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We propose and demonstrate the shifted Wald (SW) distribution as both a useful measurement
tool and intra-individual process model for psychological response time (RT) data. Further-
more, we develop a methodology and fitting approach that readers can easily access. As a
measurement tool, the SW provides a detailed quantification of the RT data that is more sophis-
ticated than mean and standard deviation comparisons. As an intra-individual process model,
the SW provides a cognitive model for the response process in terms of signal accumulation
and the threshold needed to respond. The details and importance of both of these features are
developed, and we show how the approach can be easily generalized to a variety of experimen-
tal domains. The versatility and usefulness of the approach is demonstrated on three published
data sets, each with a different canonical mode of responding: manual, vocal, and oculomotor
modes. In addition, model-fitting code is included with the paper.
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Introduction

From the earliest inceptions in formal psychology by
fundamental figures, such as Wilhelm Wundt and Francis-
cus Donders, to present day, response time (RT) recording
and analysis have continued to remain a major approach
in psychological research. Despite greater technologies to
also measure correlates of brain activity, such as electroen-
cephalography and magnetic resonance imaging, RT data
continues to deliver important information, either side-by-
side with the newer data, or as standalone data. Whilst there
have been such developments with new measurement tech-
nology, also have come developments within the data analy-
sis techniques. A central development to more sophisticated
data analysis, is the current movement to consider experi-
mental effects on the full set of observations recorded, rather
than on only the central tendencies. Such a movement for
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RT data, has a strong case rooted within Luce’s (1986) ex-
tensive mathematical work. The present paper aims to de-
velop further understandings, competencies, and methodolo-
gies for the researcher who handles RT data; particularly, we
focus on a powerful distributional analysis tool that is not yet
in general practice within the psychological community, the
shifted Wald model.

Distributional RT Analysis

The efficacy of modeling the distributions of RT data to
obtain a deeper understanding of experimental effects and
underlying processes, rather than only using classical anal-
ysis methods, has been well-demonstrated in preceding psy-
chological science literature (Andrews & Heathcote, 2001;
Balota & Yap, 2011; Balota, Yap, Cortese, & Watson, 2008;
Heathcote, 2004; Laming, 1968; Link, 1992; Luce, 1986;
Ratcliff, 1978; Ratcliff, Gomez, & McKoon, 2004; Ratcliff
& Rouder, 1998; Ratcliff, Van Zandt, & McKoon, 1999;
Staub, White, Drieghe, Hollway, & Rayner, 2010; Stone,
1960; Van Maanen, Grasman, Forstmann, & Wagenmakers,
2012; Van Zandt, 2000, 2002).

There exist quantitative distribution measurement tools
for RT data, in which the parameters describe the properties
of the observed data distribution. These tools are typically
closed-form probability density functions with positive skew
and values, such as the shifted Wald (Folks and Chhikara
1978; see Chapter 8.2, Luce 1986; Ricciardi 1977; Wald
1947), ex-Gaussian (Burbeck & Luce, 1982; Heathcote,
Popiel, & Mewhort, 1991; Hohle, 1965; Jeansonne &
Foley, 1991), Weibull (Fréchet, 1927; Weibull, 1951), log-
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normal (Crow & Shimizu, 1988), gamma (Lukacs, 1955)
and Gumbel (Gumbel & Lieblein, 1954). Due to their di-
rect quantification and description of the RT distribution, and
their straightforward application to data, these techniques are
often called measurement models.

Then there are more complicated models of RT data that
aim to model a process that underlies the data, by modeling
signal accumulation, such as the LATER (Carpenter, 1981)
and E-LATER models (Nakahara, Nakamura, & Hikosaka,
2006), the Linear Ballistic Accumulator (LBA, Brown &
Heathcote, 2008), the race model (LaBerge, 1962), and
the Drift Diffusion Model (DDM, Ratcliff, 1978; Ratcliff
& McKoon, 2008; Ratcliff & Murdock, 1976). However,
these model parameters do not directly describe the distri-
bution of RT data. While the full RT distribution is used
to fit these models, the parameters rather indirectly quantify
the RT distribution by instead describing the data in the con-
text of an intra-individual process, in which a signal accu-
mulates over time, toward a threshold that must be reached
in order to respond. In doing so, these kinds of models have
been termed an extension of signal detection theory (Green
& Swets, 1966) to the time domain in psychology (p. 268,
by Ratcliff et al. 1999; see also Pike 1973). Though due to
the greater complexity of how these models describe the data,
they are more often difficult to fit to data than simple mea-
surement models, and are rather known as process models.

We bring to attention that there is an interesting model
of those previously-mentioned that is simultaneously both a
measurement and intra-individual process model in the ways
just described: the shifted Wald (SW) model. The SW is a
simple and concise model that may provide notable advan-
tages in RT distribution analysis. However, the SW is not yet
routinely considered a potential option in the psychological
community, and so we aim to advance knowledge of this un-
familiar model. Particularly, it appears that understanding of
the following aspects is not well-developed in the psycholog-
ical community. Firstly, that the SW is a strong statistical tool
in which the parameters directly quantify the three impor-
tant aspects needed to fully describe an RT distribution: its
onset, deviation around the mode, and tail magnitude. Sec-
ondly, that the SW simultaneously provides a simple activa-
tion accumulation model for the observed response in a given
paradigm. Furthermore, the SW can be more useful when
it is specified per design cell in an experiment; and that in
this way, the model can be easily generalized to a number of
different experimental domains. In the course of the paper,
these accounts are clarified and demonstrated.

The paper is organized into a number of sections that work
to provide a concise tutorial and methodology for the SW
approach. In doing so, there are also demonstrations of the
model and the proposed fitting method on simulated and real
data, as well as explanations for when one might consider
applying the model. The SW is also further discussed in re-

lation to alternative distribution models for RT analysis. Fi-
nally, code is provided as a supplementary file to easily apply
the model to data. The SW is a strong statistical tool, and a
simple process model of aggregate response activation; how-
ever its simple process model account does not replace more
complex process models that can be validated on RT data,
but it can rather serve to provide an aggregate summary of a
more complex underlying process, that more complex mod-
els might aim to further quantify (e.g., see Zandbelt, Purcell,
Palmeri, Logan, & Schall, 2014).

The Shifted Wald

As mentioned previously, the SW has two major forms in
which it may be used: as a simple cognitive process model,
or alternatively, as a distributional measurement tool. The
process model form of the SW shares the same accumula-
tion model (AM) process that is at the heart of other popular
AMs, such as the DDM, race, LATER, and E-LATER/LBA
models. The distributional measurement form of the SW
is simply given by its probability density function (pdf) for
RTs, such as in other popular distribution measurement pdfs:
for example the ex-Gaussian, Weibull, lognormal, gamma,
and Gumbel. The following two sections describe these two
principal usages of the SW.

As a Distribution Measurement Tool

The SW is characterized by a probability density function
that can be applied to any positively-valued data with a de-
gree of right skew. It is well known that observed RT data
from psychological experiments typically involve this form,
as depicted in the left plot of Figure 1. Important observa-
tions can be gleaned from the plot: firstly, it is clear that the
mode, median, and mean of such distributions are not at the
same value, and in addition, the sample mean and standard
deviation (s.d.) are over-estimated by values in the right tail
of the distribution. Furthermore, the s.d. cannot describe the
shape of the distribution around any of the central tendency
measures (mean, median, mode); and the mean does not pro-
vide an indicative location (onset) of the distribution.

Instead, it is useful to distinguish that regular RT distri-
butions are fully identified by three specific quantifiers, and
usually not by two general ones. The three standard pieces of
information needed are (i.) an onset of the distribution after
an initial empty interval (e.g. 0-300 ms) where the respon-
dent cannot appropriately complete the task this quickly; (ii.)
a central tendency area with deviation centrally around the
mode value (e.g. 350-750 ms), this is where most RTs lie;
and (iii.) the long tail area in which the slower RTs occupy
(e.g. 800-1300 ms). RT distributions are hence more com-
plex than Gaussian (or non-skewed distributions), and their
shapes cannot be appropriately identified by only a mean
value and standard deviation. This is because multiple com-
binations of (i.), (ii.), and (iii.) can all produce the same
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Figure 1. Illustration of RT distribution trends. Left, a standard RT distribution which has an onset, a central tendency area,
and a tail thickness; middle, many RT distributions with very different shapes and onsets, but with all sharing the same mean;
right illustration of the SW that has a parameter to account for the three RT distribution characteristics.
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Figure 2. An illustration of how the SW distribution shape changes as one manipulates each parameter. Left to right, changes
in γ , α , and θ , each in a direction that produces larger mean values. In the left plot, the black distribution starts with γ = 0.15
and each successive grey distribution is a reduction of 0.02 units, until γ reaches 0.01.

mean, and/or the same standard deviation. This is easy to
show, such as in the middle plot of Figure 1, where the distri-
butions despite having strongly different onsets and shapes,
all have the same mean.

