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Abstract

We present a new human-computer interface that is based on decoding of attention through
pupillometry. Our method builds on the recent finding that covert visual attention affects the
pupillary light response: Your pupil constricts when you covertly (without looking at it) attend
to a bright, compared to a dark, stimulus. In our method, participants covertly attend to one
of several letters with oscillating brightness. Pupil size reflects the brightness of the selected
letter, which allows us—with high accuracy and in real time—to determine which letter the par-
ticipant intends to select. The performance of our method is comparable to the best covert-
attention brain-computer interfaces to date, and has several advantages: no movement
other than pupil-size change is required; no physical contact is required (i.e. no electrodes);
it is easy to use; and it is reliable. Potential applications include: communication with totally
locked-in patients, training of sustained attention, and ultra-secure password input.

Introduction

A brain-computer interface (BCI) translates thought into action. BCIs provide new ways to
interact with computers; importantly, they can restore the power to act and communicate in
locked-in patients with little or no motor control [1,2].

There are many types of BCIs [3,4], which differ in the neural signal that they use (e.g., neu-
ral spikes or electroencephalography [EEG]), the way that neural activity is processed (e.g.,
through a classifier or by measuring overall activity in specific brain areas), and the actions that
they perform (e.g. controlling a robotic limb, or writing text). Here we present a new method,
which uses pupil size, rather than brain activity, as the controlling signal. Our method is related
to two existing methods: the P300 speller [5], which is functionally similar to our method but
relies on a different controlling signal; and a recent pupillometry-based method [6], which is
functionally different from our method but relies on the same controlling signal.

P300 spellers are among the most successful BCIs [7]. They exploit the fact that rare visual
stimuli elicit positive deflections in the EEG signal about 300 ms after their appearance. This
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event-related-potential (ERP) component is called the P300, and is largest for stimuli that are
overtly (while looking at them) or covertly (without looking at them) attended [8]. In a classic
P300 speller, the participant sees a grid of letters. One letter, or sometimes one full column or
row of letters, is highlighted at a time. A P300 is elicited each time that a letter is highlighted.
The participant selects a letter by attending to it, usually by looking at it directly (i.e. overt
attention), which leads to an increased P300 when that letter is highlighted. In its simplest
form, the letter that, when highlighted, elicits the strongest P300 is selected; however, most
P300 spellers now use sophisticated classification techniques, and pool information from mul-
tiple ERP components [9]. But the principle remains the same.

The first P300 spellers relied heavily on direct fixation: When participants did not move
their eyes, but attended covertly to the letters, accuracy was only around 60%. Thus, four out of
ten times the system selected another letter than the user had intended [8,10]. This was prob-
lematic for real-world applications, because BCls are mostly useful if they work without any
overt (eye) movement; otherwise, movement-based methods, such as eye trackers [11] or the
famous cheek-movement system used by Stephen Hawking, are much more efficient. However,
modern P300 spellers no longer require (eye) movement, and reach impressive accuracy based
on covert attention alone [12-14]. For example, a recent system that uses sequentially pre-
sented stimuli reached 97.1% selection accuracy with 1.35 characters per minute [12].
Expressed as information-transfer rate (ITR), which is a common measure for evaluating BCI
performance [15], this corresponds to 6.18 bits/min. (Invasive techniques, using electrodes that
are implanted in the brain, reach far higher ITRs [16]; however, their use is limited because few
people are willing to undergo brain surgery [1].)

However, P300 spellers have several practical disadvantages. First, they require high-quality
EEG-recording equipment, which is expensive. Low-cost EEG systems are becoming available,
but, for the moment, are less reliable than more expensive systems [17]. Second, EEG elec-
trodes must be carefully applied to the head. This is a tedious procedure that must be regularly
redone, because current EEG systems are not designed for permanent use, and recording qual-
ity degrades over time. Electrodes also cause physical discomfort. Third, most P300 spellers
require a calibration phase during which a classifier is trained on a person’s EEG signature.
Again, this is tedious, and must be redone regularly to avoid performance degradation. These
are hurdles for real-world applications [1].

