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A simple model is presented for the description of steady uniform shear �ow of granular

material. The model is based on a stress �uctuation activated process. The basic idea

is that shear between two particles layers induces �uctuations in the media that may

trigger a shear at some other position. Based on this idea a minimum model is derived

and applied to di�erent con�gurations of granular shear �ow.

1. Introduction

The description of �ow of cohesionless granular material still represent a challenge

[1]. In a collisional regime, when the medium is dilute and strongly agitated, hy-

drodynamic equations have been proposed by analogy with a molecular gas [2,3].

Assuming the collisions between particles to be instantaneous and inelastic, one can

derive constitutive equations for the density, velocity and granular temperature (a

measure of the velocity �uctuations). However, in many cases energy injected is not

su�cient and the dissipation due to the inelastic collisions is so e�cient that the

medium does not stay in a collisional regime and �ows in a so called dense regime.

The particles experience multibody interactions and long lived contacts. The ma-

terial can no longer be seen as a granular gas and there is a need for another

description. Experiments on dense granular �ows have been carried out in di�er-

ent con�gurations including shear cell [4,5,6], silo [8,9,10,11], �ow down inclined

planes [12,13,14], �ow at the surface of a heap [15,16]. For these con�gurations

precise information is now available about the velocity pro�les, the �uctuations,

and stresses that developed during the �ows. However there is a lack of uni�ed

theoretical description.

�email: olivier@iusti.univ-mrs.fr

1



November 13, 2001 10:3 WSPC/Guidelines trieste�nal

2 O. Pouliquen et al

From the theoretical point of view, several approaches have been proposed to

describe dense granular �ows. A �rst attempt has been made to extend the kinetic

theory of granular matter by introducing a shear rate independent term in order

to incorporate friction ([17,18] ). Another approach has been proposed recently by

Bocquet et al [19]. They suggest to change the density dependence of the viscosity

in order to take into account the fact that particles at high volume fraction are

trapped in cages. However it is not clear that such approaches are still valid when

interactions are not collisional. Savage [20] proposed a hydrodynamic model based

on a �uctuating plasticity model. He obtained a hydrodynamic description close to

the kinetic theory where the viscosity decreases with the temperature. Aranson et

al [21] developed an empirical theory based on the idea of a mixture of �uid and

a solid, the relative concentration of both constituents being driven by a Landau

equation. This model seems to be e�cient in describing non stationary e�ects like

avalanche triggering. Mills et al [22] and Jenkins and Chevoir [23] described the

granular �uid as a classical viscous �uid in which collective objects such as arches

or columns are present, propagating the stresses in a non local way. They provide

a non local description of the �ow down inclined planes.

In this paper we present an alternative approach for describing slow dense gran-

ular �ows. The model is based on a stress �uctuation activated process. The idea is

that a shear somewhere in the material induces stress �uctuations in the medium

which can in return help shearing somewhere else. A crude model of �uctuation

activated process was previously proposed in the context of �ow in a silo [10]. More

recently, Debregeas et al [7] developed a �uctuation model to describe velocity pro-

�les and correlations observed in a simple shear �ow experiments on foams. In this

paper we will present a simple model where the stress �uctuations are induced by

the shear itself. We apply the model to di�erent con�gurations.

2. Description of the model

The main idea of the model is sketched in Fig.1. If a shear motion occurs at a level

z
0 between two layers, local rearrangements will occur and induce stress �uctuations

in the assembly of particles. These stress �uctuations can help the material to yield

somewhere else in z. The motion in z is then related to the �uctuations created by

the level z0.

In order to apply this idea, we consider a stationary parallel shear �ow of parti-

cles with a mean velocityu(z) along x which depends only on the vertical coordinate

z (Fig. 1). We call P (z) and � (z) respectively the pressure and the shear stress at

the level z. The particles diameter is d. For simplicity, the model is written in terms

of a stack of layers and only the direction z is considered.

The yield criterion in z can be expressed in term of a Coulomb criterion by

introducing a friction coe�cient � : the material will spontaneously shear in z if

the local shear stress j� (z)j reaches the value �P (z) otherwise nothing happens.

The friction coe�cient � take into account both the friction between grains and
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z

z’

z

Fig. 1. Sketch of the self activated process: shear at a level z0 induces �uctuations which can

induce yielding in z.

the geometric entanglement. However, if stress �uctuations exist in addition to the

mean stresses, the yield criterion can be locally reached even if the mean values of

the shear and normal stresses do not verify the yield criterion.

