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Abstract

A spectral approach to Bayesian inference is presented. It pursues the emulation of the posterior prob-
ability density. The starting point is a series expansion of the likelihood function in terms of orthogonal
polynomials. From this spectral likelihood expansion all statistical quantities of interest can be calculated
semi-analytically. The posterior is formally represented as the product of a reference density and a linear
combination of polynomial basis functions. Both the model evidence and the posterior moments are related
to the expansion coefficients. This formulation avoids Markov chain Monte Carlo simulation and allows one
to make use of linear least squares instead. The pros and cons of spectral Bayesian inference are discussed
and demonstrated on the basis of simple applications from classical statistics and inverse modeling.

Keywords: Uncertainty quantification, Bayesian inference, Inverse problem, Surrogate modeling, Polynomial
chaos, Posterior expansion

1 Introduction
In view of inverse modeling [1, 2] and uncertainty quantification [3, 4], Bayesian inference establishes a convenient
framework for the data analysis of engineering systems [5–7]. It adopts probability theory in order to represent,
propagate and update epistemic parameter uncertainties. The prior distribution captures the uncertainty of
unknown model parameters before the data are analyzed. A posterior is then constructed as an updated
distribution that captures the remaining uncertainty after the data have been processed. The computation of
this posterior is the primary task in Bayesian inference.

Some simplified statistical models admit closed-form expressions of the posterior density. Beyond these so-
called conjugate cases, computational approaches either aim at evaluating expectation values under the posterior
or drawing samples from it [8]. This is usually accomplished with stochastic methods such as Markov chain
Monte Carlo [9, 10]. Nowadays this class of techniques constitutes the mainstay of Bayesian computations. The
posterior is explored by realizing an appropriate Markov chain over the prior support that exhibits the posterior
as its long-run distribution. In turn, the obtained sample is used to empirically approximate the statistical
quantities of interest. These include the characteristics of the posterior and the predictive distribution. This
way of proceeding suffers from some inherent deficiencies. The presence of sample autocorrelation and the
absence of a convergence criterion cause severe practical problems. Moreover, Markov chain Monte Carlo
typically requires a large number of serial forward model runs. Since in engineering applications even a single
model run can be computationally taxing, this may be prohibitive. In the recent past, numerous enhancements
have been proposed in order to accelerate Markov chain Monte Carlo for Bayesian inverse problems. This
includes the implementation of more efficient sampling algorithms, e.g. transitional Markov chain Monte Carlo
[11, 12] or Hamiltonian Monte Carlo [13–15], and the substitution of the forward model with an inexpensive
metamodel, e.g. based on Gaussian process models [16, 17] or polynomial chaos expansions [18–20]. Although
these approaches promise significant speedups, they still inherit all principle shortcomings of sample-based
posterior representations.
∗nagel@ibk.baug.ethz.ch
†sudret@ibk.baug.ethz.ch
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Unfortunately there are only few fundamental alternatives to stochastic sampling. Variational Bayesian
inference establishes such an alternative where the posterior is sought through deterministic optimization [21–
23]. In particular, a member from a simple parametric family of probability densities is selected such that
some distance to the posterior is minimized. In this regard, the Kullback-Leibler divergence is often chosen
as a relative measure of the dissimilarity of two probability densities. The procedure commonly rests upon
some simplifying independence assumptions. Variational methods are regarded as less computing intensive
than Markov chain Monte Carlo, yet they are only approximate. They are prominently used in machine
learning and computer science [24, 25], and since recently such methods are applied to inverse problems [26, 27],
too. A particularly interesting implementation of variational Bayesian inference has been proposed in [28].
The posterior is parametrized as a transformation of the prior density and can be computed based on the
corresponding back-transformation. More specifically, a random variable transformation is sought in polynomial
form such that the Kullback-Leibler divergence between the prior density and the back-transformed posterior
density is minimized. This formulation is supported by arguments from optimal transport theory which also
allows for a practical regularization of the problem. Finally, samples from the posterior distribution are obtained
by independently sampling from the prior and applying the polynomial map. Another approach to certain
Bayesian inverse problems has been recently devised in [29, 30]. Based on monomial Taylor expansions of the
forward model and of the posterior density, the computation of expectation values under the posterior is tackled
by sparse numerical quadrature.