Recently, a very different method, based on pupillometry, was developed and tested with
partly locked-in patients [6]. This method exploits the pupillary dilation (enlargement) that
accompanies effortful mental activities, such as arithmetic [18]. Participants were first asked a
yes/ no question, and then sequentially shown two response options (‘yes’ followed by ‘no’, or
vice versa; each option was shown once). A calculation was shown together with each response
option (e.g. 29 x 49’). Participants were instructed to perform the calculation only during the
interval of the intended response. The selection algorithm was simple: The response that elic-
ited the strongest pupillary dilation (i.e. when the participant was calculating) was selected.
Healthy participants reached around 90% selection accuracy with around 3.6 selections per
minute (ITR = 1.93 bits/min; ITR is low because yes/ no selections carry little information).
Typical locked-in patients reached around 70% accuracy with around 2.7 selections per minute
(ITR = 1.42 bits/min). This method is much less efficient than a P300 speller; but it requires
only a pupillometer (e.g. a remote camera), and does not require extensive preparation or cali-
bration. These are advantages for real-world applications.

Here we present an entirely new human-computer interface (HCI) that combines the per-
formance of a P300 speller with the usability of pupillometry. Our system builds on the recent
discovery that the pupil constricts (shrinks) when you covertly attend to a bright stimulus,
compared to a dark stimulus [19-22]. That is, unlike traditionally assumed, you do not need to
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look directly at a bright stimulus to elicit a pupillary light response; a covert shift of attention is
sufficient [23]. Our method exploits this by presenting multiple letters within circles that oscil-
late between brightness and darkness. The participant selects a letter by covertly attending to it,
without making any overt (eye) movement. The size of the pupil oscillates along with the
brightness of the attended letter. This allows us to determine, reliably and in real time, which
stimulus the participant intends to select.

Results
Phases 1-3: Selecting a Predefined Stimulus

In the first part of the experiment, participants learned to select one of two (Phase 1), four
(Phase 2), or eight (Phase 3) letters (see Fig 1). Letters were presented within circles that oscil-
lated between brightness and darkness in cycles of 1.25 s. Participants selected a letter by
covertly attending to it, while keeping the eyes on the central fixation dot. We measured
median pupil size during the last 0.25 s of each cycle, and used the following logic to determine
which letter the participant intended to select: If pupil size decreased, the participant likely
intended to select a letter that changed from darkness to brightness (‘b” in Fig 1b); if pupil size
increased, the participant likely intended to select a letter that changed from brightness to dark-
ness (‘a’ in Fig 1b). The estimate of which letter the participant intended to select was updated
after each cycle, until there was sufficient evidence for a reliable selection (Fig 1¢); therefore,
selection times varied. If there were more than two letters, letters were first divided into two
groups, of which one was eliminated. This resulted in a step-wise selection procedure, in which
eight letters were reduced to four, which were reduced to two, which were reduced to a single
winner (Fig 1d). (For details, see Methods)

We designed the display to make selection as intuitive as possible. First, the size of the letters
indicated how close they were to being selected; that is, a letter increased in size until it was
selected. This type of sensory feedback is believed to increase BCI/ HCI performance [24]. Sec-
ond, after a letter had been selected, it smoothly moved towards the display center. This anima-
tion increased the participants’ sensation of grabbing letters with their mind’s eye.

Training was considered successful if a participant reached at least 80% selection accuracy
at the end of the training phase. This is more stringent than the threshold of 70% accuracy that
is often taken as a lower limit for a useful BCI/ HCI [1,24].