Therefore, as a resolution to the disadvantages of the mean
and s.d. as RT metrics (see also Balota & Yap, 2011; Balota
et al., 2008; Rouder, 2005), one can instead analyze RT
data more sophisticatedly with a three-parameter account of
the distribution, that directly identifies and describes the RT
distribution aspects: (i.), (ii.), and (iii.), and how they change
with experimental factor effects. Furthermore, one can cal-
culate the mean and s.d. with these parameters, making them
less-likely to be over-estimated in a sample of RTs. These
are the primary advantages of the SW as a distribution mea-
surement tool, and these quantifiers are illustrated according
to the RT distribution in the right plot of Figure 1.

The SW can serve as such a distribution measurement tool

by use of its standard probability density function (pdf),

f (X | γ,α,θ) =
α√

2π(X−θ)3

· exp
{
− [α− γ(X−θ)]2

2(X−θ)

}
,

(1)

with expected value α/γ +θ , and variance α/γ3, for X > θ .
The RT mode can also be calculated parametrically, as

Mode(X) =
α

γ

[(
1+

9
4α2γ2

)1/2

− 3
2γ

]
. (2)

Thus the SW describes a unimodal distribution.
The distributional effect that occurs by changing each of

the following parameters, γ , α , and θ is illustrated in Fig-
ure 2. As shown in the figure, changes in γ affect mass in
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Figure 3. The SW as a cognitive-behavioral model, describing the RT data in the context of a latent quantity (e.g. signal)
accumulating to threshold, α , at rate, γ , where θ accounts for the time lapsed outside of (around) this process. Left, a single
trial is modeled with the parameters. Right, many trials (e.g. an experimental design cell) are modeled with the same parameter
values, and these ultimately form a SW distribution shaped with the same signal accumulation parameters.

the tail; changes in α affect deviation around the mode, and
determine normality of the distribution; and changes in θ de-
termine the onset of the distribution (location), but not the
distribution shape (distribution of mass). Furthermore, one
can notice that the black points in the plots of Figure 2 in-
dicate the mean of each distribution, and it is quantitatively
clear that any of these three distribution shape or location
effects, will likewise have an effect on the mean RT.

The advantage of the SW as a distribution measurement
tool is indeed its ability to quantify the full RT distribution,
and parse the data to further locate the specific effect of an
experimental manipulation on the RT distribution. For in-
stance, is an experiment effect solely on (i.), (ii.), or (iii.), or
a combination of them? The SW has a three-parameter de-
composition of the central tendency, in which as noted before
with the pdf, the

E(X) = α/γ +θ (3)

SD(X) =
√

α/γ3 . (4)

Principally in quantifying the mean RT value by (3) distri-
butionally, the SW can for example, detect when a mean-
difference in RTs by an experimental manipulation, is specif-
ically explained by one or two kinds of shaping or location
effects on the RT distribution. Furthermore, it is possible
that shaping or location effects may counteract each other in
(3), and hence produce the same means as illustrated in the
middle plot of Figure 1, despite the distributions having strik-
ingly different shapes and locations. The SW can detect this
pattern and therefore better protect against making a Type II
error (erroneously accepting the null hypothesis) in statisti-
cal analyses of RT data. This is because the SW can detect

significant differences between the RT distribution forms of
condition levels, in spite of when these forms may compen-
sate in order to result in insignificantly different mean RT
values.

Other Parameterizations. There is also an alterna-
tive three-parameter description of the SW using parameter
names µ , λ , τ rather than γ , α , θ , that is worth clarifying to
defuse possible misunderstandings. Here, the three parame-
ters instead describe the distribution by its pre-shifted mean,
µ , and tail length, λ ; the third parameter describes the shift
equivalently as θ , but typically has name τ . It relates to the
previous parameterization as follows:

µ = α/γ

λ = α
2 (5)

τ = θ .

This parameterization of the SW on the left, is more often
referred to as the shifted inverse Gaussian (IG) distribution,
or three-parameter IG; although it is exactly the equivalent
distribution.

Also of note, is another parameter combination that may
be used to compare distribution results. We assign

β = µ/λ = 1/αγ , (6)

to denote the parameter combination, which strictly de-
scribes the SW distribution’s shape; β will be involved later
in our estimation approach.

Other Distribution Measurement Models. As men-
tioned previously, the SW is among a number of other
measurement models, such as the ex-Gaussian, lognormal,
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Weibull, gamma, and Gumbel, that can also serve to improve
the sophistication of RT analysis; they each have different
parameterizations that describe the distribution shape more
specifically, and can also be improvements over simple mean
and standard deviation comparisons. The current work does
not aim to provide an extensive comparison exercise between
all six distributions, and prior work has found that other dis-
tributions, such as the lognormal, Weibull, and gamma (with
a shift added, see Rouder 2005) may fit similarly well to the
same kinds of positively skewed data (Folks and Chhikara
1978; see also Palmer, Horowitz, Torralba, and Wolfe 2011);
and rather the fundamental difference that may exist between
such models is simply in the way one describes the data with
the particular distribution’s parameter meanings.

Indeed the principal motivation for the SW focus herein
is based on the fact that it is the only distribution with pa-
rameters that also describe the RT data in the context of an
activity accumulation process model; and secondly, because
the three SW parameters provide a complete and clear inter-
pretation of the RT data: specifically in terms of distribution
(i.) onset, (ii.) central deviation around the mode / normality,
and (iii.) tail thickness, which are aspects importantly rec-
ommended for RT data analysis by Rouder (2005). One can
note that some of the previously-mentioned distributions’ pa-
rameters do not provide a direct interpretation of such aspects
like (i.) and (ii.). Also some of them are less consistent to fit
with maximum-likelihood estimation (MLE) methods, e.g.
the lognormal, Weibull, and gamma, since the likelihood is
unbounded (Cheng & Amin, 1981; Koutrouvelis, Canavos,
& Meintanis, 2005). However fortunately for the SW, the
likelihood is bounded and it can thus provide more consis-
tent parameter values when fit to data in this way. That is
in being bounded, the maximum value of the SW likelihood
function (1), for a given θ > 0, is a finite value (Section 2,
Cheng & Amin).

As an Accumulation Model

The same distribution measurement parameters γ , α , and
θ , discussed in the previous section, also directly describe
the data in the context of a continuous time-stochastic ac-
cumulation process, where a single latent quantity, X , con-
tinuously accumulates until it reaches a threshold. Such an
accumulation process is also known as a type of Brownian
motion process (BMP), and is at the base of all other popular
accumulation models, e.g. DDM, LATER, E-LATER/LBA;
where elementary changes in the accumulation process rules
easily define one model or another. The SW is hence a close
family member of the other popular accumulation models,
which have been well-supported in prior literature to provide
useful cognitive process models (Mulder, Van Maanen, &
Forstmann, 2014; Ratcliff & Smith, 2004); and their ex-
act mathematical relationships to the SW will be discussed
in more detail later.

In the case of the SW, more specifically, X , accumulates at
a given rate, γ , with noise until it reaches a threshold, α; and
θ (the shift) is the minimal time lapsed outside of the process,
which can be distributed before and after this accumulation
process; the total time lapsed, T , is the data fit by the SW.
This latent accumulation process provides a potential model
for any data that involves a quantity accumulating over time
that eventually reaches a value (or threshold). The SW thus
provides the opportunity for a potentially-useful signal ac-
cumulation model, analogous to the hypothesized signal-to-
response threshold event of behavior.

In the context of RT data and the appropriate experimen-
tal task, this kind of underlying accumulation process that we
note is similarly shared (by elementary adjustments) with the
other aforementioned accumulation models, has been well-
supported to correspond to a signal-to-response threshold,
neuro-behavioral event (for examples, see Gerstein & Man-
delbrot, 1964; Mulder et al., 2014; O’Connell, Dockree, &
Kelly, 2012; Smith & Ratcliff, 2004, and simulation work
by Zandbelt et al., 2014 who show that in many cases, a
single accumulator like the SW can often efficiently explain
the result of a large ensemble of accumulators). In the case of
the signal-to-response threshold interpretation of the SW: γ

corresponds to the accumulation rate of the internal signal X ,
α to the threshold needed to initiate the physical response,
and θ to the time distributed before and after this process
(the time lapsed external of signal accumulation, abbreviated
as TEA). Thus the total time lapsed, that is θ plus the accu-
mulation time, is the RT recorded.

This latent accumulation process is illustrated in the left
plot of Figure 3 for a single trial, in which a random walk
with drift (RWD, beginning at θ = 200 ms, and having av-
erage slope γ = 0.08) is simulated. Particularly, X starts at
a value of 0, and accumulates with noise over time to even-
tually intercept the threshold α = 40, lapsing a total time of
600 ms to reach the threshold. Then with the 200 ms of exter-
nal accumulation time, the total RT is 200+600= 800 ms. A
RWD thus corresponds to the accumulation of X over time,
and provides a simulation of the SW intra-individual pro-
cess model. A random-walk alone concerns movement due
only to random noise, and a random-walk with drift concerns
movement due to a steady accumulation tendency (γ), with
random noise. Then in the right plot of the figure, many of
these RWDs are simulated with the same SW parameter val-
ues as in the left plot (such as modeling an RT distribution of
an experimental design cell), and it is shown that their final
finishing times equate to a SW distribution with the same
parameters: γ = 0.08, α = 40, and θ = 200, used to simulate
the RWDs.