In this paper we propose a novel approach to surrogate the posterior probability density in itself. The main
idea is to decompose the likelihood function into a series of polynomials that are orthogonal with respect to
the prior density. It is shown that all statistical quantities of interest can then be easily extracted from this
spectral likelihood expansion. Emulators of the joint posterior density and its marginals are derived as the
product of the prior, that functions as the reference density, and a linear combination of polynomials, that
acts as an adjustment. In doing so, the model evidence simply emerges as the coefficient of the constant term
in the expansion. Moreover, closed-form expressions for the first posterior moments in terms of the low-order
expansion coefficients are given. The propagation of the posterior uncertainty through physical models can
be easily accomplished based on a further postprocessing of the expansion coefficients. In this sense, spectral
Bayesian inference is semi-analytic. While the corrections required for an expansion of the posterior with respect
to the prior as the reference density may be large, they can be small for an expansion around a properly chosen
auxiliary density. A change of the reference density is therefore suggested in order to increase the efficiency of
computing a posterior surrogate. The devised formulation entirely avoids Markov chain Monte Carlo. Instead
it draws on the machinery of spectral methods [31–33] and approximation theory [34–36]. It is proposed to
compute the expansion coefficients via linear least squares [37, 38]. This allows one to make use of the wealth
of statistical learning methods [39, 40] that are designed for this type of problems. The approach features a
natural convergence criterion and it is amenable to parallel computing.

The scope of applicability of the proposed approach covers problems from Bayesian inference for which the
likelihood function can be evaluated and for which polynomials can be constructed that are orthogonal with
respect to the prior, possibly after a carefully chosen variable transformation. This excludes statistical models
that involve intractable likelihoods [41, 42], i.e. the likelihood cannot be exactly evaluated. It also excludes
improper prior distributions [43, 44], i.e. the prior does not integrate to one or any finite value, and models
with pathologic priors such as the Cauchy distribution for which the moments are not defined [45, 46]. Many
hierarchical Bayesian models [47, 48] are not covered by the devised problem formulation. They are either based
on conditional priors, which does not allow for orthogonal polynomials, or on integrated likelihoods, which can
only be evaluated subject to noise.

Spectral likelihood expansions complement the existing array of Bayesian methods with a way of surro-
gating the posterior density directly. They have the potential to remedy at least some of the shortcomings
of Markov chain Monte Carlo. Yet, their practical implementation poses challenges. Hence, the goal of this
paper is to discuss and investigate the possibilities and limitations of the approach. The method of spectral
likelihood expansions is therefore applied to well-known calibration problems from classical statistics and inverse
heat conduction. We restrict the analysis to low-dimensional problems. The final results are compared with
corresponding results from Markov chain Monte Carlo simulations.

The manuscript is structured as follows. The principles of Bayesian inference are summarized in Section 2.
Surrogate forward modeling with polynomial chaos expansions is reviewed in Section 3. After that, spectral
likelihood expansions are introduced as an alternative approach to Bayesian inference in Section 4. Two well-
known Gaussian fitting examples and the identification of thermal properties of a composite material serve as
numerical demonstrations in Section 5. Finally, it is summarized and concluded in Section 6.
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2 Bayesian inference
Let x = (x1, . . . , xM )> ∈ Dx with Dx = Dx1 × . . . × DxM ⊂ RM be a vector of unknown parameters. The
goal of statistical inference is to deduce these unknowns from the observed data y = (y1, . . . , yN )> ∈ RN .
In Bayesian statistics one adapts probabilistic models for representing uncertainty. Hence, let (Ω,F ,P) be a
suitable probability space with a sample space Ω, a σ-field F and a probability measure P. On this space one
can define a prior model of the unknowns and an observational model of the data that represent the encountered
parameter uncertainties and the experimental situation, respectively.

The epistemic uncertainty of the parameter values is cast as a Dx-valued random vector X : Ω → Dx ⊂
RM . Here, the components of X = (X1, . . . , XM )> are Dxi -valued random variables Xi : Ω → Dxi ⊂ R for
i = 1, . . . ,M . Since the data have not been processed at this stage, the joint density of X ∼ π(x) is called the
prior density. Similarly, a RN -valued random vector Y : Ω→ RN represents the observables. The components
of Y = (Y1, . . . , YN )> are real-valued random variables Yi : Ω→ R for i = 1, . . . , N . In order to draw inferences
from the data about the unknowns, one has to formulate an observational model that establishes a relationship
between those quantities. Commonly this is a probabilistic representation of the observables Y |x ∼ f(y |x)
that is conditional on the unknown parameters. For the actually acquired data Y = y, the likelihood function
L(x) = f(y |x) is defined by interpreting the conditional density f(y |x) as a function of the unknowns x.