Pupillary responses. Fig 2a shows the average pupil size during a cycle, as a function of
whether the attended stimulus changed from bright to dark (blue line) or dark to bright
(orange line); this is based on the average of all cycles (N = 112) for a single participant during
Phase 1. Each cycle started with a 0.5 s transition period, during which the brightness of the sti-
muli smoothly changed. During transition, pupil size still reflected the pretransition brightness:
The pupil was larger if the attended stimulus was dark (orange line) than if it was bright (blue).
Next, there was an adaptation period of 0.5 s. During adaptation, the pupil gradually started to
reflect the new brightness of the attended stimulus, as reflected by the crossover of the blue and
orange lines. Finally, there was a measurement period of 0.25 s, during which the brightness
effect (i.e. the difference between the orange and blue lines) was roughly stable. Median pupil
size during this period was used for the analysis; that is, our method exploited the fact that
pupil size was larger when a target was dark (blue line) than when it was bright (orange line;
see also Methods: Pupil-size measurement).

In addition to the effects of the brightness of the attended stimulus, there were also pro-
nounced overall changes in pupil size during each cycle. Specifically, the brightness transition
(0-0.5 s) induced a pupillary constriction around 0.2 s after the transition had finished; this is a
pupillary response to visual change, which occurs even if overall luminance remains constant
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a) Example configurations b) Brightness alternations
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Fig 1. The selection procedure. a) Participants selected one of two (Phase 1), four (Phase 2), or eight (Phase 3) simultaneously presented stimuli. b)
During each cycle, the brightness of the stimulus gradually changed in 0.5 s, and then remained constant for 0.75 s. Pupil size was measured during the last
0.25 s. c) The target stimulus was indicated by a cue. This example shows a correct selection, because the selected stimulus (‘a’) matches the cue. The size
of the letters indicated how close they were to being selected. When a letter was selected, it smoothly moved toward the center. d) If there were more than
two letters, letters were grouped by the brightness of their background. One group was eliminated on each selection, after which the remaining group was
subdivided anew. This step-wise selection procedure repeated until a single winning stimulus remained.

doi:10.1371/journal.pone.0148805.g001
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a) Pupil size as a function of target brightness

b) Pupil size difference
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Fig 2. Pupillary responses during one brightness-transition cycle. a) Example data from one participant. Pupil size as a function of whether the target
changes from bright to dark (blue line) or from dark to bright (orange line). Shadings indicate standard deviation. b) The pupil size difference (i.e. orange—
blue) for all participants. The participant indicated in red did not reach our criteria for successful training. The participant indicated by the arrow corresponds to
the example shown in (a). All data is from Phase 1, in which participants selected one out of two stimuli.

doi:10.1371/journal.pone.0148805.9002

[25-27]. This constriction lasted only briefly, and was followed by a recovery (i.e. a redilation)
that carried over into the start of the next cycle, resulting in an overall dilate-constrict-dilate
pattern during each cycle.

As shown in Fig 2b, all participants showed a qualitatively identical pattern. One participant
(indicated in red) showed a weak effect; this was the only participant who did not reach our cri-
teria for successful training (see Results: Selection accuracy and speed).

Selection accuracy and speed. Fig 3 shows the mean selection accuracy and speed for each
participant.

In Phase 1, mean accuracy was 88.9% (chance = 50%; N = 10), with a mean selection time of
14.9 s. Information-transfer rate (ITR) was 2.58 bits/min (Fig 4; see Methods: Criteria and sta-
tistical analyses for a definition of ITR). Nine out of ten participants met our criteria for suc-
cessful training (see Methods: Training program). One participant did not meet our predefined
criteria for success, and therefore did not participate in subsequent phases (#10 in Fig 3; red
line in Fig 2b); however, this participant’s accuracy was still 70%, which is often taken as the
lower limit for useful HCI performance [1,24]. All other participants met our criteria for suc-
cessful training (without increasing the decision threshold T; see Methods: Selection