The design of the RWD of the SW, that many other accu-
mulator models share, is the following form:

Xt = Xt−1 + γ + ε , (7)
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where the position of a random variable X at time t, as Xt ,
is equal to its prior position value, Xt−1, plus a movement
tendency, γ > 0 (known as drift), and marginal error, ε (or
noise). The noise ε at each time step t, may be simply sim-
ulated by random draws from a Gaussian distribution with
mean 0 and standard deviation 1.

Then note that any given threshold, α > 0, unto which
the time process terminates when Xt reaches that value, as
Xt ≥ α , will produce a Wald distribution of data. That is be-
cause with probability 1, Xt will reach α; and thus for every
RWD, one can expect a finishing time (T ). Therefore, since
T denotes the time t at which Xt reaches α , for a single RWD
process with N runs, then the data is of the form

T = (Ti)1×N , (8)

for the N times (e.g. or RT observations) that the SW distri-
bution describes (T is also known as the first passage time of
the BMP).

Finally as mentioned previously, the shift parameter θ , ac-
counts for all time passed outside of the accumulation event.
Thus it accounts for aspects external to the RWD by shifting
all values of t by a constant, in which the starting point of the
accumulation process, X0 = 0, instead becomes,

Xθ = 0 . (9)

While θ shifts the distribution from the left, note that its ef-
fect, mathematically, is equivalent in being able to account
for external processes that occur on either side of the accu-
mulation event.

Utilizing the Shifted Wald

Whether one decides to utilize the SW as a distribution
measurement tool, or as an accumulation model of the data,
the approach is the same: to simply fit the distribution, which
is to estimate its three parameters. It is the same approach
since the parameters of the SW simultaneously describe both
the shape of the RT distribution, and the data in the context
of latent accumulation to threshold, using the same values.

Fitting Method

We developed a fitting method that combines tech-
niques of deviance criterion minimization of observed-
versus-predicted quantile distance, and maximum likelihood
(ML) estimation, to fit the model parameters. The approach
is detailed mathematically in the Appendix, and code to ap-
ply the method in R software (R Core Team, 2015) is pro-
vided as a supplementary file. In summary, the method uti-
lizes an

observed data RT quantiles−model-predicted RT quantiles

minimization search across a single parameter, β from (6), to
fit the model. More specifically, for every β , the other param-
eters of the SW may be directly calculated by closed-form
ML estimators (e.g. see Nagatsuka & Balakrishnan, 2013),
which are obtained through a method of moments approach.
Then the model-predicted quantiles can be calculated, and
the parameter set that leads to the minimum distance between
the observed data RT quantiles is selected. We have found
that the SW in the context of this method, is consistent in
the recovery of parameters on simulated data, and satisfies
well the model fit checks on appropriate real data (e.g. right-
skewed RT distributions). Furthermore, the fitting procedure
finishes on the level of minutes using standard personal com-
puting technology. The following sections provide such il-
lustrations of the SW approach on both simulated and real
data applications. Then after the data applications, we will
discuss ways in which the provided fitting procedure may be
customized, as well as other options one may consider for
fitting the SW. Before these data application sections how-
ever, we discuss three important topics: about the data fitting
approach, model fit diagnostics, and data outliers.

Data Fitting Approach. In each data application we
demonstrate an approach in which for every unique exper-
imental design cell (combination of factors, by subject), a
SW is fit. For example, a 2×2 design with 10 subjects would
consist of 2×2×10 = 40 SW distributions fit. Therefore, a
mixture of SW distributions is accounting for the entire RT
distribution.

The result of a full fit is hence a set of SW parameters (γ ,
α , and θ ) obtained for each unique experimental design cell,
and then both main effects and interactions can be assessed
in the parameters, across levels of each condition. Then in
order to provide a mechanism for standard hypothesis testing
of such effects, we demonstrate utilizing an ANOVA on the
parameters, however other analyses may be considered.

Model Fit Diagnostics. In each of the data applica-
tions, we demonstrate three diagnostics that can assess
goodness of model fit, and whether the model is appro-
priate for the data. As ordered in the rows of Figure 4,
the three diagnostics we propose consist of (a) a quantile-
quantile (QQ) plot in milliseconds (ms) of the observed
data deciles (.1, .2, .3, .4, .5, .6, .7, .8, .9) against the model-
predicted deciles (with all cells included); (b) a by-decile
residual distribution plot, that includes residuals (difference
in ms between the data deciles and the model-predicted
deciles), which are then standardized through dividing by the
parametric SD in (4); and (c), a by-cell aggregate residual
plot, in which for each cell, provides the sum of these stan-
dardized residuals across the cell’s nine deciles.

The QQ plot provides an indication of overall trends in
systematically misfitting quantiles of the distribution, as well
as misfit outliers. In addition, it gives an idea about the scale
and range of the data. The summarizing data points (dark
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Figure 4. An illustration of appropriate and inappropriate model fit check performance on various simulated data sets, each
with 250 observations and 200 cells fit. The checks are explained in detail within the model fit diagnostics section. Column
1 displays satisfactory fit on a SW-simulated data set, columns 2 (uniform distribution) and 3 (exponential distribution) show
inappropriate fit, and column 4 (Gaussian distribution) illustrates poorer fit.

grey) are the mean data deciles against the mean model fit
deciles, and the error bars are the standard deviation of the
decile’s residuals. The importance of this check is to observe
critically any curvatures in the plot, which is a strong sign of
misfit. For example, the second plot in Figure 4 shows the
SW systematically underestimates the middling deciles and
overestimates the final deciles; this is data simulated from
a uniform distribution. Then in data simulated from the ex-
ponential distribution in the third plot, the model underesti-
mates the middling deciles but captures the last decile (large
right tail RTs). Then in the fourth plot with simulations from
the Gaussian distribution, the model systematically overesti-
mates the tail deciles; hence one can see that larger values
of parameter α in Figure 2 brings the SW closer to normal-
ity, though the SW distribution may still have a tendency to
produce larger right-tail values than a Gaussian distribution.

The decile residual distribution plot verifies an important
observed property of SW-simulated or positive right-skewed
data, in which residual magnitudes have a tendency to in-

crease with data variance and magnitude. Such a trend can be
observed in the decile distribution orderings in the first plot
of Figure 4 (second row) and the right column of Figure 5
(note that each decile label is located at its respective distri-
bution mode). These trends are exemplary of a strong fit. In
contrast, very poor or inappropriate fits will be signaled by
notably outlying decile distributions, such as in plots 2-4 of
Figure 4 (second row). Then as for middle-range fits, which
may also be due to right-skewed data that is more noisy, has
small sample sizes, smaller numbers of cells, and/or an alter-
native underlying process model that is more compatible, one
may observe no outlying distributions but instead a coarser
ordering, such as in plots 2-4 of Figure 11 (second row).

Finally note that in these plots, the residuals are standard-
ized by (4) in order to render this model fit diagnostic less-
biased to differences between cells in overall data variance
and magnitude. One may also consider other variation statis-
tics for this standardization, such as the quantile standard
errors of normal- or log-normal-transformed quantiles (see
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Chapter 3.5, Wilcox, 2012).
Thirdly, the by-cell summed residual plot indicates a

goodness-of-fit measure, ∆, for each cell. The lower and up-
per dotted lines respectively denote the 5% and 95% quan-
tile range of these ∆ values. The average cell goodness-of-
fit is indicated by ∆̄, and the mean standard deviation (from
Equation 4) of the data cells is σX . The standardization of
these residuals by the SD in (4) aims to balance for the ten-
dency of cells which have a large σ , to also have a large ∆;
in which case comparisons of ∆ between cells or data sets
has less meaning. A measure for the efficiency of (4) as a
standardization statistic is given by ρ∆σ , which is the Pear-
son correlation between ∆ and this statistic. In calculating
ρ∆σ , the statistic in (4) has been found to be a more stable
measure than the raw data standard deviation, which may be
selectively overestimated by values in the right tail. Hence
since the effectiveness of (4) may depend on the goodness
of model fit, larger values of ρ∆σ may also possibly signal
poorer model fit such as in plots 3-4 of Figure 4 (third row).

Since as in our simulations, SW-simulated data fit with the
SW generally result in: an in-line QQ plot, ordered or non-
outlying standardized residual decile distributions (subject to
data noise and adequate cell numbers), and lower ∆̄ and ρ∆σ

values, while non-SW simulated data do not generally satisfy
all of these three features, we suggest these diagnostics to as-
sess goodness of model fit. Researchers may also consider
examining other kinds of model fit checks.

Handling Data Outliers. It is important to note that
very large RT values are not necessarily outliers (contami-
nant RTs), but may simply be large or extreme observations
(or samples) of the ‘true’ underlying RT population distri-
bution (e.g., see Barnett & Lewis, 1994). Therefore, these
observations may be quite informative or essential for appro-
priately determining the shape of the distribution modeled.
For example, parameter γ as in the first plot of Figure 2, ac-
counts for tail thickness, and is indeed the signal accumu-
lation rate parameter in the cognitive process model. Thus
cutting out large RT values will consequently affect/reduce
the information for determining appropriate γ values. This
would also be the case if one is fitting an alternative accumu-
lation model such as the DDM; cutting out the tail values and
trying to “normalize” the RT distribution will likewise warp
drift and threshold values—hence the RT tail is an important
part of the data that should not be filtered off.