This is for example the case when shear occurs at the level z0 in the medium.

If ��z0
!z is the amplitude of the stress �uctuation induced by a shear in z

0 and

measured at the level z, then this �uctuation will be su�cient to induce yielding in

z if ��z0!z > (�P � j� j).

We then write that each time z0 send a �uctuation, the particle in z will jump

to the next hole on the right with a probability equal to the probability that the

stress �uctuation is higher than the threshold: P [��z0!z > (�P � � )]. By sym-

etry we can write that the probability to jump to the next hole on the left is

P [��z0!z > (�P + � )].

We then write that the frequency at which z
0 send �uctuations is simply the

shear rate amplitude at z0:
��du
dz

(z0)
��. Stipulating that the event coming from di�erent

levels z0 are uncorrelated, we can write the shear rate in z as a sum over z0:

du

dz
(z) =

X
z0

����du
dz

(z0)

���� (P [��z0!z > (�P � � )]� P [��z0!z > (�P + � )]) (2.1)

It is important to keep in mind that in expression (2.1) several assumptions

have been made. First, it is assumed that there is no memory in the process: if the

stress �uctuation received at some point does not reach the threshold, the system

come back to its initial state and the next �uctuation will have to reach the same

threshold to induce yielding. There is no stress accumulation.

A second assumption which is made is that the jumps are instantaneous. The

time necessary for the particle to jump to the next hole (of the order of d
p
�=P )

is negligible compare to the elapsed time between two successive �uctuations (

du=dz
�1). This means that the model developed here will only apply for slow shear

rates and quasi static deformations for which du=dz d

p
�=P << 1.

In order to express the probabilities in (2.1) we have to choose a probability
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distribution for the stress �uctuation ��z0!z induced by z
0 on z. A plausible as-

sumption is that the amplitude of �uctuation is a decreasing function of the distance

(z0 � z) and that it is maximum for z = z
0 equal to some value ��0(z0). We choose

in the following :

��z0!z =
��0(z0)

1 + �(z � z0)2=d2

where � is a dimensionless parameter of the order of unity measuring the char-

acteristic length in particle diameters over which the �uctuation decays. We tried

other decreasing functions and the results described in this paper were qualitatively

unchanged.

The amplitude ��0(z0) is a random variable with a mean which has to be of

the order of the local pressure P (z0). Recent studies of the distribution of forces in

granular piles suggest that the distribution is exponential over a large range of forces

[24,25,26]. We then assume in the following that ��0(z0) follows an exponential

distribution i.e. the probability pd(��0) to have the value ��0 within a range d(��0)

is equal to:

p d(��0) =
1

P (z0)
exp

�
�

��0

P (z0)

�
d(��0):

We can then easily show that the probability of jumps in expression (2.1) can

also be expressed in term of an exponential:

P [��z0!z > (�P � � )] =
1R

(�P��)

p

1 + �(z � z0)2=d2
d(��0)

= exp

�
(�P (z)��(z))(1+�(z�z0)2=d2)

P (z0)

�
(2.2)

It is interesting to note that the above expression is similar to an activated

process where the role of the energy barrier would be played by �P (z) � � (z) and

the role the temperature by the mean stress �uctuation.

Finally, transforming the discrete sum in (2.1) as an integral, we can write the

�nal expression for the shear rate as a function of the shear stress:

du

dz
(z) =

1

d

Z ����du
dz

(z0)

����
 
exp

 
(�P (z)� � (z))

�
1 + �(z � z

0)2=d2
�

P (z0)

!
�

exp

 
(�P (z) + � (z))

�
1 + �(z � z

0)2=d2
�

P (z0)

!!
dz
0 (2.3)

This integral equation gives a rheological law relating the stresses and shear

rate. There are only two parameters in the model, � the friction coe�cient at the

grain level and � the dimensionless extension of the �uctuations. In the following

we solve this equation in di�erent con�gurations. Note that if the shear keeps the

same sign across the layer, eq. (2.3) is linear with respect to the shear rate. This
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means that a non zero shear rate pro�le will correspond to speci�c values of the

stress distribution. This eigenvalue problem is solved numerically by discretizing

the integral in eq.(2.3). Once the shear rate pro�le is known, the velocity pro�le is

obtain by integration with the condition of zero velocity on the walls.

