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SLOW DENSE GRANULAR FLOWS AS A SELF INDUCED PROCESS

A simple model is presented for the description of steady uniform shear ow of granular material. The model is based on a stress uctuation activated process. The basic idea is that shear between two particles layers induces uctuations in the media that may trigger a shear at some other position. Based on this idea a minimum model is derived and applied to di erent con gurations of granular shear ow.

Introduction

The description of ow of cohesionless granular material still represent a challenge 1]. In a collisional regime, when the medium is dilute and strongly agitated, hydrodynamic equations have been proposed by analogy with a molecular gas 2,3]. Assuming the collisions between particles to be instantaneous and inelastic, one can derive constitutive equations for the density, velocity and granular temperature (a measure of the velocity uctuations). However, in many cases energy injected is not su cient and the dissipation due to the inelastic collisions is so e cient that the medium does not stay in a collisional regime and ows in a so called dense regime. The particles experience multibody interactions and long lived contacts. The material can no longer be seen as a granular gas and there is a need for another description. Experiments on dense granular ows have been carried out in di erent con gurations including shear cell 4,5,6], silo 8,9,10,11], ow down inclined planes 12,[START_REF] Chevoir | i n Powder and Grains[END_REF][START_REF] Pouliquen | [END_REF], ow at the surface of a heap 15,16]. For these con gurations precise information is now available about the velocity pro les, the uctuations, and stresses that developed during the ows. However there is a lack of uni ed theoretical description. email: olivier@iusti.univ-mrs.fr From the theoretical point of view, several approaches have been proposed to describe dense granular ows. A rst attempt has been made to extend the kinetic theory of granular matter by introducing a shear rate independent term in order to incorporate friction ( 17,[START_REF] Savage | Mechanics of granular Materials: new Models and constitutive r elations[END_REF] ). Another approach has been proposed recently by Bocquet et al 19]. They suggest to change the density dependence of the viscosity in order to take into account the fact that particles at high volume fraction are trapped in cages. However it is not clear that such approaches are still valid when interactions are not collisional. Savage 20] proposed a hydrodynamic model based on a uctuating plasticity model. He obtained a hydrodynamic description close to the kinetic theory where the viscosity decreases with the temperature. Aranson et al 21] developed an empirical theory based on the idea of a mixture of uid and a solid, the relative concentration of both constituents being driven by a Landau equation. This model seems to be e cient in describing non stationary e ects like avalanche triggering. Mills et al 22] and Jenkins and Chevoir 23] described the granular uid as a classical viscous uid in which collective objects such as arches or columns are present, propagating the stresses in a non local way. They provide a non local description of the ow down inclined planes.

In this paper we present an alternative approach for describing slow dense granular ows. The model is based on a stress uctuation activated process. The idea is that a shear somewhere in the material induces stress uctuations in the medium which can in return help shearing somewhere else. A crude model of uctuation activated process was previously proposed in the context of ow in a silo 10]. More recently, Debregeas et al 7] developed a uctuation model to describe velocity proles and correlations observed in a simple shear ow experiments on foams. In this paper we will present a simple model where the stress uctuations are induced by the shear itself. We apply the model to di erent con gurations.

Description of the model

The main idea of the model is sketched in Fig. 1. If a shear motion occurs at a level z 0 between two layers, local rearrangements will occur and induce stress uctuations in the assembly of particles. These stress uctuations can help the material to yield somewhere else in z. The motion in z is then related to the uctuations created by the level z 0 .

In order to apply this idea, we consider a stationary parallel shear ow of particles with a mean velocity u(z) along x which depends only on the vertical coordinate z (Fig. 1). We call P (z) and (z) respectively the pressure and the shear stress at the level z. The particles diameter is d. F or simplicity, the model is written in terms of a stack of layers and only the direction z is considered.

The yield criterion in z can be expressed in term of a Coulomb criterion by introducing a friction coe cient : the material will spontaneously shear in z if the local shear stress j (z)j reaches the value P (z) otherwise nothing happens.

