi (1)

and rotational motion is

ṗi = � · pi + B
(
I − pi pi

) · E · pi + 12ξ−1

L2
T i × pi . (2)

The mobility of the center-of-mass is ξ−1
(
I + pi pi

)
, where ξ−1 = ln (2A)/4πμL, μ is the fluid

viscosity, L is the fiber length, A = L/d is the aspect ratio, and d is the fiber diameter. The mobility is
derived from slender-body theory.15, 16 A simple oscillatory shear, u (x, t) = γ̇ (t) yex , is imposed,
with flow in the x−direction and the gradient in the y−direction as shown in Fig. 1. The shear rate,
γ̇ (t), is a square wave of magnitude one and the period is determined by the strain amplitude, γ .

In the absence of collisions, each fiber translates with the velocity evaluated at the center-of-
mass, u (xi ), and rotates in a Jeffery orbit:17 the orientation rotates fully with the rate of rotation
of the flow, � = 1

2

[
(∇u) − (∇u)T

]
, and only a fraction B = (

A2
e − 1

)
/
(

A2
e + 1

)
of the rate of

extension of the flow, E = 1
2

[
(∇u) + (∇u)T

]
. The aspect ratio A has been replaced by an effective

one, Ae, in the parameter B. The effective ratio, as developed through experiment and theory,18–20

accounts for the rotation of a spherocylinder as opposed to an ellipsoidal particle, for which Jeffery17

originally derived the equation.



121702-3 Snook, Guazzelli, and Butler Phys. Fluids 24, 121702 (2012)

Collisions between the fibers alter the motion of both the center-of-mass and orientation. To
prevent the overlap of a fiber i with a fiber j, a short range repulsive force is applied,

f i j =
{

0 if hi j > ε,

f0ni j if hi j ≤ ε,
(3)

where hij is the minimum separation distance between two fibers and ni j is their common normal,
± (

pi × p j

)
/
∣∣ pi × p j

∣∣. The sign of the normal is chosen so that the force repels the fibers and
the force on fiber j is equal and opposite to that on i, hence there is no net force. The simulation
results are insensitive to the exact form of the repulsive force used, so long as the range is small
compared to the fiber diameter and the displacements caused by the force are resolved at a fine level
by holding the time step small. Here, the range ε is set to 0.1d and the force fo = |γ̇ Lξ/2|. On rare
occasions when fibers overlap, the force fo is increased relative to the overlap distance, ensuring that
the particles separate.

All interactions on fiber i sum to give the total, non-hydrodynamic force Fi ,

Fi =
N f∑
j=1

f i j , (4)

and torque T i ,

T i =
N f∑
j=1

si j pi × f i j , (5)

where sij is the point along fiber i at which the collision occurs with fiber j and the sums exclude the
occurrences of i = j. The total number of fibers simulated, Nf, is set by the concentration and size of
the simulation box.

The concentration of fibers and strain amplitude are varied within the simulations. The aspect
ratio is set to A = 11 to correspond with the experiments and Ae = 8.8. For fully periodic calculations
that utilize Lee-Edward’s boundary conditions, the simulation box is cubic with a length of 3.25L.
For simulations with boundaries, fibers are confined in the gradient direction by applying the same
force between a fiber and the wall as used between contacting fibers. The wall separation of 1.45L
used in the simulations corresponds to that used in the experiments of Franceschini et al.3 Periodic
boundaries in the flow and vorticity directions are separated by 5.25L. The number of particles
simulated ranges from 265 to 1232, corresponding to volume fractions φ of 0.05 to 0.20. Equations (1)
and (2) are integrated using an Euler method with an adaptive time step selected to maintain a
maximum displacement less than 0.01d. Twelve initial configurations were used to calculate each
mean value and reported errors are those between the mean values of each configuration.

Primarily, two measures are calculated from the data generated by the simulations and presented
here: one for the average orientations and another that tracks the irreversible activity of the suspension
of fibers. The order parameter Sα = 1 − 2〈cos 2(α)〉 is calculated from the simulation results to
facilitate comparison with the experimental measurements3 of alignment that were reported solely
in terms of this parameter. As shown in Fig. 1, the angle α is that between the flow direction (x) and
the projection of a fiber’s orientation onto the flow-vorticity (x-z) plane; the brackets, 〈 · 〉, indicate
an average over all runs and fibers. Note that Sα is 0 for a suspension having a random orientation
distribution and is either −1 or 1 for a suspension of fibers aligned perfectly with the flow or vorticity
direction, respectively. The number of contacts between fibers are counted over each oscillation and
reported as Nc. In this model, irreversible motions of the particles are generated only by contact
forces, thus, Nc is a measure of irreversible activity within the suspension.

