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Abstract

We propose and demonstrate evidence accumulation as a plausible theoretical and/or empirical model for the lexical selec-

tion process of lexical retrieval. A number of current psycholinguistic theories consider lexical selection as a process related

to selecting a lexical target from a number of alternatives, which each have varying activations (or signal supports), that are

largely resultant of an initial stimulus recognition. We thoroughly present a case for how such a process may be theoreti-

cally explained by the evidence accumulation paradigm, and we demonstrate how this paradigm can be directly related or

combined with conventional psycholinguistic theory and their simulatory instantiations (generally, neural network models).

Then with a demonstrative application on a large new real data set, we establish how the empirical evidence accumulation

approach is able to provide parameter results that are informative to leading psycholinguistic theory, and that motivate future

theoretical development.

Keywords: psychometrics, sequential sampling, neural network models, response time analysis, shifted Wald, lexical

retrieval

1. Introduction

Lexical selection may be broadly defined as the process of selecting a lexical target from a number of alternatives,

such as when one names an object or a concept. There are a number of conventional psycholinguistic theories aimed to

explain the principles that underlie lexical selection (e.g., Chen & Mirman, 2012; Howard et al., 2006; Levelt et al., 1999;

Oppenheim et al., 2010), and they notably specify lexico-semantic interactions (semantic interactions on lexical alternatives,

as in Figure 1). These theories vary in the nature of the principles they propose, and their levels of specificity. For example,

if they also specify details of morphological and phonological element interactions. They may also vary in how far they can

be extended, such as if they can account for lexical selection in individuals also with cognitive impairments.

We propose that it may be a disadvantage however, that none of these theories argue it is an evidence accumulation

(sequential sampling) kind of process that underlies lexical selection; and/or that none of these theories utilize evidence

accumulation models empirically, as a more sophisticated method of analysis to more deeply inform or support their claims.

In this paper, we develop a case for both of these statements, and also provide demonstrations. Specifically, we newly
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Figure 1: A depiction of the process involved in lexical retrieval, with focus on the details between semantic to lexical processing; in the style of

preexisting theories (Dell & Gordon, 2003; Dell & O’Seaghdha, 1992; Dell et al., 1997; Oppenheim et al., 2010). Semantic features ‘Living’ and ‘Aquatic’

are activated by the stimulus, which provide excitatory (solid lines) and inhibitory (dashed lines) activations to lexical targets. In a later lexical selection

process upstream, it is likely that ‘Fish’ will win, as earlier it received more excitatory activation inputs than the alternative lexical targets.

propose and demonstrate evidence accumulation as a model for the lexical selection process of lexical retrieval, and further

discuss it in the context of conventional psycholinguistic theory and tradition. Secondly and to our knowledge, we provide

the first quantitative data fitting of a lexical selection data set (in the picture naming task) with an evidence accumula-

tion model, and we also contribute a new large lexical retrieval data set to this effort. Thirdly, we newly show how this

empirical approach with evidence accumulation modeling, can provide parameter results that are informative to a leading

psycholinguistic theory, and that motivate future theoretical development.

2. Proposing Evidence Accumulation for Lexical Selection

In this section, we begin with a discussion of how conventional psycholinguistic theories can benefit from using the

evidence accumulation approach empirically. Then, we discuss ways in which the evidence accumulation approach can be

embedded within current psycholinguistic theory, for modeling the lexical selection process.

2.1. The Empirical Approach

Conventional psycholinguistic theories are generally conceived of by a combination of scholarly interpretations of many

prior empirical results, consisting generally of the lexical choice patterns and mean response times (RTs), and simulation

exercises of principles, in which simulatory instantiations of the theory are provided in the form of a neural network model

(NNM). For the former empirical approach, firstly it is becoming increasingly clear that there is much more to RT data
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than the mean (Balota et al., 2008; Balota & Yap, 2011; Luce, 1986). Thus any quantitative or measurement model that

can concurrently account for the lexical choices and the full RT distribution, such as an empirical evidence accumulation

model, is a more sophisticated analysis tool which can better inform theoretical development. Secondly for the latter, since

NNMs are simulations of a psycholinguistic theory, they are not made to quantitatively fit data at high specificity; instead,

the general purpose of these NNMs is to show that a simulation of the theory can indeed correspond to specific features of

the data.

2.1.1. Simulation versus Fitting

Neural network model simulations can often perform accurately enough to reproduce the lexical choices of a ‘canonical’

healthy speaker. We utilize canonical in the sense that the NNM is not geared to quantitatively fit specific subjects in a

simulation, but that it is instead used to show that its simulation results correspond to a typified speaker, or the average

responses pooled across all speakers. In this way, NNMs do generally well to reproduce the response patterns of canonical

healthy speakers. Also of note, is that some NNMs allow further calibration to reproduce error patterns of individual patients

with aphasia (e.g., see Dell et al., 1997, 2013; Foygel & Dell, 2000; Schwartz et al., 2006).

The largest difficulty for current NNM simulations however, is the ability for these models to concurrently reproduce the

RT distributions with the lexical choices, whether it is over all speakers, individual speakers, or experimental design cells.

One reason is because many of these NNMs model only a portion of the RT per trial (e.g. the semantic and lexical time

portions in Figure 1), and/or simulate a different time statistic than an RT, such as the total number of network iterations

or cycles (e.g. Chen & Mirman, 2012; Howard et al., 2006; Oppenheim et al., 2010), which are currently correlated only

to some canonical aggregate RT measure (e.g. the mean RT over all speakers, and not the RT distribution itself, or of each

speaker). A second reason is that these NNMs are generally too parametrically rich to fit to data (for example, WEAVER++

by Levelt et al. 1999, which aims to model nearly every computational component of the RT). Here we define quantitatively

fitting data with a model, as having a principled procedure that allows one to find the most likely and unique set of parameters

that appropriately quantify the data. To our knowledge, there is currently no published methodology developed, or rather

implemented, for how to quantitatively fit data with one of these NNMs.