Given this setup, one can formulate an updated probability density π(x|y) of the unknowns that is condi-
tioned on the realized data. This so-called posterior density results from Bayes’ law

π(x|y) =
L(x)π(x)

Z
. (1)

It completely summarizes the available information about the unknowns after the data have been analyzed.
The model evidence Z properly normalizes the posterior density. It can be written as

Z =

∫

Dx

L(x)π(x) dx. (2)

One is often interested in the marginals and moments of the posterior. The posterior marginal π(xj |y) of a
single unknown xj with j ∈ {1, . . . ,M} is defined as

π(xj |y) =

∫

Dx∼j

π(x|y) dx∼j . (3)

Here, the simplifying notation x∼j = (x1, . . . , xj−1, xj+1, . . . , xM )> is introduced. For the mean E[X |y] and
the covariance matrix Cov[X |y] of the posterior one has

E[X |y] =

∫

Dx

xπ(x|y) dx, (4)

Cov[X |y] =

∫

Dx

(x− E[X |y])(x− E[X |y])
>
π(x|y) dx. (5)

More generally, Bayesian inference focuses the computation of posterior expectation values of the quantities
of interest (QoI) h : Dx → R. These expectations may be formally expressed as

E[h(X)|y] =

∫

Dx

h(x)π(x|y) dx. (6)

For later considerations, it is remarked that this integration over the posterior density can be interpreted as a
reweighted integration over the prior density

E[h(X)|y] =

∫

Dx

h(x)
L(x)

Z
π(x) dx =

1

Z
E[h(X)L(X)]. (7)
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2.1 Bayesian inverse problems
The Bayesian framework described above can be applied to a vast range of scenarios from classical statistics [49,
50] and inverse modeling [51, 52]. In inverse problems, a so-called forward model M establishes a mathematical
representation of the physical system under consideration. It is the function

M : Dx → RN

x 7→ M(x)
(8)

that maps model inputs x ∈ Dx ⊂ RM to outputs ỹ = M(x) ∈ RN . Inversion is the process of inferring the
unknown forward model parameters x with the measured data y of its response.

A probabilistic model of the observables is commonly constructed supposing that they can be represented
as the sum Y = Ỹ + E of the model response vector Ỹ = M(X) : Ω → RN and another random vector
E : Ω→ RN . The latter accounts for measurement noise and forward model inadequacy. It is assumed that the
residual vector E is statistically independent fromX. An unknown realization E = ε measures the discrepancy
between the actually measured data y = ỹ + ε and the model response ỹ = M(x) at the true value x.
Typically one starts from the premise that the residual E ∼ N (ε|0,Σ) follows a Gaussian distribution. Here,
Σ is a symmetric and positive-definite covariance matrix. The observational model is then simply given as
Y |x ∼ N (y |M(x),Σ). For the likelihood this implies

L(x) =
1√

(2π)N det(Σ)
exp

(
−1

2
(y −M(x))

>
Σ−1 (y −M(x))

)
. (9)

For the actually acquired data y, this is understood as a function of the unknowns x. The Bayesian solution
to the inverse problem posed is then the posterior in Eq. (1) where the likelihood is given as in Eq. (9). It
summarizes the collected information about the unknown forward model inputs.

2.2 Markov chain Monte Carlo
Apart from some exceptional cases, the posterior density in Eq. (1) does not exhibit a closed-form expression.
Thus one settles either for computing expectation values under the posterior or for sampling from the posterior.
The former can be accomplished through stochastic integration techniques such as Monte Carlo (MC) [53] or
importance sampling [54]. For the latter one usually has to resort to Markov chain Monte Carlo (MCMC)
sampling [9, 10]. An ergodic Markov chain X(1),X(2), . . . over the support Dx is constructed in such a way
that the posterior arises as the invariant distribution

π(x(t+1) |y) =

∫

Dx

π(x(t) |y)K(x(t),x(t+1)) dx(t). (10)