Figure 2(a) compares experimentally measured and calculated values of Sα as a function of
strain amplitude. Simulations with boundaries separated by a distance equivalent to the experiments
captures the trend of the alignment behavior, including the surprising alignment of the fibers with
the vorticity direction in the vicinity of γ ≈ 3. Using fully periodic boundaries does not reproduce
the experimental results. Figure 2(b) visualizes the orientation distribution changes with the number
of oscillations, N, for a simulation at γ = 3 with confining walls. The orientation is random for



121702-4 Snook, Guazzelli, and Butler Phys. Fluids 24, 121702 (2012)

(b)(a)
0 1 2 3 4 5

γ (Strain Amplitude)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S α(N
R
)

Periodic Simulations
Bounded Simulations
Experimental Results

0 1 2 3 4 5
γ

0

200

400
N

R

FIG. 2. (a) Comparison of simulation results for Sα with the experimental values for φ = 0.20 and at the the last oscillation
reported by Franceschini et al.3 The inset shows the oscillation number (NR) at which the data were reported. (b) Images of the
microstructure from a simulation with boundaries, φ = 0.20, and γ = 3 prior to oscillating (N = 0), at the last point recorded in
the experiments (N = 400), and at steady state (N = 4000) (enhanced online) [URL: http://dx.doi.org/10.1063/1.4770141.1]
[URL: http://dx.doi.org/10.1063/1.4770141.2] [URL: http://dx.doi.org/10.1063/1.4770141.3].

the initial condition at N = 0 and progressively aligns in the vorticity direction through N = 400,
corresponding to the point at which the comparison is made with experiments in Fig. 2(a). The
simulation predicts an increasing alignment of the fibers with the vorticity direction until reaching
a steady state at N ≈ 4000. Figure 3(a) provides more details about the evolution of Sα with N and
shows that the value of Sα for γ = 3 transitions from 0.60 at N = 400 to 0.70 at N = 4000; the
significant difference in the orientation distribution represented by this difference of 0.1 in the value
of Sα is demonstrated in Fig. 2(b).

Figure 3(a) shows that significant changes in orientation occur when oscillating with γ > 1.
The curves exhibit an initial decrease in Sα , indicating a movement toward flow alignment for initial
oscillations, followed by an increase that is more pronounced for simulations with boundaries. In
this latter case, Sα attains positive values that reflect a vorticity alignment of the fibers. Note that
the initial distribution, both spatial and orientational, is a random one in the simulations, whereas
steady shear was applied in the experiments before beginning the oscillations. This may explain the
lack of an initial decrease in Sα as reported in the third figure of Franceschini et al.3

Figure 3(b) shows that an order of magnitude reduction in the number of collisions between
fibers occurs for γ = 3 and 5 for simulations with bounding walls. A similar trend is observed for
simulations without confinement for the same strain amplitudes, though Nc is an order of magnitude
larger. In these cases, Nc reaches steady state by the same value of N as Sα . The number of collisions
also decreases with N for γ = 1, but a steady state is not obtained within the same number of cycles
as Sα . Though Sα does not change significantly, individual fibers continue to change orientation due
to contacts.

Franceschini et al.3 interpreted the lack of a change in the order parameter Sα after the first
few oscillations for γ < 2.2 to the suspension attaining an absorbing state in which individual
particles return to their starting positions and orientations after each cycle. They also associated the
vorticity alignment with the attainment of an absorbing state, whereas Fig. 3 indicates activity across
all strain amplitudes for the duration of the simulations. The discrepancy between the numerical
predictions and experimental measurements of activity could be explained by resolution limits in the
measurements. The simulations predict orientation changes and displacements of only a few microns
for individual particles at γ = 1 and N > 10; such small changes would be difficult to detect even
with a microscope. Also, lubrication interactions that exist between fibers in the viscous fluid could
prevent, or at least reduce, the occurrence of contacts. The question of the existence of contacts in
the presence of lubricating fluids is a question of active investigation for suspensions of spheres,21, 22

http://dx.doi.org/10.1063/1.4770141.1
http://dx.doi.org/10.1063/1.4770141.2
http://dx.doi.org/10.1063/1.4770141.3
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FIG. 3. Results for a volume fraction of φ = 0.20. (a) The evolution of Sα with the number of oscillations for both the periodic
and bounded simulations. (b) The total number of collisions, Nc, experienced between the fibers during each oscillation.

though arguments23 that contacts are more likely between fibers than spheres have been made. The
current simulations do not include lubrication with the goal of generating a minimal model that can
explain the unexpected alignment phenomena.