In this section we have discussed the challenges for NNM simulations to reproduce response choices, and particularly

RT distributions. Capturing both aspects well and concurrently however, is a signature advantage of the empirical evidence

accumulation approach, from which psycholinguistic theories can be better informed or even supported (Luce, 1986). This

is a notable improvement in contrast to other complementary empirical approaches that can only do one of the two: for

example a recent application fits an RT distribution measurement model to the RT data, the ex-Gaussian, which does not

handle response choices, and uses the results to inform a better simulation of a psycholinguistic theory (WEAVER++,

Roelofs, 2008).

2.1.2. Empirical Implementation

Thus in further detail, the empirical evidence accumulation approach provides at least three functions that current psy-

cholinguistic NNMs cannot yet do: (1) the models can concurrently quantitatively fit the RT distributions and lexical
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choices, and at a high resolution (e.g. of every subject, within conditions); (2), they fit the full RT from start to finish,

and not only time passed for middling components (e.g. exclusively lexico-semantic interactions, as in Figure 1); and fur-

thermore (3), they can even model participant response biases for certain lexical choices. They are thus one of the most

sophisticated empirical approaches currently available for analyzing RT data that consist of a number of choice alternatives

(see Ratcliff & McKoon, 2008; Ratcliff & Smith, 2004), from which psycholinguistic theory can be better informed.

The most natural, empirical evidence accumulation approach for lexical selection, which involves a lexical choice among

a number of alternatives, is the racing evidence accumulation design, which involves multiple accumulators (e.g. Brown &

Heathcote, 2008; LaBerge, 1962; Nakahara et al., 2006; Usher et al., 2002; Vickers, 1970, 1979). In the application to this

framework, the activations of each lexical alternative race to a threshold, and the first to arrive wins. This is a departure from

what is currently the most conventional evidence accumulation model (e.g. the drift diffusion model DDM, Ratcliff, 1978;

Ratcliff & Murdock, 1976), which instead involves a single-accumulator, that is typically used to handle two-alternative

forced-choice tasks. This is because in contrast, lexical selection typically involves a k > 2 word choice task (choosing a

word from more than two options, e.g. selecting ‘Fish’ as in Figure 1). More specific details on the mechanics of evidence

accumulation, such as of Figure 2, will be discussed in Section 3.

A racing accumulation model may quantify the activation of the lexical target that was spoken, as well as the lexical

alternatives. There are a number of methods in how one might quantitatively fit data with a race model, however there must

be adequate numbers of observations (e.g. along choice alternatives, by subjects and the experimental factors of interest)

in a data set to permit an appropriate fit. Otherwise, the empirical racing accumulation model approach instead becomes

simulatory, like a number of NNMs, in which it is difficult to know if a preferred parameterization is the most likely and

unique set of parameters that appropriately quantify or give rise to the data. Indeed arguably, there is a gap in the current size

of most lexical retrieval data sets (e.g. on picture or concept naming) to enable appropriately fitting the most optimal racing

models, which quantify the activation of the lexical alternatives, in addition to the lexical target. As a foundational step,

we propose that as an interim solution to this (while experiments do not possess sufficient observations along the relevant

choice alternatives, crossed with the independent variables of interest), one can first focus on quantitatively fitting simpler

models of evidence accumulation, that mainly focus on the activation of the lexical target.

Specifically in these cases, we propose to model the aggregate activation of the lexical target spoken (and not the lexical

alternatives), using arguably the simplest case of a race model, namely the shifted Wald model (SWM, Anders et al., in

review; Folks & Chhikara, 1978; Heathcote, 2004; Luce, 1986; Ricciardi, 1977), which involves only one accumulator with

one threshold, and positive drift rates. We will discuss the SWM and its relationship to psycholinguistic theory in further

detail, in Sections 3 and 4, and then provide a demonstration of the approach on real data in Section 6.

2.2. Placement within Psycholinguistic Theory

While psycholinguistic theory stands to gain a number of potential advantages by the empirical evidence accumulation

approach, one might also consider the implications of evidence accumulation theoretically, as an important framework to

bring to conventional theory. In this section, we will discuss how appropriately involving such a framework within these

lexico-semantic theories, may arguably be a notable advantage, if not an advancement.
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Figure 2: The SWM as a model for lexical retrieval; describing the RT data in the context of the aggregate latent activity of the lexical target accumulating

to threshold, a , at rate, g , where q accounts for the time lapsed outside of (around) this process (above and below Lexical Selection in Figure 1). Left, a

single trial is modeled with the parameters. Right, many trials (e.g. an experimental design cell) are modeled with the same parameter values, and these

ultimately form a SW distribution shaped with the same signal accumulation parameters.

The tradition of evidence accumulation modeling in psychology is beginning to have a long history, particularly since

the 1960s (Carpenter, 1981; Gerstein & Mandelbrot, 1964; LaBerge, 1962; Ratcliff & Murdock, 1976; Vickers, 1970), and

is becoming increasingly prevalent, gaining broadening empirical support for concurrently handling choice behavior and

RTs over an increasing number of experimental domains (Anders et al., in review; Donkin & Van Maanen, 2014; Mulder

et al., 2013; Ratcliff & Rouder, 2000; Ratcliff & McKoon, 2008; Ratcliff et al., 1999; Trueblood et al., 2014; Van Maanen

et al., 2012a; Winkel et al., 2012). This ability to concurrently handle response choices and RTs, is consistent with the notion

that while response rates (or correct and error rates) in general may be stochastically quantified by classical signal detection

theory (Green & Swets, 1966), response rates stochastically quantified in the context of the time domain is achieved, instead

canonically, by the evidence accumulation framework (Pike, 1973).