PLOS ONE | DOI:10.1371/journal.pone.0148805 February 5, 2016
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a) Phase 1
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Fig 3. Selection accuracy (top row) and speed (bottom row) for individual participants (gray bars) and across participants (blue bars). Horizontal
dashed lines indicate chance level. a) Results for Phase 1. b) Results for Phase 2. c) Results for Phase 3. Error bars indicate 95% confidence intervals,

within-subject where applicable [28].

doi:10.1371/journal.pone.0148805.g003

algorithm). In Phase 2, mean accuracy was 91.0% (chance = 25%; N = 9), with a mean selection
time of 20.2 s. ITR was 4.55 bits/min. All participants met our criteria for successful training
(without increasing T). In Phase 3, mean accuracy was 87.6% (chance = 12.5%; N =9), with a
mean selection time of 28.0 s. ITR was 4.86 bits/min. Again, all participants met our criteria for
successful training (without increasing T).

Gaze independence. A crucial question is whether selection is fully independent of eye
position. In each but the final block of each phase, the experiment was paused when fixation
was lost (gaze deviated more than 2.6° from the display center for more than 10 ms), and con-
tinued when fixation was re-established. This controls for large eye movements, but not for
small fixational eye movements. Therefore, in the final block of each phase, the entire display
was locked to gaze position (from now on: gaze-stabilization mode): When the eyes drifted
slightly to the left, all stimuli except the central fixation dot would shift slightly to the left as
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information-transfer rate (bits/min)

Phase 1 Phase 2 Phase 3
10f2 10f4 10f8

Fig 4. The information-transfer rate (ITR) in bits per minute. Bars indicate the mean ITR. Dots indicate
individual participants.

doi:10.1371/journal.pone.0148805.g004

well. This made sure that selection was not driven by small eye movements in the direction of
the attended stimulus [19,20].

To test whether selection was independent of gaze, we conducted a Generalized Linear
Mixed-Effects Model (GLMER) on accuracy with gaze stabilization (on/ off) as fixed effect (for
details of statistical models, see Methods: Criteria and statistical analyses). This revealed no
notable effect of gaze stabilization (z = 1.64, p = .102). A Linear Mixed-Effects Model (LMER)
on response times also revealed no effect (f = 1.39, p = .174). If anything, performance was
slightly better when gaze-stabilization mode was enabled (see also Fig 5 in which gaze-stabiliza-
tion blocks are marked as ‘Stb.”).

Crucially, this shows that selection did not depend on small eye movements toward the
attended stimuli [29], which participants could have made when gaze-stabilization was dis-
abled. Our method is fully driven by covert attention.

Learning. Fig 5 shows how selection accuracy and speed evolved over time. To test
whether significant learning occurred, we conducted a GLMER on accuracy with block (con-
tinuous) as fixed effect. This was done for each phase separately. There was no notable effect of
block (i.e. no learning effect) in any phase: Phase 1 (z = 1.62, p = .104), Phase 2 (z=1.30,p =
.195), Phase 3 (z = 1.48, p = .139). An LMER on response time also did not reveal any notable
effect of block: Phase 1 (t = 0.57, p = .565; intercept-only model), Phase 2 (t = 0.37, p =.721),
Phase 3 (t=0.73, p = .488).

Looking at Fig 5a, some learning did appear to occur between blocks 1 and 2 of Phase 1; that
is, participants needed a single block of training, before they reached a more-or-less stable level
of performance. Importantly, learning effects, if any, were small, and participants were able to
use our method right away.

PLOS ONE | DOI:10.1371/journal.pone.0148805 February 5, 2016 7/15
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Fig 5. Selection accuracy (top row) and speed (bottom row) as a function of block number. Blue lines indicate across-participant means during the first
six blocks, which were completed by all participants. The size of the gray circles indicates how often a score occurred. Performance during gaze-stabilization
blocks is indicated by Stb. Horizontal dotted lines indicate chance level. a) Results for Phase 1. b) Results for Phase 2. ¢) Results for Phase 3. Error bars
indicate 95% within-subject confidence intervals [28].

doi:10.1371/journal.pone.0148805.9005

Phase 4: Free Writing

In the final part of the experiment, participants used a virtual keyboard to write a self-selected
sentence. This keyboard was similar to the displays used in Phases 1-3, but contained a full
alphabet and several control symbols (see Fig 6). (For details, see Methods: Training program:
Phase 4: Free writing.).