All data presented up to this point have been for a volume fraction of 0.20. Figure 4 shows the
steady values of Sα at φ = 0.20 and two additional volume fractions. At the lower volume fraction of
0.05, the orientation of the fibers tend to align more with the flow, rather than the vorticity, direction
for both the bounded and unbounded cases.

Confining the fibers has the most impact on the orientation distribution at φ = 0.20 and
γ = 3, where the results of simulations with full periodicity predict a mean alignment in the
direction of flow. The probability distribution of the angle α given in Fig. 5(a) shows the small
preference for flow alignment when using periodic boundaries and also quantifies, with more detail,
the strong alignment in the vorticity direction when using bounding surfaces.

The maximum extent of alignment is predicted at φ = 0.15 and γ = 3, where Sα = 0.88 ± 0.02
for the simulations of confined fibers. Using fully periodic boundaries for the same concentration
and strain amplitude also generates a preferred alignment in the vorticity direction, where Sα = 0.60
± 0.05. Comparing the details of the distributions, as done in Fig. 5(b), demonstrates the significant
orientation difference between the two types of boundary conditions.

This latter result shows that bounding walls are not required to achieve some alignment of the
fibers in the vorticity direction, but confining the fibers clearly enhances the extent of organization
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FIG. 4. Steady values of the order parameter Sα as a function of strain amplitude for simulations performed with fully
periodic boundaries (Periodic) and with bounding walls (Bounded).

and alignment in the vorticity direction. The alignment phenomena, whether in the flow or vorticity
direction, are a complex function of the interactions between the imposed straining flows and their
amplitude, the concentration of the fibers, and the geometry of the shear cell.

Confining elongated particles between bounding walls generally promotes organization of the
orientations, as for liquid crystals, which transition from an isotropic to nematic phase when squeezed
between planar walls.24 Likewise, the boundaries impose some order on the particles in the immediate
vicinity of the wall (see Fig. 2(b)), even for the initial condition; fluctuations in orientation generated
by the oscillatory shear, rather than thermal fluctuations as for liquid crystals, provide the mechanism
for the particles to search for a favorable arrangement. Perhaps, the more interesting point here is
the preference for vorticity, versus flow, alignment.

The lack of a boundary that organizes the orientations results in a significantly lower extent of,
or even no, alignment in the direction of vorticity as compared to the bounded simulations. A simple
test was performed to verify that the solid boundaries themselves, and neither the initial orientation
distribution created by the walls, nor different geometry of the simulation box, are responsible for the
vorticity alignment predicted by the simulations. The initial distributions were generated within the
bounded cell, but then the simulation was performed with periodic boundaries. These simulations
returned only a slightly lower tendency for the fibers to align in the flow direction. For φ = 0.20 and
γ = 3, the simulation predicts Sα = −0.08 ± 0.03 at N = 400, which is close to the value of Sα =
−0.17 ± 0.03 for periodic boundaries when starting from a random particle configuration.
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FIG. 5. The probability distribution of the angle α, where 0o is the flow direction and 90o is the vorticity direction (see
Fig. 1), at steady state for bounded and fully periodic conditions. Results for a volume fraction of (a) φ = 0.20 and
(b) φ = 0.15. Note that the plots utilize different scales.
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The sensitivity of the fiber alignment on the initial distribution was explored further by aligning
the suspension in steady shear prior to oscillating, as was done in the experiments.3 For φ = 20 with
γ = 3 and bounding walls, the simulations with the pre-shear predict that any differences in the
mean alignment disappear by N = 400, where the pre-sheared cases give Sα = 0.63 ± 0.05 and the
initially random, but confined, distributions give Sα = 0.6 ± 0.1.

In conclusion, the minimal model employed here, which considers only self-mobilities and
excluded volume of the fibers, reproduces the experimental observation3 of vorticity alignment of
the orientation distribution for oscillatory shear when boundaries are included. Franceschini et al.3

attributed the vorticity alignment to particle-particle collisions solely, omitting the wall contributions.
Though some alignment can occur without confining the suspension, the confinement clearly plays
a strong role in the experimental observations, which utilized a wall spacing of 1.45 fiber lengths.
Accordingly, a simple and complete principle of organization is still lacking as the alignment depends
subtly upon three factors: the amplitude of the straining flow, the concentration of the fibers, and
the boundary conditions. For the latter factor, only the two cases of fully periodic boundaries and a
wall separation identical to that in the experiments were considered. The wall separation at which
the orientational dynamics of the suspension transitions from the highly confined to the unbounded
behavior remains to be explored.

The assistance of Mr. Rusty Stiles with running the simulation code and organizing the results
is greatly appreciated. We also thank Dr. Franceschini and Professor Pine for their comments and
discussion. This work was supported by the Partner University Fund for particulate flows and the
National Science Foundation (Grant No. 0968313).
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