Beyond the previous empirical and theoretical applications of evidence accumulation however, there are also continuing

developments of the framework in the neurosciences literature; particularly in support of the presence of upstream neuronal

units that compute accumulated evidence in such similar fashions, across a variety of experimental domains. Specifically,

in research across monkeys (de Lafuente et al., 2015; Shadlen & Newsome, 2001), rats (Brunton et al., 2013; Erlich et al.,

2015; Hanks et al., 2015), and humans (Donner et al., 2009; Fitzgerald et al., 2015; Kelly & O’Connell, 2013; O’Connell

et al., 2012) performing various tasks; and typically the specific frontoparietal areas that are active in the computation of

evidence accumulation, depend on the kind of task that is performed (Mulder et al., 2014). Moreover, some of these authors

show that the informational activity downstream is strongly corresponding to the respective upstream frontoparietal activity,

which is computing the accumulated evidence (or favor) for a particular choice behavior. From these kinds of increasingly

prevalent findings, it is not unreasonable to consider that earlier processing (e.g. in semantic levels and before, in Figure 1)

is feeding activity into an upstream lexical selection, evidence accumulation process. Then as for lexical selection, where
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such an activation accumulation, racing process may occur in the brain is still subject to debate. However studies in naming

latencies (Moss et al., 2005; Schnur et al., 2009) and errors due to lesions (Schnur et al., 2005, 2006, 2009) in lexical

selection tasks, are correlated with variations of the activity and/or integrity of the left inferior frontal gyrus (LIFG).

Finally, there are some related previous applications. For example, the evidence accumulation framework has been

applied to a more “artificial” language domain involving word-discrimination, known as lexical decision (Taft & Forster,

1975), in which stimuli generally consist of a single word or pseudo-word, and responses consist of a two-alternative choice

task for word identification (indicate ‘yes’ for is a word, or ‘no’ for is not a word; for examples see Dufau et al. 2012;

Ratcliff et al. 2004; Wagenmakers et al. 2008). Secondly, there is notably a formal argument of evidence accumulation for

lexical retrieval made prior (RACE/A, Van Maanen & Van Rijn, 2007; Van Maanen et al., 2009, 2012b), in the context of

picture-word interference (PWI); but this evidence accumulation instantiation of standard ACT-R theory (Anderson, 1996;

Anderson et al., 2004) is different from the conventional psycholinguistic theories that we focus on here, which instead

specify lexico-semantic interactions in the style of Figure 1. In common with the conventional theories however, RACE/A

provides a theoretical, simulatory model which cannot quantitatively fit data in the way we have defined it.

Thus given all of these considerations previously discussed, it may very well be reasonable to consider the possible con-

nection (and advantages) that evidence accumulation may bring to describing other processes that have not been previously

considered in conventional theory, such as lexical selection. Our work builds upon the previous works mentioned. Notably,

our contribution is to develop the empirical and theoretical cases for evidence accumulation in the more complex setting of

conventional lexico-semantic theories of lexical retrieval, where in the experimental domain, stimuli consist of concepts or

pictures, and the responses consist of a lexical selection among a number of alternatives (‘cat’, ‘apple’, ‘lawyer’, ‘mathe-

matics’). In the following section, we develop the empirical application of evidence accumulation to lexical selection data,

and then proceed with theoretical connections.

3. The Shifted Wald Evidence Accumulation Model

In this section, we introduce and describe the SWM for the empirical evidence accumulation approach, and then in

the following section, we link the SWM process and parameters to conventional psycholinguistic theory. As mentioned

previously, the SWM is one method in which the evidence accumulation approach may be empirically applied to lexical

selection data. It could be considered a canonical, simplest case of racing accumulation that models the activation of the

lexical target spoken, and not the alternatives. Then as observation numbers permit in lexical retrieval data, one would

do well to also consider more complex racing models for the empirical approach, as they could reveal more thorough

information, certainly about the lexical alternatives.

The SWM is an evidence accumulation model involving the same kind of random-walk process as the popular DDM,

except there is only one absorbing threshold, and the drift rates are positive. While the DDM is appropriate for two-

alternative forced choice paradigms, the SWM is appropriate for paradigms in which one characteristic response is observed

across varying latencies. The race model expansion of the SWM occurs when many SWM accumulators are involved in a

single trial, and the first that reaches the threshold wins; the race versions have been respectively proposed and simulated
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by LaBerge (1962) and Usher et al. (2002).

An illustration of the SWM as a model for the behavior is provided in the left plot of Figure 2. Here a single trial is

modeled. The fluctuating black line is a representation of evidence that is accumulating over time for the lexical target;

note that the evidence begins at a value of 0, and increases (with noise) over time, until it hits the necessary threshold

value, here a value of 40. Upon reaching the threshold, the response is initiated. Parameter g indicates the rate of evidence

accumulation, a is the value of the threshold needed to initiate the behavior, and q is the time to perform the behavior, such

as for response encoding to execution (here abbreviated TEA for time external to the accumulation process), and may also

include time for perceptual processes.

In the right plot of Figure 2, many trials (e.g. a subject within an experimental design cell) are modeled with the same

three parameters that simulated the single trial in the left plot. Note that all of these finishing times, of when the evidence

accumulates to the necessary threshold, plus the TEA (q ), are the response times (RTs), and these are quantified directly

by the probability density function of the SW distribution, also known as the three-parameter inverse Gaussian distribution.