Eight out of nine participants successfully wrote a self-selected sentence (Table 1). The
remaining participant wrote a sentence that was correct except for one typo.

Participants used a ‘backspace’ symbol to correct mistakes, and entered an ‘accept’ symbol
to end text input. Therefore, we can distinguish the symbols that were entered (including char-
acters that were later deleted, etc.) from the useful text (the text string that was eventually
accepted). In total, participants entered 190 symbols (letters, ‘¥, ‘space’, ‘backspace’, and
‘accept’) for 133 characters of useful text (letters, ‘?’, and ‘space’). On average, one symbol took
51.1 s (SD = 9.6; including ‘backspace’ and ‘accept’), and one character of functional text took
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Fig 6. The symbol-selection procedure used for free writing. Initially, there are eight groups of characters and control symbols (‘backspace’, ‘space’, and
‘accept’). When one group has been selected (here ‘abcd’), it unfolds into four individual symbols (here ‘a’, ‘b’, ‘c’, and ‘d’), after which a final selection is

made (here ‘@’).

doi:10.1371/journal.pone.0148805.g006

75.2 s (SD = 20.5). The functional ITR was 3.91 bits/min. (A bug in an early version of the soft-
ware occasionally required participants to enter unnecessary ‘backspace’ symbols. One sen-
tence was affected by this issue, and was excluded from the analysis above.).

Discussion

We have introduced a new human-computer interface (HCI) that is based on decoding of
covert attention through pupillometry. Participants select a letter by covertly attending to it,
without making any overt (eye) movement. Letters are presented within circles of oscillating
brightness. Small changes in pupil size reflect the brightness changes of the attended stimulus
[23], and this allows us to determine which stimulus the participant intends to select-in real
time, independent of movement (other than pupil-size changes), and without physical contact.
In the experiment reported here, with healthy untrained participants, our method reached a
selection accuracy of around 90%, and an information-transfer rate (ITR) of 4.86 bits/min (Fig
4). Out of ten participants, all but one reached our predetermined criteria for successful train-
ing; these criteria were exceptionally stringent, and even the unsuccessful participant achieved

Table 1. Results of Phase 4.

Response Translation Correct

LE CHAT DORT The cat sleeps Yes

JE NE SUIS PAS SI RAPIDE QUE CA I'm not as fast as that Yes

JE M APELLE ****** My name is ****** Yes

ENFIN TERMINEE Finally finished Yes

EXPERIENCE TERMINEE Experiment finished Yes

JE VAIS AGRANDIR I’'m going to get bigger Yes

LE CHIEN BOIT The dog drinks Yes

VIVE LE POIIL? Long live the fur? Should have been “VIVE LE POIL?”
JE SUIS *#*** | am **** Yes

Results of Phase 4, during which participants wrote a self-selected sentence. Names have been replaced
by asterisks (*).

doi:10.1371/journal.pone.0148805.1001
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70% selection accuracy, which is often taken as sufficient for a useful BCI/ HCI [1,24]. During
pilot studies with highly trained participants (authors SM and LvdL), we have systematically
reached near-perfect selection and ITRs of around 10 bits/min (see S1 Appendix). For compar-
ison, P300 spellers that are based on covert attention (i.e. without eye movements) reach an
ITR of around 6 bits/min [14], usually with a combination of trained and untrained partici-
pants [12,13]. The performance of our method is thus in the same range as that of the best non-
invasive covert-attention BCIs to date.