Here, K(x(t),x(t+1)) denotes the density of the transition probability from the state x(t) of the Markov chain
at a time t to its state x(t+1) at time t+ 1. The Metropolis-Hastings (MH) algorithm [55, 56] suggests an easy
principle for the construction of a Markov kernel K that satisfies Eq. (10). It is based on sampling candidates
from a proposal distribution and a subsequent accept/reject decision. The transition kernel defined this ways
satisfies detailed balance, i.e. time reversibility π(x(t) |y)K(x(t),x(t+1)) = π(x(t+1) |y)K(x(t+1),x(t)). This is a
sufficient condition for Eq. (10) to apply. In practice, one initializes the Markov chain at some x(1) ∈ Dx and
then iteratively applies the MH updates from x(t) to x(t+1) for a finite number of times T . The ergodic theorem
then ensures that one can approximate the population average in Eq. (6) in an asymptotically consistent way
as the time average

E[h(X)|y] ≈ 1

T

T∑

t=1

h(x(t)). (11)

A whole string a unpleasant consequences is entailed by the fact that MCMC updates are typically local
and serially dependent. The quality of the posterior approximation is governed by the MCMC sample autocor-
relation. In order to ensure an efficient posterior exploration one has to carefully design and tune the proposal
distribution. This is an extremely tedious and problem-dependent task. Yet, even for comparably efficient
MCMC updates, a large number of MCMC iterations may be required in order to achieve an acceptable degree
of fidelity of the final results. In inverse modeling this requires an even larger number of serial forward solves
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which can be prohibitively expensive for demanding models. Another intrinsic MCMC weakness is that it lacks
a clear convergence and stopping criterion, i.e. for diagnosing when the chain has forgotten its initialization and
has converged to the target distribution in Eq. (10), and for the assessment of when the MC error in Eq. (11)
has become sufficiently small. Even though there are more or less sophisticated convergence diagnostics [57, 58],
those heuristic checks may very well fail, e.g. when separated posterior modes have not yet been detected.

The model evidence in Eq. (2) is important in the context of model comparison and selection [59]. In
engineering applications it often happens that one wants to judge the performance of various competing models
against measured data [60, 61]. While in variational Bayesian inference at least a lower bound of the model
evidence is implicitly computed as a side product, in the MH algorithm it is not computed at all. Avoiding
the explicit computation of the model evidence is beneficial for parameter estimation, but it does not allow for
model selection. To this effect one has to rely on dedicated methods [62, 63].

3 Surrogate forward modeling
In the analysis of engineering systems it has become a widespread practice to substitute expensive computer
models with inexpensive metamodels or surrogate models. Those approximations mimic the functional relation-
ship between the inputs and the outputs of the original model in Eq. (8). Metamodeling promises significant
gains in situations that require a large number of forward model runs, e.g. for optimization problems, uncer-
tainty analysis and inverse modeling. Important classes of metamodels are based on Gaussian process models
or Kriging [64, 65] and polynomial chaos expansions [66]. More recent introductions to these subjects can be
found in [67, 68] and [69, 70], respectively. Nowadays the application of Kriging [16, 17] and polynomial chaos
surrogates [18–20] is commonplace in Bayesian inverse problems.

We focus on polynomial chaos metamodels next. The idea is to decompose the forward model response into
polynomial terms that are orthogonal with respect to a weight function. In stochastic analysis this weight is
often identified with a probability density in order to facilitate uncertainty propagation. In inverse analysis it is
commonly equated with the prior in order to enhance MCMC posterior sampling. The formalism of polynomial
chaos expansions is rooted in spectral methods and functional approximations with orthogonal polynomials.
Hence, the function space point of view is emphasized in this section. We also concentrate on linear least
squares for the practical computation of the expansions coefficients.

3.1 L2
π function space

From here on it is assumed that the components of the uncertain parameter vector X = (X1, . . . , XM )> are
independent random variables Xi. Thus their joint density can be written as

π(x) =
M∏

i=1

πi(xi). (12)

Let L2
π(Dx) = {u : Dx → R|

∫
Dx u

2(x)π(x) dx <∞} be the Hilbert space of functions that are square integrable
with respect to the prior density in Eq. (12). For u, v ∈ L2

π(Dx) a weighted inner product 〈·, ·〉L2
π
and its

associated norm ‖·‖L2
π
are defined as

〈u, v〉L2
π

=

∫

Dx

u(x)v(x)π(x) dx, (13)

‖u‖L2
π

= 〈u, u〉1/2L2
π
. (14)

Given that u, v ∈ L2
π(Dx), the real-valued random variables u(X), v(X) : Ω → R on the probability space

(Ω,F ,P) have a finite variance. One can then write the inner product in Eq. (13) as the expectation

〈u, v〉L2
π

= E[u(X)v(X)]. (15)

In the further course of the presentation, the identity in Eq. (15) is frequently used in order to switch back and
forth between expectation values under the prior distribution and weighted inner products.
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3.2 Orthonormal polynomials