The friction coe cient take into account both the friction between grains and the geometric entanglement. However, if stress uctuations exist in addition to the mean stresses, the yield criterion can be locally reached even if the mean values of the shear and normal stresses do not verify the yield criterion. This is for example the case when shear occurs at the level z 0 in the medium. If z 0 !z is the amplitude of the stress uctuation induced by a shear in z 0 and measured at the level z, then this uctuation will be su cient to induce yielding in z if z 0 !z > ( P ; j j).

We then write that each time z 0 send a uctuation, the particle in z will jump to the next hole on the right with a probability equal to the probability that the stress uctuation is higher than the threshold: P z 0 !z > ( P ; )]. B y s y metry we can write that the probability to jump to the next hole on the left is P z 0 !z > ( P + )].

We then write that the frequency at which z 0 send uctuations is simply the shear rate amplitude at z 0 : du dz (z 0 ) . Stipulating that the event coming from di erent levels z 0 are uncorrelated, we can write the shear rate in z as a sum over z 0 :

du dz (z) = X z 0 du dz (z 0 ) (P z 0 !z > ( P ; )] ; P z 0 !z > ( P + )]) (2.1)
It is important to keep in mind that in expression (2.1) several assumptions have been made. First, it is assumed that there is no memory in the process: if the stress uctuation received at some point does not reach the threshold, the system come back to its initial state and the next uctuation will have to reach the same threshold to induce yielding. There is no stress accumulation.

A second assumption which is made is that the jumps are instantaneous. The time necessary for the particle to jump to the next hole (of the order of d p =P ) is negligible compare to the elapsed time between two successive uctuations ( du=dz ;1 ). This means that the model developed here will only apply for slow shear rates and quasi static deformations for which du=dz d p =P << 1.

In order to express the probabilities in (2.1) we have to choose a probability distribution for the stress uctuation z 0 !z induced by z 0 on z. A plausible assumption is that the amplitude of uctuation is a decreasing function of the distance (z 0 ; z) and that it is maximum for z = z 0 equal to some value 0 (z 0 ). W e c h o o s e in the following :

z 0 !z = 0 (z 0 ) 1 + (z ; z 0 ) 2 =d 2
where is a dimensionless parameter of the order of unity measuring the characteristic length in particle diameters over which the uctuation decays. We tried other decreasing functions and the results described in this paper were qualitatively unchanged.

The amplitude 0 (z 0 ) is a random variable with a mean which has to be of the order of the local pressure P (z 0 ). Recent studies of the distribution of forces in granular piles suggest that the distribution is exponential over a large range of forces [START_REF] Jenkins | Dense plane ows of frictional spheres down a bumpy , frictional incline[END_REF][START_REF] Liu | [END_REF]26]. We then assume in the following that 0 (z 0 ) follows an exponential distribution i.e. the probability pd ( 0 ) to have the value 0 within a range d( 0 ) is equal to:

p d ( 0 ) = 1 P (z 0 ) exp ; 0 P (z 0 ) d( 0 ):
We can then easily show that the probability of jumps in expression (2.1) can also be expressed in term of an exponential: P z 0 !z > ( P ; )] = 1 R ( P ; ) p 1 + (z ; z 0 ) 2 =d 2 d( 0 ) = exp ( P (z); (z))(1+ (z;z 0 ) 2 =d 2 )

P (z 0 ) (2.2)
It is interesting to note that the above expression is similar to an activated process where the role of the energy barrier would be played by P (z) ; (z) and the role the temperature by the mean stress uctuation.

Finally, transforming the discrete sum in (2.1) as an integral, we can write the nal expression for the shear rate as a function of the shear stress: This integral equation gives a rheological law relating the stresses and shear rate. There are only two parameters in the model, the friction coe cient at the grain level and the dimensionless extension of the uctuations. In the following we solve this equation in di erent con gurations. Note that if the shear keeps the same sign across the layer, eq. (2.3) is linear with respect to the shear rate. This means that a non zero shear rate pro le will correspond to speci c va l u e s o f t h e stress distribution. This eigenvalue problem is solved numerically by discretizing the integral in eq.(2.3). Once the shear rate pro le is known, the velocity pro le is obtain by integration with the condition of zero velocity on the walls.