Therefore, it is recommended that only contaminant RT
values should be removed from the data before being fit.
Contaminant values may consist of RT values that arise from
other processes or distributions which are foreign to the in-
tended experimental control, such as pertaining to recording
errors, lack of sincere participant effort, or spasmodic re-
sponses. Therefore, only uncharacteristically large RT tail
values should be removed from the data before being fit.
Likewise, inappropriate values before the leading edge of the

distribution should be removed: such as recording machine
mishap RTs, or spontaneous button pressing, where the re-
spondent did not appropriately complete the task. Simula-
tions have found that these faulty, early recordings can lead
to inappropriate underestimation of the leading edge param-
eter, θ , which sensibly, will affect the estimation of the dis-
tribution shape parameters γ and α . One could also consider
looking at RT values below three and above six (to preserve
longer RT tail values) median absolute deviations (MADs,
see Leys, Ley, Klein, Bernard, & Licata, 2013) from the
median per cell, to infer whether these values may be con-
taminant RTs. Finally, also note that additional information
on handling RT outliers is thoroughly described by Ratcliff
and Tuerlinckx (2002).

Otherwise, the fitting method provided is naturally resis-
tant to noisy or outlier data for the following four reasons—
which any other method utilizing the same characteristics
would also be: (1) A separate distribution (SW) is estimated
per each design cell. Given that outliers tend to occupy a
smaller percentage of design cells, and that there are typi-
cally many design cells, the mean parameter values for exam-
ple will be much less affected by outliers in the raw data; (2)
the fitting algorithm operates on the observed data quantiles,
which naturally mitigate outlier effects; (3) the fitting algo-
rithm uses the L1-norm distance (absolute distance), which is
naturally more resiliant to outliers than the L2-norm distance
(squared distances); (4) extreme quantiles are generally not
fit by the algorithm, for example in real data cases the algo-
rithm typically selects to fit the quantiles between the .01 to
.99 range, but not further into the extent of .001 to .999.

Illustrations of the Shifted Wald on Data

In this section, the SW and the provided fitting method are
first demonstrated on simulated data, and then on real data.

Application to Simulated Data

In this section the results are presented for a large simu-
lated data study that consists of varying data set sizes. Specif-
ically, observation length sizes between 1000 to as few as
15 observations are demonstrated; the simulation involves
1000 data sets (or e.g. experimental design cells) analyzed
per observation size. The data-generating parameters were
randomly drawn from uniform distributions. In the simu-
lated analysis, the SW is fit (obtaining 3 fitted parameters) to
each individual data set or design cell, and the recovery of
parameters, as well as the fit of the observed data’s quantiles,
are calculated.

Table 1 provides the average parameter recovery trend
from 1000 to 15 observations, across the 1000 data set sim-
ulations; and columns E(RT ) and SD(RT ) provide the re-
covery of the expected value and standard deviation by equa-
tions (3) and (4). One can see that all parameters, as well
as the mean and standard deviation, are strongly recovered
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Figure 5. Application of the proposed method on four sizes of data: each row in the plot corresponds to 200 sets of data, that
respectively have N = 1000, 500, 250, and 125 observations per data set.

with many observations, and even for low numbers such as
near 125-50 observations. With very few observations, the
recovery of parameter α is the most difficult. It is reason-
able that parameter α is difficult to recover with fewer ob-
servations as it is primarily responsible for variance of the
distribution around the mode. In the case of very few obser-
vations, this is a difficult measure to strongly recover in most
any continuously-valued distribution.

Figure 5 then contains a visual plot of the parameter re-
covery results for the first four rows of the table (between
1000 to 125 observations), which can reflect if there are sys-
tematic trends that may not be reflected by the simple Pear-

son r correlation statistic. One can see that the model re-
covers the generating parameter values well and consistently,
with almost no outliers. One may note that there is a small
tendency for parameters γ and α to be very slightly under-
estimated together; however, since the parameter orderings
are preserved in the recovery trends (e.g. the correlations are
strong and the plotted recovery trend is packed and linear),
parameter comparisons across fits of design cells remain or-
dered and meaningful. One may also note that fitting higher
numbers of design cells may further increase fitting validity
strength.

Finally, the right column provides the residual distribution
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Figure 6. The SW fit to the manual response task: (left) main-effect mean parameter values with pairwise-difference error bars
for each experimental factor; (right) model goodness-of-fit checks explained in detail within the model fit diagnostics section.

Observations γ α θ E(RT ) SD(RT )
N = 1000 0.99 0.95 0.99 1.00 1.00
N = 500 0.98 0.93 0.99 1.00 0.99
N = 250 0.97 0.89 0.99 1.00 0.99
N = 125 0.95 0.82 0.98 0.99 0.97
N = 90 0.93 0.78 0.98 0.98 0.96
N = 50 0.89 0.71 0.97 0.97 0.95
N = 30 0.82 0.61 0.95 0.94 0.87
N = 15 0.71 0.48 0.91 0.91 0.81

Table 1
Parameter Recovery, Average Pearson Correlations

diagnostic check with unstandardized residuals, to provide
an opportunity to observe residual size on the natural scale
of milliseconds. One can see that for this range of parame-
ters (in simulated data), residual size generally occupies the
range of 0 to 10 ms, and that residual size tends to improve
(decrease) with increasing numbers of observations per cell.

Application to Real Data

In this section, the fitting approach is demonstrated on
three published data sets (Casteau & Vitu, 2012; Goujon

& Fagot, 2013; Hartendorp, Van der Stigchel, & Postma,
2013), that respectively represent data that arise from three
canonical modes of responding: manual, vocal, and oculo-
motor modes. In each application, the results will be pre-
sented in the vocabulary of the SW as a simple cognitive
process model for the data, and in tandem, with comments
on the SW as a quantitative distribution measurement tool.

Manual Response Task. In this section, the fitting ap-
proach is demonstrated on a data set involving a manual-
gesture response task. Collected by Goujon and Fagot
(2013), baboons performed a visual search (VS) task, with
contextual cues. The task consisted of visually searching
for a target (the letter “T”) that was embedded within con-
figurations of distractors (letters “L”), which were either ar-
ranged predictively to locate the target (hence a contextual
cue), or non-predictively (shuffled, without a cue), and the
baboons responded by touching the target on the display
screen. The experimenters explored an animal model (via ba-
boons) of statistical learning mechanisms in humans, specif-
ically the ability to implicitly extract and utilize statistical
redundancies within the environment for goal-directed be-
havior. Twenty-seven baboons (species Papio papio) were
trained to perform the task with contextual cueing.

As organized by the original researchers, there are three
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meaningful partitions: the C = 2 predictive vs. non-
predictive contextual cue conditions; the E = 40 time-points
(epochs) to observe training effects, in which every unit step
in E consists of 5 blocks (each block contains 12 trials,
and thus each E contains 60 trials); and the B = 27 indi-
vidual baboons. These three meaningful factors provide for
N = 2×40×27 = 2160 separate distributions to each be in-
dividually fit by the SW; however 2158 were fit since one
baboon did not have data for the 36th epoch. The average RT
distribution length (number of observations) per design cell
is L̄ = 30, with standard deviation, SD(L) = 1.10.

Beginning with the model goodness-of-fit checks, the
right column of plots in Figure 6 provides the information.
The top plot contains the deciles of all N = 2158 distributions
fit with the SW. As one can see, there is no systematic cur-
vature in the plot and the SW performs systematically well
on the data set. The plot also captures the range of the data,
and that there are about 4-6 of the 2158 cells fit in which their
9th decile (upper right of the plot) are notably underestimated
by the SW. Then the middle plot provides the distribution of
standardized residuals for each of the nine deciles across the
2158 cells fit; here it is shown that the fit optimally satisfies
an ordering of distribution modes and variances. Then fi-
nally, the bottom plot provides the sum standardized residual,
∆, by cell. Using the plot, one can observe which cells are
more poorly fit. Overall, ρ∆σ is small at -0.1, which supports
the ∆ statistic as generally consistent. Furthermore, one can
observe that given the fit is to real data with noise, the ∆’s
or ∆̄ are naturally larger here than fits to SW-simulated data
(without noise or contaminant RTs) such as in Figures 4 and
11 (column one, third row).

The left column of Figure 6 provides the parameter main-
effect results of the analysis for this manual-response VS
task; in order to simplify the plot, the 40 epochs were av-
eraged into eight training levels (each training level con-
sists of five consecutive epochs). The left column with
three plots contains the main-effect means, and pairwise-
difference standard errors, of the model-fit measurements
of the three SW parameters: γ , α , and θ , by experimental
factor: the two conditions and eight training levels. The
main-effect means are calculated by the mean of within-
subject means for a given experimental level. The pairwise-
difference standard errors are calculated for each pair of adja-
cent experimental levels, by computing the standard error of
the within-subject differences between a pair of adjacent ex-
perimental levels; these standard error bars have been shown
to be informative of the significance levels on the parameters
that our ANOVA analyses return.