Now a basis of the space L2
π(Dx) is constructed with orthogonal polynomials [71–73]. Let {Ψ(i)

αi }αi∈N be a family
of univariate polynomials in the input variable xi ∈ Dxi . Each member is characterized by its polynomial degree
αi ∈ N. The polynomials are required to be orthonormal in the sense that

〈
Ψ(i)
αi ,Ψ

(i)
βi

〉
L2
πi

= δαiβi =

{
1 if αi = βi,

0 if αi 6= βi.
(16)

These polynomials form a complete orthogonal system in L2
πi(Dxi). Next, a set of multivariate polynomials

{Ψα}α∈NM in the input variables x ∈ Dx is constructed as the tensor product

Ψα(x) =
M∏

i=1

Ψ(i)
αi (xi). (17)

Here, α = (α1, . . . , αM ) ∈ NM is a multi-index that characterizes the polynomials. By construction, namely
due to Eqs. (12), (16) and (17), they are orthonormal in the sense that

〈Ψα,Ψβ〉L2
π

= δαβ =

{
1 if α = β,

0 if α 6= β.
(18)

These polynomials establish a complete orthogonal basis in L2
π(Dx). Note that the constant term is always given

as Ψ
(i)
0 = 1 in the univariate case. This ensures the proper normalization ‖Ψ(i)

0 ‖L2
πi

= 1. In the multivariate
case one similarly has Ψ0 = 1 with ‖Ψ0‖L2

π
= 1.

3.3 Hermite and Legendre polynomials
Two classical univariate families are the Hermite and the Legendre polynomials {Hαi(xi)}αi∈N for xi ∈ R and
{Pαi(xi)}αi∈N for xi ∈ [−1, 1], respectively. The former are orthogonal with respect to the weight function
N (xi |0, 1) = (2π)−1/2 exp(−x2i /2), the latter with respect to U(xi | − 1, 1) = I[−1,1](xi)/2. Here, I[−1,1] denotes
the indicator function of the interval [−1, 1]. A short summary of these two univariate families is given in
Table 1. Over the respective domains, their first members are defined as given in the Appendix A. Classical
orthogonal polynomials {ψ(i)

αi (xi)}αi∈N are typically not normalized, e.g. the aforementioned Hermite or Leg-
endre families. An orthonormal family {Ψ(i)

αi }αi∈N is then obtained through an appropriate normalization with
Ψ

(i)
αi = ψ

(i)
αi /‖ψ(i)

αi ‖L2
πi
.

Table 1: Two families of orthogonal polynomials.

Input type Polynomials Dxi πi(xi) ψ
(i)
αi (xi) ‖ψ(i)

αi ‖L2
πi

Gaussian Hermite R N (xi |0, 1) Hαi(xi)
√
αi!

Uniform Legendre [−1, 1] U(xi | − 1, 1) Pαi(xi)
√

1/(2αi + 1)

In practice, the parameter space Dx and the input distribution π(x) are often not directly suitable for an
expansion based on the two standardized families in Table 1. One possibility is then to employ suitably chosen or
constructed polynomials [74, 75]. Another possibility is to use an invertible function T : RM → RM , sufficiently
well-behaved and as linear as possible, in order to transform the physical variables x into standardized variables
ξ = T (x), i.e. the image Dξ = T (Dx) and the transformed weight function πT (ξ) = π(T −1(ξ)) |det JT −1(ξ)|
are of a standard form. Here, JT −1 = dT −1/dξ is the Jacobian matrix. If such a change of variables is needed,
the considerations that are given below forM and h in the variables x ∈ Dx can be straightforwardly repeated
forM◦T −1 and h◦T −1 in the variables ξ ∈ Dξ. In this case, the expectation in Eq. (6) follows the integration
by substitution

E[h(X)|y] =
1

Z

∫

Dξ

h
(
T −1(ξ)

)
L
(
T −1(ξ)

)
πT (ξ) dξ. (19)

6



3.4 Polynomial chaos expansions
For simplicity, herein the presentation is restricted to scalar-valued models M : Dx → R. The extension to
the multivariate case is straightforward. It is supposed that the forward model M ∈ L2

π(Dx) is mean-square
integrable. This is a reasonable assumption as seen from a physical perspective. In L2

π(Dx) the generalized
Fourier expansion ofM in terms of the orthogonal polynomials {Ψα}α∈NM is then given as

M =
∑

α∈NM
aαΨα, with (20)

aα = 〈M,Ψα〉L2
π

=

∫

Dx

M(x)Ψα(x)π(x) dx. (21)

The generalized Fourier coefficients {aα}α∈NM of the series expansion in Eq. (20) are defined as the orthogonal
projection ofM onto the basis elements in Eq. (21). The corresponding Fourier series of the second-order random
variable Ỹ =M(X) on (Ω,F ,P) is a so-called polynomial chaos expansion (PCE)M(X) =

∑
α∈NM aαΨα(X).