Uniform shear

Let rst consider the simple rheological test of an in nite medium without gravity with an imposed constant shear : du dz = ; = cte. The pressure P is xed to a constant. The equation 2.3 then indicates that non zero shear rate exists only if the shear stress satis es: According to the model, a simple shear is then obtained for a speci c value of the ratio = P . The material behaves like a frictional material with a coe cient of friction depending on the two parameters and . F or example, for the typical values = 0 :7 and = 2 , one nd that = P= 0 :42. The macroscopic friction coe cient = Pis then less than the microscopic one .

Silo

In this section we address the problem of a granular material owing in a silo consisting of two parallel rough walls. Experiments have been carried out to measure the velocity pro le in two dimensional and three dimensional con gurations. The main result is that the shear is localized close to the rough walls in two shear bands whose thickness is between 5 and 10 particles diameters, not very sensitive to the distance between the walls 8,10,11]. However it has been shown that the thickness of the shear zones is a ected when the silo is inclined from the vertical. The shear zone close to the bottom wall is larger and the other one thinner 10].

With the model presented in this paper it is possible to solve the problem for the ow between two rough planes. In this con guration the material is bounded by two walls at a distance L. In the model the wall are simply the rst and last row of particles at ;L=2 and L=2 which becomes the limits of the integral in 2.3.

According to the equilibrium relations the stresses satisfy : where is the angle between the walls and horizontal, is the density of the grain packing and g the gravity. Hence, P (z) = ; g cos( )z + P 0 and (z) = ; g sin( ) + 0 where P 0 and 0 are constant which are a priori unknown. The constants are determined by the eigenvalue problem of eq. (2.3). As we expect the shear rate to change sign in the silo, we have to solve eq. (2.3) for both signs of the absolute value du dz (z 0 ) and then match the two solutions to get the correct solution of eq. (2.3). This matching condition allows to nd the two constant P 0 and 0 and the associated shear rate pro le. The predicted velocity pro les are presented in Fig. 2 for three di erent inclinations of the silo. We have plotted both the velocity pro le observed in the experiments and predicted by the model. For the vertical case, the model predicts the existence of shear zones localized close to the walls as observed in the experiments. The width of the shear zone varies slightly with the distance between the rough walls but is of the order of ve particle diameters as shown in Fig. 3. When the silo is inclined, the velocity pro le is asymmetric and the shear zone is larger on the bottom side than on the upper side as observed in the experiments.

Flow down inclined planes

We then address the problem of the ow down a rough plane. The two control parameters are in this case the inclination of the plane and the thickness of the ow h (Fig. 4). Numerical and experimental studies have been carried out giving information about the properties of steady uniform ows [START_REF] Chevoir | i n Powder and Grains[END_REF]12,27]. The linear model developed in this paper is only valid for quasi-static deformations, which means that we will not be able to describe the fully developed ow down inclines.

A non linear extension of the model is under development and will be the subject of another study. However, from the present model we can get information about the onset of ow. It has been shown experimentally and numerically that for a given inclination , there exist a minimum thickness h stop ( ) below which no steady uniform ow is observed. The present model is able to predict such a behavior. In this con guration the material is bounded by a rough bottom which in the model is simply the rst row of particles, and a free surface at z = h. In order to use the same de nition for the layer thickness as in the experimental work i.e. the xed layer is not counted, the integration domain in eq. 2.3 is from ;d up to h.

The stress distribution is derived from the equilibrium and from no stress boundary condition at the free surface: P = gcos( )(h ; z), a n d = gsin( )(h ; z).