Beginning with the effect of the contextual cue condition
on visual search latency in Figure 6, the latencies are con-
siderably faster on average by an increase uniquely in the
signal accumulation rate parameter, γ , when the cues are
arranged in predictive patterns, and by no significant dif-

ference in the other parameters; this result is supported by
ANOVAs across the three parameters (Fγ(1,26) = 68.62, p<
.001,η2

p = 0.73,η2
G = 0.113; Fα(1,26) = 0.00, p= .95,η2

p =

0.00,η2
G = 0.000; and Fθ (1,26) = 0.06, p = 0.80,η2

p =

0.00,η2
G = 0.000); for an explanation of effect sizes η2

p and
η2

G, see work by Bakeman (2005). As a pure distribution
measurement tool, the SW analysis replicates the faster la-
tencies with predictive cues that the experimenters originally
found using raw mean RT comparisons, however the SW lo-
cates exactly how the RT distribution is changed by the ex-
perimental manipulation: the tail of the RT distribution is
much shorter when the cues are predictive, while the leading
edge position and mode of the distribution are generally un-
changed. This effect of the experimental cue factor is illus-
trated in Figure 7, where the RT distributions are plotted for
the shuffled and predictive cue conditions (differing mainly
by γ). The modes and leading edges of the RT distribution
quantifications are about the same, and mainly the tail of the
shuffled condition has a larger density.
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Figure 7. The shuffled and predictive RT distributions for the
visual search, manual response task data set.

With regard to training effects on visual search laten-
cies, all parameters were affected in ways that support
faster RTs with more training, yet in different patterns;
this result is also supported by ANOVAs across the three
parameters (Fγ(7,182) = 3.78, p < .001,η2

p = 0.13,η2
G =

0.021; Fα(7,182) = 2.5, p = .02,η2
p = 0.09,η2

G = 0.024;
and Fθ (7,182) = 20.07, p < .001,η2

p = 0.44,η2
G = 0.045).

Over the training interval, both signal accumulation rate (in-
creases) and external time to the accumulation (decreases)
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adjust at a steady rate for improvement in RTs. In con-
trast, the signal criterion level, α , provides a sharp improve-
ment (decreases) across training levels 1-3, and then appears
to stabilize across the remaining training levels. As a dis-
tribution measurement tool, the SW analysis replicates the
faster latencies with increased training and further specifies
in which ways the distributions change: the leading edges
become sooner with increased training, and the tail becomes
shorter, the deviation around the mode becomes markedly
smaller after the first three levels and then stabilizes. Next in
the consideration of interaction effects, in aims for simplicity
in these illustrations, we do not focus deeply on interaction
details; however no significant interaction effects were found
between training level and condition factors at the p < 0.05
level, but interaction is suggestive for each of the parameters
if allowing the p < 0.10 level.

Vocal Response Task. In a picture-naming study by
Hartendorp et al. (2013, Experiment 2), the authors explore
the extent to which competing picture interpretation alter-
natives and distractor words influence vocal response la-
tencies. The respondent views a picture and is instructed
to name it vocally. In each trial, a morphed figure, con-
sisting of a 2-dimensional blend (e.g. also see Burnett
& Jellema, 2013) between two similarly-shaped objects
(e.g. apple and heart) was presented; three different lev-
els of morphing balance were assessed at 80/20%, 70/30%,
and 60/40%. In addition, a distractor word was simulta-
neously presented as either identical to the object “apple-
apple,” semantically-related “orange-apple,” or completely-
unrelated “shirt-apple,” termed as priming. The third factor
is whether the distractor word was in relationship to the dom-
inant morphing or the non-dominant, termed as dominance.

Twenty students from Utrecht University participated in
the experiment. The P = 3 priming conditions, M = 3 mor-
phing levels, and D = 2 dominance levels, with N = 20 par-
ticipants provided for N = 3×3×2×20 = 360 separate dis-
tributions to each be fit by the SW, with an average length of
L̄ = 11, and SD(L) = 1.2; trials in which the non-dominant
picture was named (a total of 4% from 4,015 trials), were not
included in the RTs analyzed.

Beginning with the model goodness-of-fit checks, the
right column of plots in Figure 8 provides the information.
The QQ plot shows no systematic misfitting of the deciles
and fewer outliers than in the manual response data set fit.
The decile residual distribution plot also shows a general or-
dering of deciles, albeit with more variance than the other
experiment, which might be due to the smaller sample size
of the average cell fit. This additional magnitude is also re-
flected in the by-cell summed residual plot, in which the ∆

values are larger. Note also that ρ∆σ is at an appropriate
value.

The left column of Figure 8 provides the parameter main-
effect results of the analysis for this vocal response picture-

naming task; in order to simplify the presentation, the main
effects for cases only in which the distractor word is in rela-
tionship to the dominant morphing are presented. Beginning
with the effect of picture morphing intensity on picture nam-
ing latency, pictures with a clear distinction (at least 70%)
of the primary object, reduced picture naming latency by
an increased signal accumulation rate, γ; and no distinct ef-
fect was observed in the other parameters. These results are
supported by the ANOVA (Fγ(2,38) = 7.79, p = .001,η2

p =

0.29,η2
G = 0.037; Fα(2,38)= 0.30, p= .75,η2

p = 0.02,η2
G =

0.004; and Fθ (2,38) = 0.85, p = 0.44,η2
p = 0.04,η2

G =
0.008).

In regard to the effect of distractor word priming on pic-
ture naming latency in Figure 8, distinct significant effects
are observed in each of the parameters (Fγ(2,38) = 3.61, p =
0.03,η2

p = 0.16,η2
G = 0.037; Fα(2,38) = 4.1, p = .02,η2

p =

0.18,η2
G = 0.051; and Fθ (2,38) = 6.76, p = 0.003,η2

p =

0.26,η2
G = 0.055). Firstly, faster RTs by an increased signal

accumulation rate only occurs when the prime is identical to
the target word. Secondly, slower RTs by a larger informa-
tion accumulation criterion, α , occurs when the prime is se-
mantically related to the word but not the true picture name.
Thirdly, faster RTs occur by sooner leading edges of the dis-
tribution, θ , as the semantic prime becomes more similar to
the picture name. Finally, in the case of γ , significant in-
teraction effects were found between priming and morphing
at the p = .02 level, but not for α and θ . Note that while
this data set provides an interesting example for goodness of
fit to cells with notably smaller numbers of observations in
a vocal response task, the parameter results should be taken
with caution due to the small numbers of observations per
cell.

Oculomotor Response Task. In this section, the fitting
approach is demonstrated on a data set involving an oculo-
motor response task. Collected by Casteau and Vitu (2012),
adults performed saccadic eye movements in order to locate a
target (an ‘h’ or ‘k’) at varying distances (aka eccentricities)
from the central fixation point; either with also a distractor
target (an ‘o’, at varying eccentricities), or without a distrac-
tor (control). In this paradigm, the RT of each trial is the
saccade latency: the total fixation time prior to making a sin-
gle saccade that arrives at the target stimulus. Eight students
from Aix-Marseille Université, between ages 18 to 23 years,
participated in the experiment; all reported having normal
vision and were unaware of the purpose of the experiment.

The experimental design cells consist of C = 2 conditions
(no-distractor, distractor), T = 9 levels of target eccentrici-
ties (distances from the fovea fixation point, in degree units
from 1-6◦), D = 5 levels of distractor eccentricities (from 0-
3◦), and DT = 3 levels of distractor-to-target distances (4◦,
5◦, and 6◦). We fit the same sections of the balanced design
cells as organized by the original experimenters: the control
condition over subjects and the levels of target eccentricities,
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Figure 8. The SW fit to the vocal response task, picture-naming with word and visual distractors: (left) main-effect mean pa-
rameter values with pairwise-difference error bars for each experimental factor; (right) model goodness-of-fit checks explained
in detail within the model fit diagnostics section.

and the experimental condition over subjects, the distractor
eccentricities, and distractor-target distances. Each of these
unique combinations lead to N = (8×9)+(8×5×3) = 192
separate distributions total to each be fit by the SW; the
average distribution length for each cell fit is L̄ = 25 with
SD(L) = 5.3; trials with blinks, or more than one saccade to
arrive at the target are not included in the RTs analyzed.

Beginning with the model goodness-of-fit checks, the
right column of plots in Figure 9 provides the information.
One can see that the data of this paradigm is also fit well by
the SW. In the QQ plot there is no systematic curvature, and
the SW performs systematically well on the data set. The
plot also captures the range of the data, and that there are 5
of the 192 design cell cases in which the 9th decile is no-
tably underestimated by the SW. One can also observe that
the observed RTs here occupy a faster interval than in the
other experiments. Secondly, the decile residual distribution
plot also shows an appropriate ordering of the distributions.
Thirdly, the by-cell residual sum plot shows the ∆ values to
be larger than the manual response task data, but smaller than
the vocal response task data, and ρ∆σ at 0.07 is the smallest
of the three experiments.