3. Uniform shear

Let �rst consider the simple rheological test of an in�nite medium without gravity

with an imposed constant shear :du
dz

= � = cte. The pressure P is �xed to a constant.

The equation 2.3 then indicates that non zero shear rate exists only if the shear

stress � satis�es:

e
�(���=P )p
�(� � �=P )

�
e
�(�+�=P )p
�(� + �=P )

=

r
�

�
(3.1)

According to the model, a simple shear is then obtained for a speci�c value of

the ratio �=P . The material behaves like a frictional material with a coe�cient of

friction depending on the two parameters � and �. For example, for the typical

values � = 0:7 and � = 2, one �nd that �=P = 0:42. The macroscopic friction

coe�cient �=P is then less than the microscopic one �.

4. Silo

In this section we address the problem of a granular material �owing in a silo

consisting of two parallel rough walls. Experiments have been carried out to measure

the velocity pro�le in two dimensional and three dimensional con�gurations. The

main result is that the shear is localized close to the rough walls in two shear bands

whose thickness is between 5 and 10 particles diameters, not very sensitive to the

distance between the walls [8,10,11]. However it has been shown that the thickness

of the shear zones is a�ected when the silo is inclined from the vertical. The shear

zone close to the bottom wall is larger and the other one thinner [10].

With the model presented in this paper it is possible to solve the problem for

the �ow between two rough planes. In this con�guration the material is bounded

by two walls at a distance L. In the model the wall are simply the �rst and last

row of particles at �L=2 and L=2 which becomes the limits of the integral in 2.3.

According to the equilibrium relations the stresses satisfy :

dP

dz
= ��g cos(�);

d�

dz
= ��g sin(�) (4.1)

where � is the angle between the walls and horizontal, � is the density of the

grain packing and g the gravity. Hence, P (z) = ��g cos(�)z + P0 and � (z) =

��g sin(�) + �0 where P0 and �0 are constant which are a priori unknown. The

constants are determined by the eigenvalue problem of eq. (2.3). As we expect the

shear rate to change sign in the silo, we have to solve eq. (2.3) for both signs of the

absolute value
��du
dz

(z0)
�� and then match the two solutions to get the correct solution
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Fig. 2. Velocitypro�les observed in inclined silo in 2d experiments (Data from [10] ) and predicted

by the model (� = 0:7 � = 2)

of eq. (2.3). This matching condition allows to �nd the two constant P0 and �0 and

the associated shear rate pro�le.

The predicted velocity pro�les are presented in Fig. 2 for three di�erent in-

clinations of the silo. We have plotted both the velocity pro�le observed in the

experiments and predicted by the model. For the vertical case, the model predicts

the existence of shear zones localized close to the walls as observed in the experi-

ments. The width of the shear zone varies slightly with the distance between the

rough walls but is of the order of �ve particle diameters as shown in Fig. 3. When

the silo is inclined, the velocity pro�le is asymmetric and the shear zone is larger

on the bottom side than on the upper side as observed in the experiments.

5. Flow down inclined planes

We then address the problem of the �ow down a rough plane. The two control

parameters are in this case the inclination � of the plane and the thickness of the

�ow h (Fig. 4). Numerical and experimental studies have been carried out giving
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Fig. 3. Thickness of the shear zone as a function of the distance between the walls (� = 0:7

� = 2)

information about the properties of steady uniform �ows [13,12,27]. The linear

model developed in this paper is only valid for quasi-static deformations, which

means that we will not be able to describe the fully developed �ow down inclines.

A non linear extension of the model is under development and will be the subject of

another study. However, from the present model we can get information about the

onset of �ow. It has been shown experimentally and numerically that for a given

inclination �, there exist a minimum thickness hstop(�) below which no steady

uniform �ow is observed. The present model is able to predict such a behavior.

In this con�guration the material is bounded by a rough bottom which in the

model is simply the �rst row of particles, and a free surface at z = h. In order to

use the same de�nition for the layer thickness as in the experimental work i.e. the

�xed layer is not counted, the integration domain in eq. 2.3 is from �d up to h.

The stress distribution is derived from the equilibrium and from no stress boundary

condition at the free surface: P = �gcos(�)(h � z), and � = �gsin(�)(h � z).