From eq.2.3 it comes out that for a given thickness h, a non zero shear rate pro le exists only for a given value of the inclination. This critical inclination is a function of the thickness of the layer h as shown in Fig. 4. The model predicts that in order to ow, a thin layer has to be more inclined than a thick layer. This result is reminiscent of the onset of ow observed in the experiments. This behavior can be easily understood in the present model: for thin layer, the integral in eq.2.3 extends over a narrower region which means that there are less sources of uctuation to help yielding. The inclination has then to be higher in order to be closer to the yielding threshold. 6. Shear between plates

The last example we want to address is the simple shear experiment. Recently careful measurements of the velocity pro le have been performed in Taylor Couette cell where the granular material is sheared between two concentric cylinders in 2D or 3D geometry 4,5,6]. The shear is localized close to the moving walls and extends up to 5 or 10 particles diameter in the bulk. The shear zone is associated with a slightly lower solid fraction.

We have solved our model for the shear ow between two plates, one being xed, the other one moving at a velocity 1. The pressure P and the shear stress are constant across the layer. Again, the linearity of the problem imposes that a solution is found only for a speci c value of the ratio = P . The corresponding velocity pro le is plotted in Fig. 5a for a gap between the plate equal to 40d. The velocity pro le we obtained is not localized close to the walls : the shear is distributed over the whole material. The phenomena of localization in simple shear ow is then not predicted with the simple model presented here.

However, several modi cations of the model give rise to a localization. First our con guration is plane whereas most of the experiments are carried out in cylindric geometry. A small asymmetry introduced for example in the pressure distribution to take into account the cylindric geometry, gives rise to a localized shear band. However, in this case the thickness of the shear zone depends on the asymmetry which does not seem to be observed in experiments.

A more convincing improvement of the model consists in taking into account boundary e ects in the perturbation function z 0 !z . The stress uctuation induced by a shear close to the wall is not the same as the uctuation induced when the shear occurs far from the wall in the bulk. The wall being rigid, we have a zero displacement condition. Qualitatively we then expect that a shear close to a wall induces higher uctuation than a shear in the bulk, as part of the uctuation is re ected by the wall. A simple way to take this wall e ect into account is to add an additional source of uctuation on the other side of the wall, image from the real one. In the case of the shear cell where we have two rigid walls at position 0 and H, we then write the perturbation z 0 !z as the sum of three terms corresponding to a source in z 0 , a source in z 00 = ;z 0 and one in z 000 = 2 H ; z 0 . Using the image sources do not qualitatively change any of the results presented above for the silo or the inclined plane. However, for the shear between two walls, the solution shows two shear zones localized close to the walls as shown in Fig. 5b. Therefore, more dangerous uctuations close to the walls induce a localization of the shear bands.

Discussion and conclusions

In this paper we have presented a simple model for slow sheared granular ows which is based on stress uctuations. The process we describe is self induced as the shear induces uctuations which in return induce shear. As a result we obtain an integral rheological law, where the shear rate at a position is related to the shear rate in the vicinity. Quasi static ow like ows between vertical plates or in shear cells are well described by the model. It is also able to predict the onset of ow for the inclined plane con guration.

However, the model is still very crude. First it is one dimensional: the stress uctuations are described by the z coordinate. A careful 3d analyses is certainly necessary to better describe the uctuations and shear induced motions. A second improvement we are working on is the nite duration of the jump. When yielding is activated at some place by a uctuation, it takes a nite time for the particle to go to the next hole. Taking into account this time delay should allow to describe more rapid ows like inclined chute ows.
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 1 Fig.1. Sketch of the self activated process: shear at a level z 0 induces uctuations which can induce yielding in z.

Fig. 2 .

 2 Fig. 2. Velocitypro les observedin inclined silo in 2d experiments(Data from 10] ) and predicted by the model ( = 0 :7 = 2 )

Fig. 3 .

 3 Fig. 3. Thickness of the shear zone as a function of the distance between the walls ( = 0 :7 = 2 )

Fig. 4 .

 4 Fig.4. Critical angle at which a ow down an inclined plane is possible as a function of the thickness of the layer h ( = 0 :7 = 2 )

Fig. 5 .

 5 Fig. 5. Velocity pro le predicted for the shear between two plates. a) simple model b) model with image sources of uctuation.
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