Although all participants were able to select letters well above chance, there were consider-
able individual differences in selection speed and accuracy (see e.g. Fig 4). What drives these
differences? At the moment, we can only speculate, but several factors are likely important.
First, people differ in their ability and willingness to covertly attend to something for a long
time, and to avoid distraction. Second, different people may use different strategies; for exam-
ple, some participants reported to have visualized bright and dark things, or mentally rehearsed
the words ‘bright’ and ‘dark’, in synchrony with the brightness transitions of the stimuli. This
strategy of combining attention with mental imagery may have increased pupillary responses
[30], thus improving selection performance. Finally, there are individual differences in the
basic properties of the pupil: resting-state pupil size; how much the size of the pupil can
change; and the amount of random pupil-size fluctuations [31]. It will be important to under-
stand these factors to improve the efficacy of our system as a communication device.

An important advantage of our method, especially when compared to EEG-based methods,
is its ease of use. Only a pupillometer, or an eye tracker that records pupil size, is required. For
most experiments, we have used a research-grade eye tracker; but we have also successfully
used an EyeTribe (The Eye Tribe Aps, Copenhagen, Denmark), a low-cost eye tracker that pro-
vides high-quality pupil-size measurements [32]. Our method does not require eye-position
calibration, nor training of the selection algorithm. Together, these characteristics set our
method apart from currently available methods.

An important application of an HCI/ BCI is as a communication channel for completely
locked-in patients, that is, patients with complete loss of motor control [1]. P300 spellers and
pupillometry-based methods have been tested successfully in partly locked-in patients with
some remaining motor control [6,33]. But success with real-world applications has been mod-
est, especially with completely locked-in patients. Important reasons for this limited success
are [1]: difficulty of use (some methods require extensive training); low selection accuracy; skin
problems due to EEG electrodes; low selection speeds; and the need for sustained attention.
Our method solves some of these problems by providing ease of use, avoiding physical contact,
and providing high selection accuracy. But other challenges remain, notably low selection
speed and the need for sustained attention. In addition, it is unclear to what extent the pupillary
light response, which our method relies on, remains intact in completely locked-in state [34].
Therefore, future studies are needed to determine how well our method, or a variation thereof,
works in patient groups.

A second application of our method is as an ultra-secure way to enter passwords or PIN
codes. Imagine a cash machine that is equipped with a pupillometer. To enter a PIN code, the
user would be shown a display similar to that depicted in Fig 1a, and enter digits by covertly
attending to them. Based on our results (see Fig 3), entering a four-digit PIN code would take
around two minutes. This is slow, but feasible, and could be useful in situations that require
high security.

A third application of our method is as a way to train sustained attention. To select a letter,
participants must attend to it for some time, which is effortful. Therefore, a game-like variation
of our method could be an attractive way to train sustained attention. The main benefit of our
method over regular attention-training exercises is direct feedback: The user can be
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immediately notified when there is a lapse of attention. (In our experiments, feedback was pro-
vided by changing the size of the target letter.)

In conclusion, we have presented a new pupillometry-based method to translate thought
into letters. Our method is highly accurate and easy to use, and does not require elaborate
equipment, preparation, or training. We have highlighted communication with completely
locked-in patients, ultra-secure password input, and training of sustained attention as possible
applications.

Methods
Preregistration

This experiment was preregistered on Jan 21, 2015 (https://osf.io/yvaqs/). Whenever a devia-
tion from registration occurred, it is indicated in the sections below.

Materials and Availability

Participant data, experimental software, and analysis scripts are available from: https://github.
com/smathot/mind-writing-pupil. This repository also includes a ready-to-use package for
using our HCI with supported systems (currently tested with EyeLink and EyeTribe eye track-
ers, and Windows and Linux operating systems). A screencast of our method is available on-
line: https://youtu.be/cGtkD2opTz4

Participants

Ten naive participants from the community of Aix-Marseille Université were recruited (nor-
mal or corrected vision; 7 women; age range: 20-25). Participants received €90 for their partici-
pation (deviation from preregistration: We originally planned to pay €60). Participants
provided written informed consent prior to the experiment. The study was conducted with
approval of the ethics committee of Aix-Marseille Université (Ref.: 2014-12-03-09), and con-
formed to the Declaration of Helsinki (7" rev.).