The left column Figure 9 provides the parameter main-
effect results of the analysis for this oculomotor response
task; in order to simplify the presentation, the main ef-
fects only for presence of distractor and distractor eccen-
tricities are illustrated; target eccentricity effects are then
presented in a second plot. Beginning with the effect of
presence of distractor on saccade latency, the lack of dis-
tractor decreases saccade latency by an increased signal
accumulation rate, γ , and a flat overall decrease in ex-
ternal time, θ (Fγ(1,7) = 3.85, p = 0.09,η2

p = 0.35,η2
G =

0.122; Fα(1,7) = 0.40, p = .55,η2
p = 0.05,η2

G = 0.028; and
Fθ (1,7) = 28.8, p = .001,η2

p = 0.80,η2
G = 0.122). In this

case, the leading edge positions of RT distributions from tri-
als with the presence of a distractor are systematically larger
than in trials with no presence of distractor, and the accumu-
lation rate of the signal therein is reduced as well; therefore
the tail of the RT distribution is also notably shorter in dis-
tractor cases.

Next, the effect of distractor eccentricity on saccade la-
tency provides for larger latencies as the distractor is closer
to the fovea fixation point (eccentricities near 0). This is ob-
served with larger signal thresholds needed, α , as the dis-
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Figure 9. The SW fit to the oculomotor response task, saccadic eye movements for targets with distractors: (left) main-effect
mean parameter values with pairwise-difference error bars for each experimental factor; (right) model goodness-of-fit checks
explained in detail within the model fit diagnostics section.

tractor is closer, and no other distinct effects are provided
by the other parameters (γ (Fγ(4,28) = 0.60, p = 0.67,η2

p =

0.08,η2
G = 0.035; Fα(4,28)= 2.58, p= .06,η2

p = 0.27,η2
G =

0.209; and Fθ (4,28) = 0.98, p = 0.4,η2
p = 0.12,η2

G =
0.046). Incidentally, this kind of trend is also observed in
the mean latencies of the original paper, and here we see that
the longer duration to move the eye is explained by increased
signal threshold parameter α values when the distractor is
placed more eccentrically at the fovea fixation point.

Finally for purposes of simplicity, Figure 9 does not in-
clude the distractor-target distance parameter values; and no
significant effects were found in the model parameter re-
sults for this factor. This was also the case in the results
of the original paper that analyzed the raw mean saccade la-
tencies. In addition, no significant interactions were found
in the ANOVA analysis between distractor eccentricity and
distractor-target distance levels in the parameters.

The effect of target eccentricity on saccade latency for
non-distractor trials is instead displayed in the left plot of
Figure 10, in which a decreasing trend on saccade latency
over the first few eccentricities, that then then levels out, is
observed. This effect is located in the external time param-
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Figure 10. The effect of target eccentricity in the control con-
dition is observed to be significant on parameter θ (left). The
trend replicates the effect on the median RT values (right).

eter θ ; and no distinct trends are observed in the other pa-
rameters (Fγ(8,56) = 0.39, p = 0.92,η2

p = 0.05,η2
G = 0.029;

Fα(8,56) = 0.35, p = 0.94,η2
p = 0.47,η2

G = 0.046; and
Fθ (8,56) = 2.72, p = .01,η2

p = 0.28,η2
G = 0.199). The trend

in θ replicates the trend in the median latencies observed as
in the right plot of Figure 10, and has a similarity to also the
raw mean latencies, as shown in the original paper (see left
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plot, Figure 3 of Casteau & Vitu, 2012). Therefore, the RT
distributions follow a similar stepwise pattern in their lead-
ing edge positions over varying target eccentricities, without
significant differences between the RT distribution shapes.

When to Apply the SW

We have demonstrated the SW on both simulated and real
data applications. The SW may be generalized to a num-
ber of additional paradigms, since the SW is characterized
by a probability density function that can be applied to any
positively-valued data with a degree of right skew. Then a
goodness of fit may be analyzed by model fit checks, such
as the ones provided, to determine whether the model fit is
appropriate, and if the fit is strong or poor. In Figure 4 for
example, we show the behavior of the SW when it is applied
to various distributions that can take on incompatible shapes
(e.g. lacking skew, unimodality). Then by establishing the
criterion that the model should first reproduce sufficiently
the observed data RTs, before one interprets the results, the
model fit diagnostics were assessed before interpreting the
parameter results in our real data application sections. Then
in these real data applications, example possible data sets
were demonstrated in which a SW fit provided a useful distri-
butional measurement and/or process-model analysis of the
data.

When the SW may exhibit poorer performance

Generally, it is less-likely that the SW will appropriately
fit the RT distribution when it is applied to data with many
error responses. This is because it is well-known that gen-
erally, the error responses have a different distribution than
the correct responses (e.g. Ratcliff & Rouder, 1998); thus
a single distribution fit to two different underlying distribu-
tions may indeed cause a misfit or poorer fit. In this case the
SW is more likely to satisfy the model fit checks when it is
applied separately to the sets of errors and correct responses
than both at the same time. However, note that in this case
the SW will not be explanatory in a predictive fashion for
rates of correct/error responses, but rather explanatory in a
descriptive fashion for cases of correct or error responses; it
would hence serve as a more elementary model than a further
complex one, which predicts either response within a single
accumulation process, such as the DDM.

The second possible case in which the SW may not fit
well to the RT data is during very long response time tasks,
where a participant may be switching between a number of
response strategies (each resulting in a different type of RT
distribution), that are hence not easily parsible/predictable by
the experimental conditions (for additional information, see
Van Maanen, de Jong, & Van Rijn, 2014). Hence without
being able to parse the data for when a participant is chang-
ing strategies, the non-parsed RT distribution may not be of
consistent form, or of easily predictable form for the SW in

this case. Thus in summary, any RT distribution that is not
behaving in a shape conformable to what a SW distribution
can reproduce, may fail the model fit checks. In these cases,
there may be more complex models of accumulation worth
considering for fitting the data.

Considering Other RT Process Models

More complicated process models, have the potential to
provide more detailed information of the process underlying
a response task when there is enough and adequate data to fit
them. With the right parameterization, they may also be ca-
pable of predicting more complexly-shaped RT distributions.

Model Complexity. However, it is worth noting that as
a cost of greater model complexity (number of parameters),
fewer experimental condition levels may be analyzed in the
data; and it is not always the case that a more complex model
is more useful for an RT data set. For example, a key benefit
of the SW is it is a very simple process model with only three
parameters, that can be easily applied to fit experimental data
at a high analytical resolution: e.g. being specified to model
each level of each experimental condition. In contrast, accu-
mulation models with additional numbers of parameters may
have to aggregate data over several condition levels in order
to have enough observations to appropriately estimate the ad-
ditional parameters; and these levels may not be linearly or-
dered, such that their aggregation could be problematic, or
much less informative.

Thus while having more parameters may be more infor-
mative, data sets that lack sufficient numbers of trials along
each type of observation and experimental condition combi-
nation, might not allow an appropriate fit of a model with
such complexity, at such an equivalently high resolution. For
example the three data sets analyzed in our applications had
at times, as few as 20 trials in a design cell for just one
characteristic response, and any more complex accumulation
model with additional parameters or absorbing boundaries
would be overparameterized or inappropriate for analyzing
the data at this resolution.

Extended SW Model. In order to account for more
complicated signal accumulation processes, the SW process
in (7) may also be extended or augmented. However, the
resultant distribution is no longer mathematically, directly
equivalent to a SW distribution, but it still may be estimated
by a SW distribution. In some cases, extended or more com-
plicated processes may be adequately summarized by a sin-
gle, standard SW process, and this can be observed in the
model fit checks; for example, in our real data applications,
Figures 6, 8, and 9. However, when the extended processes
are too strongly different, the SW will instead provide a
cruder summary, and poorer fit than the native model.

Specifically, this is illustrated in columns two and three of
Figure 11, where the response processes of (7) are strongly
altered, and the SW provides a poorer fit: column two per-
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tains to a sum of two SW processes (the first has a slow drift
γ1 ∈ [.04, .08], the second has a fast drift γ2 ∈ [.12, .18]); col-
umn three pertains to a single SW process, in which the first
100 ms of the process has a slow negative drift (γ1 = −.03),
and after 100 ms the drift is faster and positive, γ2 ∈ [.04, .18].
In both cases, a SW may fit and summarize the process with
a single aggregate positive drift, γ , though the fit is markedly
poorer than data simulated from a regular SW distribution, as
in the first column of Figure 11. These simulations were in-
tentionally constructed to illustrate a clearly poorer fit when
the basic process of (7) is strongly altered. However, a
large number of other parameter combinations were found in
which these two extensions may be fit almost as well with a
regular SW model; sensibly, when these extended processes
become easily summarized by a single, standard SW process
with single positive drift, γ . It is also worth mentioning that
when doing the same simulations, but using much fewer ob-
servations (e.g. less than 50), we found that these extended
processes become more difficult to differentiate from one an-
other.