Finally, it should also be clarified that for illustrative simplicity, here q (TEA) is placed before the evidence accumulation

begins (at q = 200 ms). However whether q is placed before, after, or split around the actual accumulation process (e.g.

accounting for both concept/visual recognition and response execution time), all of these options are quantified equally

(mathematically).

4. Linking the Shifted Wald to Conventional Psycholinguistic Theory

The relationship of the SWM to conventional psycholinguistic theories, such as the traditions by Dell & O’Seaghdha

(1992) to Chen & Mirman (2012), can be easily made by discussing the relationships between Figures 1 and 2 within the

context of a lexical retrieval experimental paradigm, such as the canonical picture naming task. In the picture naming task

with healthy speakers for example, it is often the case that the participant responds with the correct lexical target in near or

more than 95% of trials, yet so at varying latencies. Thus when the SWM is applied to cells with these correct trials, the

activation Xt is always corresponding to the response in which the activation of the lexical target (e.g. ‘Fish’ in Figure 1)

won the lexical selection process (e.g. the type of lexical selection process that conventional theory claims). We are thus

estimating a very simplified type of network model in which we zoom in on the activity progression of just a single node

(in this case the lexical target) and its selection, though fortunately said model can be quantitatively fit to the data. Thus

in relationship to the psycholinguistic theory, the drift g refers to activation rate of the lexical target, and a corresponds to

the amount of activation needed to select the word; a can also be interpreted as inverse to starting activation of the lexical

target. Then in cases of experiments where words and pictures are balanced in their complexity, parameter q will handle

time for visual recognition and response encoding/execution (as in Figure 1), because it typically accounts for process times

that are mostly invariant or balanced across trials; though even if trials are not balanced but blocks are, these effects should

be averaged out in this parameter across cells.
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5. Demonstrating the Evidence Accumulation Approach to Specific Theory

An interesting conventional psycholinguistic theory to choose for demonstrating the empirical and theoretical contri-

butions of the evidence accumulation approach, here by the SWM, is the dark-side theory, or model (DSM, Oppenheim

et al., 2010), which is an extension of an important lexical retrieval theory by Howard et al. (2006). The dark connotation

results from the theory’s major development to demonstrate the power that learning-induced forgetting can have on lexical

retrieval (a.k.a. retrieval-induced forgetting, by semantic connections that weaken as a result of learning or retrieving other

words). Next, the DSM aims to make statements on both lexical choices and RTs, and it provides one of the only NNMs

that can adequately simulate time statistics (the number of network boost cycles, along with lexical choices) for canonical

unimpaired speakers, as well as the error rates and error types for canonical aphasic speakers (e.g. see Caramazza & Hillis,

1990; DeLeon et al., 2007; Dell et al., 1997; Foygel & Dell, 2000), that correlate well with mean RTs. Thus the DSM

provides a solid NNM. In addition, a fundamental reason why we choose the DSM is because its implementation of lexical

selection (in the NNM) can very well be argued as a form of evidence accumulation.

For example, the DSM locates lexical retrieval choices in the time domain, and does so stochastically, through the

following process: the resultant lexical activations that occur from excitatory and inhibitory semantic inputs (see Figure 1)

are activity accumulation rates, and the first item to reach a fixed threshold is modeled as the lexically-selected word. Such

a process includes nearly everything of a standard k > 2 alternative choice evidence accumulation model: (a) drift rates

for each choice alternative, and (b) a threshold (in this case shared by all lexical activity accumulators); however it does

lack (c) a non-decision or motor response time, but this may be sensible after all, since the process is used only to describe

the lexical selection time portion. By using this kind of accumulation process at lexical selection, the model does well to

concurrently simulate lexical choices and relative time statistics for both unimpaired and impaired speakers. Despite this

advantageous inclusion however, the DSM as the author notes, still cannot quantitatively fit the RT data (p. 248, Oppenheim

et al., 2010), because it is overparameterized for the current types of data we have available, and it models only a portion of

the process (see ‘Semantics’ to ‘Lexical Selection’ in Figure 1) by using a non-RT statistic (boost cycles).

Thus since the DSM can be connected to evidence accumulation theory, but still cannot quantitatively fit data, it provides

for a nice example case for how evidence accumulation modeling and psycholinguistic theory can be complementary with

one another. Therefore, we select it as our example theory in our empirical evidence accumulation exercise.

6. Application to Lexical Retrieval Data

In this section, we demonstrate the SWM as a first approach of quantitative evidence accumulation fitting of the lexical

retrieval paradigm, on a large new experiment of the blocked-cyclic picture naming task for lexical retrieval. Indeed a major

canonical paradigm for studying lexical selection is this naming from pictures (or picture naming) task (Cattell, 1886; Carroll

& White, 1973; Oldfield & Wingfield, 1964). The task is to rapidly name pictures as they sequentially and independently

appear, while the participant’s perceptual focus is fixated on the center of the display. The picture paradigm avoids the

confound of simply phonologically reproducing a printed word, and insures that the participant lexically retrieves, albeit

after the visual recognition of a picture. An alternative, non-pictorial paradigm for lexical selection is the naming from
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definition task (e.g. Marques, 2005), in which participants name from reading a description of a concept. In both cases,

after a visual or conceptual recognition, yet before response production, it is generally accepted that there is an intermediary

process in which a number of semantic features are combined in order to select the lexical target (for illustration, see

Figure 1).