PCEs have been popularized in the context of uncertainty propagation where the goal is the quantification
of the distribution of Ỹ =M(X). For this purpose it comes in handy that the mean and the variance of this
random variable can be easily determined from its PCE coefficients. Indeed, with Eq. (18) it is easy to verify
that they are simply given as

E[M(X)] =

〈
Ψ0,

∑

α∈NM
aαΨα

〉

L2
π

= a0, (22)

Var[M(X)] =

∥∥∥∥∥
∑

α∈NM
aαΨα − a0Ψ0

∥∥∥∥∥

2

L2
π

=
∑

α∈NM\{0}
a2α. (23)

The simple identities in Eqs. (22) and (23) follow from the definitions of the inner product and the associated
norm in Eqs. (13) and (14), respectively.

3.5 Truncated series
For a practical computation one has to truncate the infinite series in Eq. (20). Let the total degree of a
multivariate polynomial Ψα be defined as ‖α‖1 =

∑M
i=1|αi|. A standard truncation scheme is then adopted by

limiting the terms in Eq. (20) to the finite set of multi-indices

Ap =
{
α ∈ NM : ‖α‖1 ≤ p

}
. (24)

This specifies a set of polynomials {Ψα}α∈Ap such that their total degree ‖α‖1 is smaller than or equal to a
chosen p. The total number of terms retained in the set Ap is given as

P =

(
M + p
p

)
=

(M + p)!

M ! p!
. (25)

The dramatic increase of the total number of terms P with the input dimensionality M and the maximal
polynomial degree p, that is described by Eq. (25), is commonly referred to as the curse of dimensionality. A
simple idea to limit the number of regressors relies on hyperbolic truncation sets. For 0 < q < 1 a quasinorm is
defined as ‖α‖q = (

∑M
i=1|α

q
i |)1/q. The corresponding hyperbolic truncation scheme is then given as Aqp = {α ∈

NM |‖α‖q ≤ p}. Adopting the standard scheme in Eq. (24), a finite version of Eq. (20) can be written as

M̂p(x) =
∑

α∈Ap
aαΨα(x). (26)

In engineering problems, one uses M̂p(x) as a functional approximation of M(x), i.e. as a polynomial
response surface [76]. This is justified because the approximation converges in the mean-square sense

∥∥∥M−M̂p

∥∥∥
2

L2
π

= E

[(
M(X)− M̂p(X)

)2]
=

∑

α∈NM\Ap
a2α → 0, for p→∞. (27)
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The rate of the convergence in Eq. (27) depends on the regularity ofM. On top of that, the response surface
in Eq. (26) is also optimal in the mean-square sense

∥∥∥M−M̂p

∥∥∥
2

L2
π

= inf
M?∈Pp

‖M−M?‖2L2
π
, where Pp = span

(
{Ψα}α∈Ap

)
. (28)

According to Eq. (28), the response surface in Eq. (26) minimizes the mean-square error over the space of
polynomials Pp = span({Ψα}α∈Ap) having a total degree of at most p.

3.6 Least squares
In order to find a metamodel of the form Eq. (26), one computes approximations of the exact expansion
coefficients in Eq. (21). Broadly speaking, one distinguishes between intrusive and non-intrusive computations.
While the former class of techniques is based on manipulations of the governing equations, the latter is exclusively
build upon calls to the forward model at chosen input values. Stochastic Galerkin methods belong to the class of
intrusive techniques [77, 78], whereas stochastic collocation [79, 80] and projection through numerical quadrature
[81, 82] are non-intrusive approaches. Herein we focus on another non-intrusive formulation that is based on
least squares regression analysis [83, 84]. This formulation is based on linear least squares [37, 38] and related
ideas from statistical learning theory [39, 40]. Since this includes sparsity-promoting fitting techniques from
high-dimensional statistics [85, 86], recently least squares projection methods receive considerable attention.
This includes frequentist [87–90] and Bayesian implementations [91–94] of shrinkage estimators. Current results
regarding the convergence behavior of such regression methods can be found in [95–97].