In addition to sums of SW processes or internal drift shifts,
in which there are multiple drift rates, e.g. γ1 and γ2, the pro-
cess in (7) may also be extended in other notable ways: such
as by introducing between-trial error in the basic accumu-
lation rate γ , or a collapsing threshold over time α (though
recent work suggests that this might often not be necessary,
see Hawkins, Forstmann, Wagenmakers, Ratcliff, & Brown,
2015). Furthermore, if one has enough observations for a
number of characteristic responses, one can consider fitting a
multi-accumulator SW model (see Usher, Olami, & McClel-
land, 2002; Vickers, 1970, 1979), in which multiple SW ac-
cumulators race against each other, and this is known as the
race model. Alternatively, each characteristic response can
be partitioned into a separate design cell, and thus a separate
SW is estimated per characteristic response for each condi-
tion. Finally, one may also consider extending the modeling
of the TEA parameter, θ , as being exponential in value by us-
ing a Wald distribution that is shifted exponentially, termed
the ex-Wald by Schwarz (2001).

More Complex Accumulation Models. Some men-
tionable more complex accumulation models than the reg-
ular SW (Luce, 1986; Ricciardi, 1977; Wald, 1947)
are the DDM (Ratcliff, 1978), E-LATER/LBA (Brown &
Heathcote, 2008; Nakahara et al., 2006), and multi-
accumulator SW (race, LaBerge 1962; Usher et al. 2002;
Vickers 1970, 1979) models, previously mentioned in the in-
troduction. Generally, all of these models aim to handle more
than one characteristic response within a single accumulation
process: either in which there is a single accumulator with
two boundaries (DDM), or multiple accumulators each with
one boundary that race against each other (E-LATER/LBA,
race). They hence describe a more complex accumulation
process. Thus a single characteristic response observed over

varying latencies may be well-described by a SW, but two
or more may be more interestingly-modeled by the DDM,
E-LATER/LBA, and race models.

The SW can of course still be applied to such data, but it
will provide a more aggregate description, as a cruder model.
For example in the fourth plot of Figure 11, the SW is fit
to classical DDM simulated data (as in Ratcliff & Rouder,
1998; Ratcliff et al., 1999, thus not the extended DDM),
and in which the upper and lower threshold responses are
grouped in the same design cells. While the fit is accept-
able, it is a worse fit than to data simulated by the SW in the
first plot. It is also worth noting that there are other random-
izations of DDM parameters, which may provide better or
worse (e.g., by the extended DDM) recovery of the observed
quantiles when fit by a SW.

Accumulation Model Similarities. Many accumula-
tion models, such as the SW, DDM, race, LATER, and E-
LATER/LBA are highly similar in that they all share the
same continuous time-stochastic accumulation process (a
type of Brownian motion), where a single latent quantity, X ,
continuously accumulates until it reaches a threshold; and
elementary changes in the accumulation process rules easily
define one model or another. In this section, we explain the
relationships.

Drift Diffusion Model. The DDM contains the same exact
accumulator as the SW. However, a lower absorbing bound-
ary is created, and negative values for γ are allowed (achieved
by adding parameter z, as indicative of a starting value for X ,
which is between 0 and α; and letting the lower boundary be
at value 0) . Note that a negative γ results in a preference for
choosing the secondary characteristic response option, which
is a preference for Xt to be absorbed in the lower boundary.

Race Model. The race model contains the same exact
accumulator as the SW. Then any k > 1 type of response
options can be more exhaustively modeled by installing
k replica instances of the SW accumulator that each race
against each other. The first accumulator that reaches its
threshold is the response observed.

LATER, E-LATER, and LBA. The LATER, E-LATER and
LBA have the same type of accumulator as the SW. How-
ever, the inter-time error in the accumulation of Xt is set to
0, and rather the error is placed on modulating the slope, or
accumulation rate γ . Thus in the these models, Xt accumu-
lates at a linear constant rate. Then also as in the SW, one
can make many accumulators of this kind race against each
other until the first one wins; in the case of one accumulator
it is called the LATER model, in the case of two or more, it
is the E-LATER/LBA (they are equivalent). Note also that
when one uses multiple accumulators, one can insert an ad-
ditional parameter, a different starting point (of Xt ) for each
of the accumulators, if all accumulators for example, share
the same threshold. The LATER model is principally dif-
ferent from the SW because it necessarily predicts RTs in
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Figure 11. The SW fit to data simulated by more complex random-walk simulations; each with 300 observations, 200 design
cells each. From left to right: the SW; sum of two SWs, the first process has a slower drift than the second, and θ = 0 for the
second; a single SW process but the γ for the first 100 ms is set to -0.03; classic DDM. These model fit checks are explained
in detail within the model fit diagnostics section.

which their inverse is distributed normal (this is akin to the
lognormal model, which necessarily predicts the log of the
RTs are distributed normal), while this is not necessarily the
case for the SW; they are also different because the LATER
allows negative drift rates, and in these cases the process will
usually not terminate.

Supra-model. Where elementary changes in the accumu-
lation process easily define one of these models from another,
it is apparent that all of these approaches are very closely
related, and it could be said that they constitute the very
same supra-model. It is suggested that one should choose
the model that the data can appropriately support, based on
whether the data provide enough numbers of observations for
the level of model complexity, and if the model appropriately
satisfies the model fit diagnostics. Preferably, the more com-
plex model will provide more information along each exper-
imental condition if the data have enough observations.

Considering Other Fitting Methods

In the present paper we aimed to present a fitting method
that is effective, practical, and easy to implement. Its ef-
fectiveness was demonstrated on both simulated data crite-
ria and real data applications. Given the effort toward prac-
ticality, efficiency, and ease of use, the fitting method pro-
vided serves as a baseline in which additional developments
may be made. Future developments may focus on explor-
ing other renditions of maximum likelihood estimation or
deviance criterion minimization (e.g. see Basak & Balakr-
ishnan, 2012; R. S. Chhikara & Folks, 1974; Heathcote,
2004; Koutrouvelis et al., 2005; Nagatsuka & Balakrish-
nan, 2013; Padgett & Wei, 1979; Vladimirescu & Tunaru,
2003), in order to fit the distribution. In addition, expert
users may consider some of the more data-intensive fitting
approaches, such as the hierarchical Bayesian approach. In
this section, we first discuss ways in which the proposed fit-
ting method may be modified; and secondly, we discuss as-
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pects of the hierarchical Bayesian framework, which may be
preferable for expert users, given that it has additional levels
of complexity, and is much more time-intensive for large RT
data sets.

Extending the Current Method. The proposed fitting
method combined techniques of deviance criterion mini-
mization, and maximum likelihood estimation to fit the
model parameters. There is room for customization as to
which (i.) quantiles to minimize and (ii.) which kind of dis-
tance (e.g. absolute, or squared differences) to use in the
minimization search. Our algorithm checks a number of op-
tions and selects the better fit; however these options may
be expanded to include additional candidates, or instead re-
duced, to optimize run-time.

Our work in exploring (i.) and (ii.) has found that large
ranges for (i.) e.g. from 0.01-0.99 with near 100 quantiles
provide the best recovery of parameters. It has been found
particularly important to fit the exterior quantiles. For exam-
ple not fitting between quantiles 0.01-0.05 results in an over-
estimated leading edge parameter, θ , which sensibly, also
negatively affects the recovery of the distribution shape pa-
rameters, γ and α . However, while it is ideal to fit the ex-
terior quantiles, real data may have uninformative outliers
(contaminant RTs) that one may not want to provide weight
to, thus small adjustments, such as the quantile range 0.02-
0.98, may provide for better fits in some cases. The code
provided for example, calculates both (and also others), and
selects the better fit. In regard to (ii.) the squared distance
has been found to provide nearly similar recovery of param-
eters, however a worser recovery for quantiles 0.7-0.9 (this
can be observed in the decile residual distribution plot), and
it is also more sensitive to be affected by outlier values.

Bayesian Framework. A noteworthy distinction be-
tween the direct likelihood estimation approaches and the
Bayesian framework, is the ability to impose a hierarchical
model with the Bayesian approach. The primary effect of
the hierarchical model is the ability to constrain the within-
or between-subject error (depending on how one chooses the
hierarchy) in the estimation of the parameters. In contrast in
the case of our approach, there is no constraint a priori on
the within-subject error, and so significant differences may
be a little more difficult to find in an ANOVA analysis on the
parameters; but at the same time, the results achieved with
the method applied herein are not dependent on any Bayesian
‘prior beliefs.’

A number of arguments in favor of hierarchical Bayesian
models (e.g. Anders & Batchelder, 2013; Averell & Heath-
cote, 2011; Kemp, Perfors, & Tenenbaum, 2007; Oravecz,
Anders, & Batchelder, 2013; Rouder, Morey, & Pratte,
2013; Zeigenfuse & Lee, 2010) are provided in previous
works (Lee, 2008; Lee & Wagenmakers, 2014; Rouder
et al., 2013). The location and variance in parameter es-
timations can also be constrained in the non-hierarchical

Bayesian framework, simply by specifying informative prior
beliefs for the non-hierarchical distributions. However in the
context of analyzing very large RT data sets, it may be worth
considering that the run time for the Bayesian framework
analysis is exponentially longer, in comparison to the pre-
sented method, and one will also have to verify that there was
valid mixing in the Bayesian model fit by the assessment of
within-chain auto-correlation, convergence, between-chain
similarity, and so forth (see Gelman, Carlin, Stern, & Rubin,
2004, for mixing terminology); and also that the fit resem-
bles the data. Thus obtaining an appropriate Bayesian fit that
resembles well the RT data may take a number of days if not
longer, and thus the approach may be more appropriate for
expert users; despite if the approach may possess a number
of advantages.