In blocked-cyclic picture naming, a same set of pictures, sharing a certain degree of semantic context (or relatedness),

is repeated by different orderings within mini-blocks (for more information, see Damian et al., 2001). The three main

experimental factors of primary interest in this picture-naming task are: semantic context (degrees in which pictures in the

set belong to the same semantic category), repetition cycle (the number of times the picture set has been repeated within the

block), and lag (the number of other pictures seen since last seeing the current picture). The new experiment involves two

additional intermediary levels of semantic context, six levels of repetition cycle, and nearly ten lag levels; as well as a larger

number of trials (864 per participant after warm-up) and healthy-speaking participants (23) than a number of other studies

(Damian et al., 2001; Howard et al., 2006). The semantic conditions from lowest to highest context are of the ordering 16,

23, 32, 61: the first digit refers to the number of pictures per set, and the second digit refers to the number of picture sets

in the block. The total experiment resulted in 98.2% of trials being correct responses and 1.8% as errors. A full methods

description of the experiment is included in the Appendix.

Fitting Approach

The fitting method utilized for the SWM combines techniques of maximum likelihood and deviance criterion minimiza-

tion (as developed in Anders et al., in review). In this approach, an independent SWM is fit for each unique experimental

design cell, in which main effects and interactions can be observed on the parameters of evidence accumulation. Note that

for every design cell, parameters: drift g , threshold a , and TEA q are estimated. The design cells we fit pertain to factors

that are already demonstrated in prior literature to be important for the paradigm: semantic context, repetition, and lag.

However, here it is important to illustrate that even with arguably the simplest evidence accumulation model, factor levels

need to be combined to have enough trials in each design cell, to quantitatively fit the model. By collapsing the repetition

factor into two levels (1-3 and 4-6) and the lag factor into two levels (2-5 and 6-12), the result is N = 23⇥4⇥2⇥2 = 368

cells that will be fit, each having an appropriate average cell size of 53 trials, with standard deviation (SD) of trials 13,

and range (28,78). Note that here we are fitting by subject and conditions, and an even better fit to aspire to in future

experiments, is to have enough trials to fit also along items, which can be a large source of variance. Though at least in this

experiment, the same 36 items are randomly balanced and used equally in all blocks.

Finally before fitting, on each cell a very light processing of potential contaminant RTs (see Barnett & Lewis, 1994;

Ratcliff & Tuerlinckx, 2002) was performed by an elimination criterion of below three or above six median absolute devia-

tions (MADs, see Leys et al., 2013) from the cell RT median (preserving the long tail RT values), resulting in 19,168 trials

for analysis out of the original 19,506 (1.7% of trials omitted). Then to fit the model, for each cell, maximum likelihood

method of moment estimators were used to calculate the three SW parameters when a shape parameter is proposed (b , as

in Anders et al., in review). Then searching across the near-entire range b , the optimal parameter set is selected according
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to the minimal difference between the data to model-predicted RT quantiles, by 100 equally-spaced quantile points in the

range of (.02, .98).

Results

In this section, the results of the SWM applied to the lexical retrieval data are presented. First model fit checks are

assessed to check the degree to which the model appropriately fits the data, such that if the parameter results are appropriate

to interpret. Secondly following a satisfactory fit, the main parameter differences are reported. Then finally, an interpretation

of these parameters and their relationships to psycholinguistic theory is provided.

Model Fit Checks

The top plot in the left column of Figure 3 provides the quantile-quantile (QQ) matching of the deciles of the fit-

simulated distributions against the observed distributions; it contains all 368 cells. The QQ plot may show overall trends

in systematically misfitting quantiles of the distribution, as well as misfit outliers; it also gives an idea about the scale and

range of the data. The importance of this check is to observe critically any curvatures in the plot, which is a strong sign of

misfit. As one can see, there is no systematic curvature in the plot and the SWM performs systematically well on the data

set, with minimal outliers.

Then the bottom plot provides the distribution of residuals for each of the nine deciles across the 368 cells fit. In this

model fit check, one might optimally see a distinct ordering of decile residual distributions, due to the property that residual

magnitude tends to correlate with RT data variance and magnitude (e.g., see Anders et al., in review). In this application, the

ordering is slightly less distinct, which may be due to data noise or that multiple repetition or lag levels are aggregated into

two levels. However, it is nicely shown that the fit does well to recover the deciles of each cell, with a mode residual of only

4-6 ms for every cell; and most importantly, there are no outlying decile distributions, showing no particularly poor recovery

of one decile from another. Furthermore, note that the larger variance of the last decile distribution is appropriately located,

as it contains the largest outlying RT values. Thus given that the model fit also appears to be supported in the assessment of

this model check, we proceed to an analysis of the fitted parameter results.

Parameter Analysis

The right column of Figure 3 provides the parameter main-effect results of the SWM fit to the data. The three plots

contain the main-effect means, and pairwise-difference standard errors, of the model-fit measurements of the three SWM

parameters: g , a , and q , by experimental factor: the four semantic context levels, the two repetition groups, and the two

lag groups. The main-effect means are calculated by the mean of within-subject means for a given experimental level. The

pairwise-difference standard errors are calculated for each pair of adjacent experimental levels, by computing the standard

error of the within-subject differences between a pair of adjacent experimental levels; these standard error bars are indicative

of the significance levels on the parameters that our ANOVA analyses return.

Beginning with the effect of the semantic context levels in Figure 3, the RTs are slowed distinctly with a decrease in the

signal accumulation rate parameter, g , and secondarily with an increase in the signal criterion parameter, a , and no effect
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Figure 3: SWM fit to the observed data. The top-left plot shows the quantile-quantile match for the nine deciles (0.1 to 0.9) for each of the 368 cells. The
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baseline activation (or threshold), a , and time external to activity accumulation (TEA), q ; and ANOVA p-values are provided for marked differences.

in external time q ; this is supported by ANOVAs across the three parameters (Fg(3,66) = 6.26, p < .001,h2
p = 0.22,h2

G =

0.036; Fa(3,66) = 2.45, p = .071,h2
p = 0.10,h2

G = 0.016; and Fq (3,66) = 0.45, p = 0.72,h2
p = 0.02,h2

G = 0.001)1. The

absence of an effect on q indicates that this effect of semantic context is not simply shifting similar distributions and their

means, which perhaps some previous research assumes, but rather, the distribution shapes are changing with respect to the

experimental factors.