From eq.2.3 it comes out that for a given thickness h, a non zero shear rate

pro�le exists only for a given value of the inclination. This critical inclination is a

function of the thickness of the layer h as shown in Fig. 4. The model predicts that

in order to �ow, a thin layer has to be more inclined than a thick layer. This result is

reminiscent of the onset of �ow observed in the experiments. This behavior can be

easily understood in the present model: for thin layer, the integral in eq.2.3 extends

over a narrower region which means that there are less sources of �uctuation to

help yielding. The inclination has then to be higher in order to be closer to the

yielding threshold.
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Fig. 4. Critical angle at which a �ow down an inclined plane is possible as a function of the

thickness of the layer h (� = 0:7 � = 2)

6. Shear between plates

The last example we want to address is the simple shear experiment. Recently

careful measurements of the velocity pro�le have been performed in Taylor Couette

cell where the granular material is sheared between two concentric cylinders in 2D

or 3D geometry [4,5,6]. The shear is localized close to the moving walls and extends

up to 5 or 10 particles diameter in the bulk. The shear zone is associated with a

slightly lower solid fraction.

We have solved our model for the shear �ow between two plates, one being �xed,

the other one moving at a velocity 1. The pressure P and the shear stress � are

constant across the layer. Again, the linearity of the problem imposes that a solution

is found only for a speci�c value of the ratio �=P . The corresponding velocity pro�le

is plotted in Fig. 5a for a gap between the plate equal to 40d. The velocity pro�le we

obtained is not localized close to the walls : the shear is distributed over the whole

material. The phenomena of localization in simple shear �ow is then not predicted

with the simple model presented here.

However, several modi�cations of the model give rise to a localization. First our

con�guration is plane whereas most of the experiments are carried out in cylindric

geometry. A small asymmetry introduced for example in the pressure distribution

to take into account the cylindric geometry, gives rise to a localized shear band.

However, in this case the thickness of the shear zone depends on the asymmetry

which does not seem to be observed in experiments.

A more convincing improvement of the model consists in taking into account

boundary e�ects in the perturbation function ��z0
!z. The stress �uctuation induced
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by a shear close to the wall is not the same as the �uctuation induced when the

shear occurs far from the wall in the bulk. The wall being rigid, we have a zero

displacement condition. Qualitatively we then expect that a shear close to a wall

induces higher �uctuation than a shear in the bulk, as part of the �uctuation is

re�ected by the wall. A simple way to take this wall e�ect into account is to add an

additional source of �uctuation on the other side of the wall, image from the real

one. In the case of the shear cell where we have two rigid walls at position 0 and

H, we then write the perturbation ��z0!z as the sum of three terms corresponding

to a source in z
0, a source in z

00 = �z0 and one in z
000 = 2H � z

0.
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0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

0
01 1

0

40

20
z/d

u/u0 u/u0

a) b)

Fig. 5. Velocity pro�le predicted for the shear between two plates. a) simple model b) model

with image sources of �uctuation.

Using the image sources do not qualitatively change any of the results presented

above for the silo or the inclined plane. However, for the shear between two walls,

the solution shows two shear zones localized close to the walls as shown in Fig. 5b.

Therefore, more dangerous �uctuations close to the walls induce a localization of

the shear bands.

7. Discussion and conclusions

In this paper we have presented a simple model for slow sheared granular �ows

which is based on stress �uctuations. The process we describe is self induced as the

shear induces �uctuations which in return induce shear. As a result we obtain an

integral rheological law, where the shear rate at a position is related to the shear

rate in the vicinity. Quasi static �ow like �ows between vertical plates or in shear

cells are well described by the model. It is also able to predict the onset of �ow for

the inclined plane con�guration.

However, the model is still very crude. First it is one dimensional: the stress

�uctuations are described by the z coordinate. A careful 3d analyses is certainly

necessary to better describe the �uctuations and shear induced motions. A second



November 13, 2001 10:3 WSPC/Guidelines trieste�nal

10 O. Pouliquen et al

improvement we are working on is the �nite duration of the jump. When yielding

is activated at some place by a �uctuation, it takes a �nite time for the particle to

go to the next hole. Taking into account this time delay should allow to describe

more rapid �ows like inclined chute �ows.
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