Therefore the Bayesian approach is a probabilistic frame-
work for assessing parameter values, and provides addi-
tional opportunities to constrain the locations and variances
in which the parameters are estimated that the direct likeli-
hood estimation or deviance criterion approaches do not have
in this way. Depending on the case of usage, each of these
approaches have unique benefits, drawbacks, or implicit as-
sumptions, and the practitioner should utilize the model-
fitting method that best satisfies their analytical needs.

General Discussion

A methodology and comprehensive illustration of the SW
distribution for RT data analysis was developed. An effective
fitting method was established, its mathematical properties
are provided in the Appendix, and R code to apply it is in-
cluded as a supplementary file. Simulated data applications
show the effectiveness of the fitting method, and real data
applications show that the SW model appropriately fits the
real data that arise from three canonical modes of respond-
ing: manual, vocal, and oculomotor modes; and the model
results are quite sensible along the experimental factors. It
was shown that the SW distribution can be used as a cogni-
tive process model, or alternatively, as a quantitative distri-
butional measurement tool without theoretical implications.

The SW was discussed in the context of other accumu-
lation models, and was shown that in cases of mainly only
one characteristic response observed at varying latencies, and
over various experimental conditions, more complex accu-
mulation models may be too overparameterized to be appro-
priately fit to such data. Thus in these cases, the SW may pro-
vide a useful, and simple process model across a number of
experimental factor levels; whereas in cases of many obser-
vations across all response options per experimental condi-
tion, more complex accumulation models, such as the DDM,
race, or E-LATER/LBA models, would be more informative
and should be used.

Most accumulation models however share the same under-
structure, as in (7), and elementary adjustments will define
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one popular model from the other. For example in the case
of the SW and DDM, Gerstein and Mandelbrot (1964) made
no grand proprietary distinction between the two models in
applications of neuronal spike modeling. Other works have
also noted the close relationships (see respectively Chapter
3, and pages 8–24, R. Chhikara, 1988; Jones & Dzhafarov,
2014, for more information). But it is also important to note
that when the basic accumulation rules are adjusted, it is in-
deed expected that the model parameters have a different sig-
nificance. For example, the single drift rate of the DDM cor-
responds to the shapes of two underlying distributions (e.g.
corrects and errors) while the single drift rate of the SW cor-
responds to the shape of the full RT distribution. Matzke and
Wagenmakers (2009) perform a direct exercise to show this,
that data simulated with a two-boundary accumulation pro-
cess that also allows negative drifts (the DDM), fitted with a
single boundary accumulation process that only allows posi-
tive drifts (the SW), provide parameter results that do not cor-
respond exactly to the other. They also demonstrate the same
result when one tries to fit the SW to data with many obser-
vations on both of two different characteristic responses (e.g.
corrects and errors), which are well-known to have separate
underlying RT distributions; that rather the DDM should be
fitting. As mentioned, this is a typical example case in which
the SW is not likely to perform as well on model fit diag-
nostics; unless the SW is separately fit for each characteristic
response, or if the distribution of the two characteristic re-
sponses are adequately similar to one another in the task.

We have made suggestions for when to consider applying
the SW and when one may consider applying other accu-
mulation models of higher complexity. The model fit diag-
nostics may also provide an indication if the SW is appro-
priately accounting for the observed data. While there are
certainly appropriate situations and data that could consid-
erably benefit from a SW analysis approach, currently there
are very few publications in the psychological literature that
utilize the distribution. For example, in the three published
data sets we analyzed, they are all tasks in which the original
authors found errors to be so sparse and uninformative; in
these cases, a more complex model such as the DDM would
be overparameterized with not enough errors to fit per de-
sign cell, and in contrast the SW is not overparameterized,
it is able to provide an interesting process or measurement
model analysis of the data, that is a more sophisticated sta-
tistical analysis than simple raw mean and standard devia-
tion comparisons. Therefore, through our detailed accounts,
demonstrations, and discussions of the SW, both as a possible
distribution measurement tool, and cognitive process model,
we hope to have advocated the distribution’s use, as well as
to have facilitated a deeper understanding of the SW, and its
position in the context of accumulation modeling.

Appendix

Fitting Method Details

This section details the fitting method, which is a com-
bination of maximum likelihood estimation (MLE) and de-
viance criterion minimization. An overview of the method is
as follows:
[1] Select a candidate β value
[2] Calculate θ̂ and α̂ using MLEs (10) and (11)
[3] Calculate γ̂ using (13)
[4] Calculate the deviance criterion using (15)
[5] Repeat 1–4 across β ’s near-entire parameter space
[6] Select the distribution with the smallest deviance value
The next paragraphs explain these steps in further detail.

To obtain candidates for β in [1], a simple search algo-
rithm selects candidates in the near-entire plausible range,
such as from (0.001,1000). Then for each β , there are
closed-form MLEs to calculate θ̂ and α̂ for [2], which as
in Nagatsuka and Balakrishnan (2013), are:

θ̂ = X0− α̂
2
0

∫
∞

0
(1−F [z; β̂ ,1,0])N dz (10)

α̂ =

(
1
M

M

∑
k=1

[Xk− θ̂ ]−1− [X̄− θ̂ ]−1

)−1/2

, (11)

where X0 is the data minimum, Xk is a data point, M is the
number of data points, and F(·) is the cdf of (1). The data
submitted for X are the observed data quantiles (QO, defined
in the next paragraphs), as they have been found to provide
more stable data measures that are less disturbed by outliers,
than by using the raw data values. By MLEs (10) and (11), it
is a four-step process to calculate parameters θ̂ and α̂ . First
an initial estimate of θ̂ ∗ is calculated via (10) by using the
following initial estimate for α̂0,

α̂
∗
0 =

√
(X̄−X1)3

1
M ∑

M
k [Xk− X̄ ]2

. (12)

Then α̂0 is calculated by (11) with θ̂ = θ̂ ∗. Next with α̂0, the
final θ̂ is simply calculated by (10), and likewise α̂ by (11).

Then for [3], since β and α̂ are already known, it is trivial
to calculate γ̂ since

γ̂ =
1

βα̂
. (13)

In [4], the suggested deviance criterion, ∆, is the sum of dis-
tances between M specified quantiles of the observed and
real data, between probabilities (p1, p2). We denote QO =
(QO

k )1×M for the observed data quantiles and QF = (QF
k )1×M

for the candidate fit, where Q∗k is the quantile at probability

pk = p0 +(k−1)
(p0− pM)

M
. (14)
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Then we suggest the L1-norm distance measure for ∆, as

∆ =
M

∑
k=1

∣∣QO
k −QF

k

∣∣ . (15)

As a result of [5], there is a ∆ calculated for every candidate
parameter set. The parameter set with the best (smallest) ∆

is the chosen fit, which is step [6].

Customizing the Method

One may notice that there is room to adjust the algo-
rithm on the range (p1, p2), M, and the distance measure.
Many simulations were run, and have found that generally
the larger ranges (e.g. 0.01, 0.99), and a large number of
points M = 100, provide superior recovery of parameters,
and fit well the quantiles on real data applications. In ad-
dition, the L-1 norm distance is more resilient to outliers,
and has been found in simulation studies, to recover better
the 7th-9th deciles than the L-2 norm distance (squared dif-
ferences), in the context of this method.

While the largest ranges (0.001, 0.999) are ideal in clean
(simulated) data settings, smaller-adjusted ranges (0.01,
0.99) may help in real data cases that may have noisy or
contaminant RTs, which are not indicative of the general dis-
tribution produced along the experimental condition, and/or
may also worsen the fit of the overall RT distribution. The
algorithm indeed contains an additional step [7], which per-
forms [1]-[6] along a number of slightly adjusted ranges
around (0.01, 0.99), and selects the better fit according to
a criterion of 100 residual points within the bulk of the dis-
tribution, quantiles (.05, .95). Thus the provided fitting ap-
proach may be easily customized in a number of ways: to ex-
plore additional combinations of (p1, p2), M, distance types,
and criterions, according to the aims of the researcher.

Finally, it is worthwhile to note that the variety of ad-
ditional ranges searched in [7] are close to (0.01, 0.99),
e.g. (0.02, 0.98), because simulation studies have found that
smaller ranges which do not seek to fit the lower quantiles,
such as ranges between (0.10, 0.90), do not recover as well
the parameters. This is principally because the leading edge
parameter, θ , is not appropriately recovered, which strongly
affects the recovery of the distribution shape parameters; and
it is a similar case being that the right-tail is not fit either.
Therefore, using only slightly smaller ranges may be ad-
vantageous when working against uncharacteristic outliers,
while in contrast, much smaller ranges will negatively affect
parameter recovery.
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