We introduce a simplifying vector notation such that a = (a1, . . . , aP )> and Ψ = (Ψ1, . . . ,ΨP )> gather and
order the coefficients and the polynomials for all α ∈ Ap. For the truncated expression in Eq. (26) one thus has
M̂p = a>Ψ. The problem of finding M̂p ∈ Pp that minimizes the mean-square error in Eq. (28) may then be
equivalently rephrased as

a = arg min
a?∈RP

E
[(
M(X)− a?>Ψ(X)

)2]
. (29)

The stochastic optimization objective in Eq. (29) establishes an alternative to the orthogonal projection in
Eq. (21). This formulation may be more amenable to a numerical computation. At the very least it allows
one the draw on the machinery of linear least squares in order to compute an approximation â of the exact
coefficients a. To that end one discretizes Eq. (29) as

â = arg min
a?∈RP

1

K

K∑

k=1

(
M(x(k))− a?>Ψ(x(k))

)2
. (30)

Here, the experimental design X = (x(1), . . . ,x(K)) is a representative sample of K forward model inputs, e.g.
randomly drawn from the input distribution in Eq. (12). It is then required to compute the corresponding
model responses Y = (M(x(1)), . . . ,M(x(K)))> in K training runs.

Now let A ∈ RK×P be the matrix with entries Ak,l = Ψl(x
(k)) for k = 1, . . . ,K and l = 1, . . . , P . Moreover,

let the system Y = Aâ be overdetermined with K ≥ P . The linear least squares problem in Eq. (30) may then
be written as

â = arg min
a?∈RP

‖Y −Aa?‖2 (31)

The normal equations (A>A)â = A>Y establish the first-order condition for Eq. (31) to apply. Given that the
matrix A>A is non-singular, this linear system is solved by

â = (A>A)−1A>Y. (32)

The positive definiteness of A>A, i.e. the columns of A are linearly independent, is the second-order condition
for Eq. (32) to be the minimum of Eq. (31). The ordinary least squares (OLS) solution Eq. (32) is commonly
computed by means of linear algebra methods. An alternative to OLS is least angle regression (LAR) [98,
99]. LAR is well-suited for high-dimensional PCE regression problems [87] and can be even applied in the
underdetermined case. It is based on selecting only the most dominant regressors from a possibly large candidate
set. The resulting predictor is thus sparse as compared to the OLS solution.
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3.7 Prediction errors
After the computation of a metamodel, one typically wants to assess its prediction accuracy. Moreover, when
a number of candidate surrogates is computed, one wants to compare their performances in order to eventually
select the best. Hence, one needs to define an appropriate criterion that allows for an accurate and efficient
quantification of the approximation errors. The natural measure of the mismatch between the forward model
M and an approximation M̂p is the generalization error EGen = E[(M(X) − M̂p(X))2]. This is exactly
the error the minimization of which is posed by Eq. (29). Since it remains unknown, it cannot be used as
a performance measure. One could estimate EGen based on MC simulation, though. However, this is not
very efficient since it requires the execution of additional forward model runs. In contrast, the empirical error
EEmp = K−1

∑K
k=1(M(x(k))− M̂p(x

(k)))2 is the quantity that is practically minimized according to Eq. (30).
This error indicator is obtained for free, however, it does not account for overfitting and thus tends to severely
underestimate the real generalization error EGen.

In order to construct an estimate of EGen that is more efficient than the MC estimate and more accurate
than EEmp, one sometimes resorts to leave-one-out (LOO) cross validation [100]. Let M̂∼k be the surrogate
model that is obtained from the reduced experimental design X∼k = (x(1), . . . ,x(k−1),x(k+1), . . . ,x(K)), i.e. a
single input x(k) has been dropped. The LOO error is then defined as

ELOO =
1

K

K∑

k=1

(
M(x(k))− M̂∼k(x(k))

)2
. (33)

Without the need for re-running the forward model, this error allows for a fair assessment of how well the
performance of a metamodel M̂p generalizes beyond the used experimental design. Yet, Eq. (33) calls for
conducting K separate regressions for finding M̂∼k with an experimental design of the size K−1. A remarkably
simple result from linear regression analysis states that ELOO can be also computed as

ELOO =
1

K

K∑

k=1

(
M(x(k))− M̂p(x

(k))

1− hk

)2

. (34)

Here, M̂p is computed from the full experimental design X and hk denotes the k-th diagonal entry of the matrix
A(A>A)−1A>. This is more efficient since it does not require repeated fits. A derivation of the formula in
Eq. (34) can be found in [101].