Software and Apparatus

Eye position and pupil size were recorded monocularly with an EyeLink 1000 (SR Research,
Mississauga, ON, Canada), a video-based eye tracker sampling at 1000 Hz. The right eye was
recorded, unless the left eye provided a better signal. Stimuli were presented on a 21" ViewSo-
nic p227f CRT monitor (1280 x 1024 px, 85 Hz) running Ubuntu Linux 14.04. Testing took
place in a dimly lit room. The experiment was implemented with OpenSesame [35] using the
PsychoPy back-end [36] for display control and PyGaze [37] for eye tracking.

General Stimuli and Procedure

Before each block, a nine-point eye-tracker calibration was performed. At the start of each
selection trial, an automatic single-point recalibration (drift correction) was performed. The
display consisted of a green central fixation dot (r = 0.2°) on a gray background (13.0 cd/m?).
Items were presented in a circular configuration at an eccentricity of 9.2° (Fig 1). Items con-
sisted of colored letters against a circular background (r = 3.1°). When only two items were pre-
sented, each item was accompanied by a mirror-symmetric placeholder (see Fig 1a; this
configuration was chosen because pilot experiments showed it to be the most effective of sev-
eral tested configurations; see S1 Appendix). The backgrounds alternated between brightness
(97.0 cd/m?) and darkness (5.1 cd/m?) in cycles of 1.25 s (0.8 Hz). Each cycle consisted of a
smooth brightness transition of 0.5 s, followed by 0.75 s of constant brightness (Fig 1b).
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The participant attended covertly to the target stimulus, while keeping gaze on the central
fixation dot. The target was either indicated by a cue (Phase 1-3) or chosen by the participant
(Phase 4). The cue was both visual (e.g., the letter ‘A’ shown on the display) and auditory (e.g.,
a synthesized French voice saying Sélectionnez A). The participant could replay the auditory
cue at any moment by pressing the space bar. The trial ended when a selection was made (Fig
Ic, see Selection algorithm).

Selection Algorithm

Letters are divided into two groups: bright and dark backgrounds. Each group has a parameter
L that reflects how likely it is that the attended letter is part of that group. Initially, L is 1 for
both groups. After each cycle, a proportional pupil-size difference (PPSD) is determined (see
Pupil-size measurement). For the letter group that has changed from bright to dark, L is multi-
plied by PPSD (because we expect the pupil to dilate if the target is part that group). For the let-
ter group that has changed from dark to bright, L is divided by PPSD (because we expect the
pupil to constrict if the target is part that group). Cycling continues until the proportional dif-
ference between the Ls for both groups exceeds a threshold T'(L1/L2 > T or L1/L2 < 1/T), after
which the group with the highest L is designated as the winner. If groups consist of more than
one letter, the losing group is discarded, and the winning group is subdivided into two new
bright/ dark groups (See Fig 1d). The selection process then starts anew. This continues until
the winning group contains only a single letter, after which the final selection is made. The
analysis is performed on-line, while the participant performs the task.

A crucial property of this algorithm is that it continues until there is sufficient evidence for
reliable selection. Selection can be made faster but less accurate by reducing the threshold T,
and slower but more accurate by increasing it.

The reason that we presented up to eight separate letters, even though the algorithm made
only one-of-two selections, was to avoid users from having to re-orient their attention after
each selection; that is, once users shifted their attention toward a to-be-selected letter, they sim-
ply kept attending to it, while the algorithm gradually pruned the non-attended letters through
a series of one-of-two selections.

Pupil-Size Measurement
The proportional pupil-size difference on cycle i (PPSD(i)) is defined as:

PPSD(i) = %

Here, PS(i) is the median pupil size during the last 250 ms of cycle i (see Fig 1b).