With regard to the effect of repetition, the largest effect on RT magnitude is observed by a decrease in signal crite-

rion level, a , which supports faster RTs with more repetition; secondarily at a smaller effect on RT magnitude, there is a

distinct opposing effect2 on signal accumulation rate, g , that in contrast supports slower RTs with repetition. Across repe-

tition, again there is no distinct effect observed in parameter q . These results are also supported by ANOVA (Fg(1,22) =

5.08, p = .034,h2
p = 0.19,h2

G = 0.009, Fa(1,22) = 3.88, p = .032,h2
p = 0.19,h2

G = 0.010, and Fq (1,22) = 1.40, p =

0.249,h2
p = 0.06,h2

G = 0.001). Then for picture lag levels, increasing lag provided for a trend in the signal criterion

parameter, in the direction that supports slower RTs. However, the ANOVA results do not support significance of this ef-

fect (Fg(1,22) = 0.20, p = .656,h2
p = 0.01,h2

G = 0.000, Fa(1,22) = 2.62, p = .12,h2
p = 0.11,h2

G = 0.008, and Fq (1,22) =

1For an explanation of effect sizes h2
p and h2

G, see Bakeman (2005).
2Note that these kinds of opposing effects on the distribution increase the chance for a Type II error, if one were to do classical tests (e.g. ANOVA) on

the raw RT means rather than on these parameters.
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0.00, p = 0.961,h2
p = 0.00,h2

G = 0.000). Finally, no significant interaction effects were found between the factors in the

ANOVA results.

Interpretation

In this section we demonstrate how the parameter results may be interpreted in respect to psycholinguistic theory. As

mentioned previously, we select the DSM theory as an exemplary candidate for demonstrating how the evidence accumula-

tion approach can be integrated.

I. In respect to semantic interference in the DSM (that arises from greater semantic context), the SWM results are nicely

consistent with the DSM theory. The evidence of the most semantically-relevant target accumulates more slowly when there

is greater semantic interference; then as a secondary smaller effect, there is also a higher threshold with greater semantic

interference. Both of these results are consistent with predictions by the DSM theory, in that for their racing accumulation

mechanism, the drift of the lexical target is slower in cases of semantic interference; and since the threshold is a function

of the difference between the target and the best alternative starting drift rates, this also predicts a larger threshold during

interference, which is what we observe with the SWM fit on the data. The results are also further consistent with the DSM

in more simpler ways, as based in their lexical retrieval NNM, the drift and threshold are always negatively correlated with

one another, and the threshold itself has less importance (p. 244 Oppenheim et al., 2010). Thirdly, no effect was observed

on external process time q , however while the DSM does not aim to make inferences about such processes, it is fortunate

to see that with a quantitative fit of the data by an evidence accumulation model, it confirms that the variance in the RTs

are not significantly different due to response execution or recognition duration differences (for example), and are rather

different from lexical selection duration differences, which is supportive of the DSM theory.

II. Next in regard to repetition, the SWM results are also nicely consistent with the DSM theory, and furthermore, the

SWM fit may offer a disambiguation of the theory. For instance, during repetition cycles, it is the case that both priming

and interference are occurring before repeating the same picture. Thus according to DSM theory, one can expect both a

facilitatory and inhibitory effect on the lexical retrieval process, and these kinds of opposing effects can be seen in the

increasing-and-then-decreasing selection time trends in the DSM simulations across cycles (e.g. Figures 10a, 11a, 12c in

Oppenheim et al. 2010). This is indeed nicely consistent with what we observe with the SWM: a facilitory effect is expressed

in a lower threshold that needs to be reached, while the inhibitory effect is expressed in a slower drift rate. Finally, no effect

was observed on external process time q .

The DSM theory offers two ways in which these facilitory and inhibitory trends may be jointly modeled: (i) by learning

(semantic input weights change over trials which result in different lexical target drift rates) combined also with a competi-

tive racing process (in which the threshold is always negatively correlated to the drift rate of the lexical target), or (ii) by only

learning, in which the threshold is free to vary without a necessary correlation to the drift rate, which may be considered a

non-competitive racing process. Simulations of the DSM were unable to conclude favor of one method over the other, yet

importantly here, the empirical evidence accumulation approach offers a disambiguation for the theory, a case for (ii). This

is because the lower target drift rates observed by the inhibitory (or interference) effect, imply higher lexical alternative drift

rates by the DSM, and since the theory’s evidence criterion is a subtractive function of the lexical target and the alternative
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drift rates (see Eq. 4 in Oppenheim et al. 2010), method (i) necessarily predicts a higher threshold. However empirically,

instead we observed a lower threshold, despite there being lower target drift rates due to inhibition, which method (ii) can

account for. This may hence suggest that it is possible for lexical selection to occur as a non-competitive racing process.

The empirical evidence in support of (ii) however, provides a new challenge for the DSM theory. Particularly, how will

the DSM predict what the actual threshold values are in both semantic interference (higher thresholds, negative correlation

as discussed in I.) and repetition cycle level increases (lower thresholds, positive correlation discussed here in II.) if their

only formulaic method of specifying the threshold previously, provided for a decision threshold that is always negatively

scaled with the drift? Since the DSM cannot quantitatively fit the data, it must propose an additional feature that can serve

to generally formulate the behavior of the threshold for these two patterns in the non-competitive paradigm. The model fit

thus provides a motivation for additional development of the theory.