Training Program

The training program consisted of four phases. In Phases 1-3, participants were trained to
make progressively more complicated selections. In Phase 4, participants wrote a short self-
selected sentence using an extension of the technique trained in Phases 1-3. Training took
about 10 hours, spread over multiple days.

Phases 1-3: Selecting a predefined stimulus. In Phase 1, participants were trained to
select one of two simultaneously presented stimuli. Blocks consisted of 16 selections.

Training was successful when participants reached: 100% accuracy after completing at least
6 blocks; or at least 80% accuracy on block 12. Thus, participants completed between 6 and 12
blocks. If training was unsuccessful, the phase was restarted with a more conservative threshold
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of 1.5 (default threshold = 1.375). If training then failed again, the experiment was aborted and
training was considered unsuccessful for that participant. After training was successfully com-
pleted, participants completed a single block in gaze-stabilization mode. Our criteria for suc-
cess were stringent: Commonly, 70% accuracy is taken as a lower limit for a useful BCI/ HCI
[1,24].

Phases 2 and 3 were identical to Phase 1, except that participants selected one out of four
(Phase 2) or eight (Phase 3) stimuli.

Phase 4: Free writing. In Phase 4, participants trained to write text by selecting characters
and control symbols (‘backspace’: a leftward arrow; ‘space’: a low bar; and ‘accept™ a square) on
a virtual keyboard. The participant initially selected one of eight symbol groups. This group
then unfolded, after which the participant selected one symbol. Structurally, selecting a symbol
was therefore identical to a one-of-eight selection (Phase 3) followed by a one-of-four selection
(Phase 2), or, in the case of ‘accept’ and ‘backspace’, a one-of-two selection (Phase 1). This pro-
cedure is similar to the Hex-o-Spell P300-based human-computer interface [38].

First, participants were given a print-out of the virtual keyboard to familiarize themselves
with its layout (see Fig 6). Next, they practiced by writing the French word “ecrire” (without
accent). Practice was completed when the word was written successfully, with a maximum of
three attempts. Next, participants chose a short sentence (deviation from preregistration: sev-
eral participants wanted to write a long sentence, and we therefore abandoned our initial maxi-
mum of 15 characters). Participants were given two opportunities to write this sentence.
Writing was considered successful when the final sentence matched the specified sentence. The
use of backspace to correct mistakes during text input was allowed.

Criteria and statistical analyses. No participants or selections were excluded from the
analysis. Two blocks (32 selections) were lost due to technical problems. Two participants
chose not to finish the experiment, and were replaced. In total, 257 blocks (4,112 selections)
were included in the analysis.

We analyzed accuracy using Generalized Linear Mixed-Effects Models with correctness
(binomial) as dependent variable. We analyzed response times using Linear Mixed-Effects
Models with response time as dependent variable. We included by-participant random inter-
cepts and slopes (i.e. maximal random effects), unless this model failed to converge, in which
case we included only random intercepts. Fixed effects were considered reliable when p < .05;
however, we emphasize general patterns over significance of individual results. These analyses
were conducted in R [39], using the packages Ime4 [40] and ImerTest [41].

Information-transfer rate (ITR) is a measure of communication efficiency, and depends on
both accuracy and speed. ITR was determined using the following formula [15]:

_ log,N + Acclog,Acc + (1 — Acc)log, "4

ITR N1
RT/60

Here, ITR is in bits per minute, N is the number of response options, Acc is proportion cor-
rect responses, and RT is the response time in seconds.

The response time was the interval between the start of the first selection cycle and the end
of the last selection cycle. Mean accuracy, response time, and I'TR were first determined per
participant, and then averaged to arrive at grand means (i.e. a means-of-means approach).

Supporting Information

S1 Appendix. Description of pilot experiments. Prior to the training program discussed in
the main text, we conducted five pilot experiments to optimize the system’s design.
(PDF)
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