III. Finally in respect to lag, the SWM results provide correspondence to the DSM theory, and also a motivation for

further research. Lag effects may be considered indicative of what is known as decay in psycholinguistic theory (Anderson,

1983; Berg & Schade, 1992), of the lexical target activation. The SWM fit provided for no lexical selection parameter

differences to be notably significant in the case of lag, which is consistent with the DSM theory that assumes regular decay

effects to be small, or insignificant in the lexical selection process.

One may note however that the fit does provide a suggestive difference in the threshold parameter for large lag distances,

which may be a motivation for future work. Specifically, note that lag distances in the experimental setting, in contrast to

the pure concept of time-based decay, correspond to greater probabilities of trials intervening that are causing the ‘dark-

side’ of learning (retrieval-induced forgetting), by naming semantically-related words for example. Thus one might expect

to see similar but much fainter trends as was seen in the semantic interference condition, and indeed the fit resulted in

such larger thresholds and smaller drift rates on average, when there are increased lag magnitudes. However, clearly these

results are far from conclusive and should be taken with caution, additional accumulation model fits would be necessary to

answer this question. We propose that the evidence accumulation modeling approach fit to other experimental data sets that

make improvements on the balancing, and number of trials, per level of lag distance over the current one analyzed, may be

informative for helping settle the debate of decay or dark-side learning mechanisms in psycholinguistic theory.

7. General Discussion

We demonstrated evidence accumulation to be a worthwhile model for explaining the lexical selection process of lexical

retrieval within the RT domain. A number of current psycholinguistic theories consider lexical selection as a process related

to selecting a lexical target from a number of lexical alternatives which each have varying activations (or signal supports),

that are largely resultant of an initial stimulus recognition. How these activations develop into influencing the decision

process of selecting the appropriate lexical target, can be described as a racing evidence accumulation process. We showed

how such a process can be directly related to psycholinguistic theory and their simulatory instantiations, e.g. NNMs. We

selected a candidate psycholinguistic theory for the demonstration, the DSM. Then the quantitative fit of the evidence

accumulation model for lexical selection, driven entirely by the real data, provided for parameter results that confirmed
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or supported the lexical selection theory components of the DSM, which prior to this, were supported only by simulation

exercises to the data. Then in other aspects, the quantitative application motivated future development of the DSM theory,

and supported lexical selection as possible to occur as a non-competitive process.

Evidence accumulation is already supported in a large number of other cognitive domains, as well as the neurosciences.

We have argued that the time is ripe to truly weigh in the possibility that evidence accumulation is occurring at the level

of lexical selection. We have developed a thorough case for this argument and how evidence accumulation may be imple-

mented in the domain: for example theoretically, embedded within existent or future psycholinguistic theory, or empirically,

providing quantitative fits of lexical selection, that better inform psycholinguistic theory.

There are a number of racing accumulation models that already exist which provide a good foundation for meshing

with psycholinguistic theory: the race model (LaBerge, 1962; Usher et al., 2002), which features many accumulators of

the SWM; the LBA, identical except that evidence accumulates over time without noise in single trials, but there is noise

between trials–which perhaps requires fewer trials to fit (Brown & Heathcote, 2008). Then there are also more complicated

variants, such as the LCA (Usher & McClelland, 2001), that includes features even more parallel to NNM designs, such

as lateral inhibition and decay in the accumulation process, though consequently includes more parameters. Each of these

models can be embedded theoretically, or used in a system of layers acting as a network. For the empirical approach

however, these racing models will require an adequate number of observations for a quantitative fit; and thus without

adequate numbers, these approaches become only simulatory instead of quantitative, just like these major psycholinguistic

NNMs (for example, see Dufau et al., 2012).

Given that, it is important to note that unfortunately, most current picture naming data sets lack sufficient observations

to quantitatively fit the optimal racing evidence accumulation models. New experiments, which either increase observation

sizes, or reduce the number of pertinent lexical alternatives, could be promising to the field. As an interim solution however,

we demonstrated that a single accumulator model, the SWM, can be used to model the lexical target activation in the lexical

selection process, and in this case, one forgoes directly quantifying the activations of the alternatives. There is additional

support for this simplified approach however, where notably, Zandbelt et al. (2014) find that often the activity of a single

accumulator, like the SWM, can sufficiently describe the activity of many accumulators operating at the same time.

Our new picture naming data set, is quite large compared to current standards in the blocked-cyclic naming paradigm.

Using the SWM empirical approach on the data, we were able to quantitatively fit the model along four factors of the

data: semantic context, repetition, lag, and participants. There are two notable ways we would have liked to improve the

specificity of the fit. Firstly we would have liked to have enough observations to also capture the variance, and hence fit

by, items (pictures), which can be a significant source of variance. At least in this case, fortunately the same 36 pictures

were used equally throughout all trials per participant. A second large source of variance could consist of inter-trial effects

(Baayen & Milin, 2010; Barr et al., 2013; Wagenmakers et al., 2004). We were only able to capture inter-trial effects

coarsely by two lag levels (lags less than or greater than five), and repetition cycles (every six trials, up to 36); if there were

enough observations, it would be much more efficient to include a larger range of lag levels, which may have reduced the

residuals and helped to extract clearer factor effects.
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7.1. Concluding Remarks

We provided the first quantitative evidence accumulation application to semantic (picture/concept) lexical retrieval data,

with the SWM. Provided it is a first, additional applications to other data sets are important to determine the replicability

and stability of such accumulation parameter trends that were observed in this data set. As mentioned previously, an

important future step is to analyze a similar experiment with enough trials that allow fitting each of the repetition and lag

levels separately, without a need to combine them into groups of levels. Given this, the results provided herein are hence

considered a precursory beginning to the new paradigm of evidence accumulation as a model for lexical selection. However,

it is a powerful quantitative approach above the previous analysis of RT means and standard deviations. For example, it is

important to note that (as indicated in Figure 1 by Anders et al. in review) the same means and standard deviations of RTs,

may be obtained by notably different shapes and onsets of RT distributions; it is hence easier to replicate the RT means

across experiments than RT distributions.

Parameters in our suggested modeling approach, that describe the shapes and onsets of the RT distribution, rather

than only the means and standard deviations, are hence more specific, and provide richer information for psycholinguistic

theory. Furthermore, it should be more difficult to replicate these parameters that describe the distributions of data across

experiments, although they provide more information. Therefore, if adequate replication is indeed found, it may be a strong

case that the trends found in lexical selection by evidence accumulation, indeed behave in such patterns due to (for example)

semantic interference, repetition, lag, and participant types. We hope to have provided a convincing argument, as well as

an interesting demonstration, of evidence accumulation as a plausible and useful model for the lexical selection process of

lexical retrieval.
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Appendix

Detailed Exeriment Methods

Participants

Twenty-four native French speakers between 18 and 30 years old (20 females), which were students at the Université de

Provence, participated in the experiment for course credit. The data of one participant was removed from the analysis due

to technical difficulties during voice recording. Each participant declared having no language disturbance, and normal or

corrected-to-normal vision.

Materials

A total of 36 common nouns, each with a corresponding black and white picture, were selected. They were issued from

six semantic categories (e.g. animals, vehicles). These pictures were drawn from published collections (Bonin et al., 2003;

Alario & Ferrand, 1999), and if no such picture was available from prior research, they were drawn from the Internet, or

created by the experimenters. The name agreement of each picture was very high. Their dimensions consisted of 245 pixel

width, by 240 pixel height, and were presented at the center focus of the computer screen display.

Design

A 6⇥6 design was used in which six items (pictures) were available for each of six different semantic categories. There

were four semantic context conditions divided into four types of blocks. The level of context, or semantic relatedness by

category membership, of each block was manipulated, and involved four increasing levels: ranging from no shared category

membership, to fully-shared category membership.

In homogenous blocks, all items belong to the same semantic category and this condition is termed “61,” where 6

refers to the number of items per category, and 1 refers to the number of semantic categories involved in the condition. In

heterogeneous blocks, all items are from different semantic categories, and so this condition is then termed “16.” Then there
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are also two intermediary conditions: “32,” involving three items from one semantic category and three from another; and

condition “23,” with 2 items issued from each of three different semantic categories.

Thus the order of increasing semantic relatedness for the conditions, from full to none, is: 61, 32, 23, and 16. Thus in

these condition names, the first digit always corresponds to the number of items per category, and the second corresponds to

the number of categories represented. The heterogeneous and intermediary conditions were created by mixing the members

of the semantic categories. Three different master lists were created so all possible category combinations could be present

in the intermediary conditions.

In each master list, all 36 items participated equally in each of the four conditions, and care was taken to avoid the pres-

ence of more than two picture names starting with the same phonological onset (defined in respect to manner of articulation

of the first phoneme: voiceless occlusive, voiced oral or nasal occlusive, and liquid, voiced or voiceless constrictive), or

more than two picture names with the same rhyme within the same block. Furthermore, the order in which the pictures were

presented was pseudo-randomized for each participant, such that identical pictures were always at least five items apart, and

there were never four consecutive items with the same number of syllables; this was done using specialized randomization

software, called MIX (Van Casteren & Davis, 2006).

Procedure

Participants were tested in a sound-attenuated dimly-lit room. The experiment was controlled by the software DMDX

(Forster & Forster, 2003), which allows on-line recording and voice-key triggering of the participants’ verbal responses.

Participants were first familiarized with the 36 pictures used in the experiment. The pictures were presented one by one

in a random order, and the participant was asked to name each one of them. The experimenter made verbal corrections

when an incorrect or unexpected response was produced. The microphone sensitivity was tested and adjusted to the voice

of the participant during this familiarization phase. Then, the experimental instructions were delivered and the experiment

started. A trial consisted of the following events: (1) a fixation point (“plus” sign presented at the center of the screen)

for 500 ms; (2) a picture, which remained on the screen until the participants responded or until a 1300 ms deadline was

reached; (3) an intertrial blank screen with a randomized duration between 166 to 666 ms. The following trial started

automatically. Participants were instructed to name each presented picture as fast and accurately as possible. Each picture

was repeated 7 times per condition. The first of seven sets established a warm-up trial while the remaining six sets consisted

of the experimental data. Indeed the focus of this study was not on the transient facilitation effect that tends to take place

in the first set, which has been repeatedly, if not consistently, reported in other published studies (Belke & Stielow, 2013;

Melinger & Abdel Rahman, 2004). Altogether, there were 1008 trials per participant, composed of 144 as warm-up, and

864 for analysis. The whole experiment lasted about an hour. There were short breaks between each block of 42 pictures.

Data Post-processing

A total of 19,872 response times were recorded across all participants after warm-up, which consisted of 98.2% correct

responses and 1.8% error responses. Each of the 23 participants performed 864 trials post-warm-up, and on average made

only 16 error responses.
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The accuracy of the reaction time measures provided by the voice-key was checked visually offline, and corrected when

necessary using the software CheckVocal (Protopapas, 2007). Trials were excluded from the analysis if the participant did

not respond or produced any kind of verbal error (partial or complete production of incorrect words, verbal dysfluencies:

e.g., stuttering, utterance repairs, hesitations), leaving 19,506 trials for analysis.
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