One may define εEmp = EEmp/Var[Y] and εLOO = ELOO/Var[Y] as normalized versions of the empirical
and the LOO error, respectively. Here, Var[Y] is the empirical variance of the response sample Y. These
normalized errors can be used in order to judge and compare the performance of metamodels. In turn, this
enables a practical convergence analysis, e.g. by monitoring the errors over repeated metamodel computations
for an increasing experimental design size K and expansion order p.

4 Spectral Bayesian inference
Different types of probability density approximations are encountered in statistical inference. This includes
series expansions for the population density of a random data sample in nonparametric distribution fitting.
Here, the unknown density of the data is either directly represented as a linear combination of polynomial
basis functions [102] or as the product of a base density times a superposition of polynomials [103]. The latter
type of expansion is also encountered in parametric density estimation of random data where one-dimensional
posterior densities of the unknown parameter are expanded about a Gaussian baseline. This can be based
on a Taylor sum at a maximum likelihood estimate [104, 105] or on Stein’s lemma and numerical integration
[106, 107]. Moreover, different types of likelihood approximations are encountered in inverse modeling. This
includes direct approaches where the likelihood is approximated itself [108, 109] and indirect methods where
the likelihood is approximated based on a surrogate of the forward model [18–20]. These techniques facilitate
Bayesian inference within the limits of MCMC sampling.

By linking likelihood approximations to density expansions, now we present a spectral formulation of
Bayesian inference which targets the emulation of the posterior density. Based on the theoretical and computa-
tional machinery of PCEs, the likelihood function itself is decomposed into polynomials that are orthogonal with
respect to the prior distribution. This spectral likelihood expansion enables semi-analytic Bayesian inference.

9



Simple formulas are derived for the joint posterior density and its marginals. They are regarded as expansions
of the posterior about the prior as the reference density. The model evidence is shown to be the coefficient of
the constant expansion term. General QoI-expectations under the posterior and the first posterior moments
are obtained through a mere postprocessing of the spectral coefficients. After a discussion of the advantages
and shortcomings of the spectral method, a change of the reference density is proposed in order to improve the
efficacy.

4.1 Spectral likelihood expansions
The authors C. Soize and R. Ghanem start their paper [110] with the following sentence: “Characterizing the
membership of a mathematical function in the most suitable functional space is a critical step toward analyzing
it and identifying sequences of efficient approximants to it.” As discussed in Section 2, given the data y and
the statistical model f(y |x), the likelihood is the function

L : Dx → R+

x 7→ f(y |x).
(35)

It maps the parameter space Dx into the set of non-negative real numbers R+. At this place we assume that
the likelihood L ∈ L2

π(Dx) is square integrable with respect to the prior. From a statistical point of view,
this is a reasonable supposition which is necessary in order to invoke the theory of Section 3. On condition
that the likelihood is bounded from above, the mean-square integrability follows immediately from the axioms
of probability. Note that maximum likelihood estimates (MLE) implicitly rest upon this presumption. If
xMLE ∈ arg maxx∈Dx L(x) is a MLE, i.e. for all x ∈ Dx it applies that L(x) ≤ L(xMLE) <∞, then one trivially
has

∫
Dx L

2(x)π(x) dx ≤ L2(xMLE)
∫
Dx π(x) dx = L2(xMLE) <∞.

Having identified L2
π(Dx) as a suitable function space for characterizing the likelihood, one can represent

the likelihood with respect to the orthonormal basis {Ψα}α∈NM . This representation is

L =
∑

α∈NM
bαΨα, with (36)

bα = 〈L,Ψα〉L2
π

=

∫

Dx

L(x)Ψα(x)π(x) dx. (37)

We refer to Eqs. (36) and (37) as a spectral likelihood expansion (SLE). Notice that the SLE coefficients
{bα}α∈NM are data-dependent. This reflects the fact that the likelihood in Eq. (35) depends on the data.
With the truncation scheme in Eq. (24), one can limit the infinite series in Eq. (36) to the finite number of
terms for which α ∈ Ap. A mean-square convergent response surface of the likelihood is then given as

L̂p(x) =
∑

α∈Ap
bαΨα(x). (38)

For the time being we assume that the coefficients of the SLE in Eq. (36) or its response surface in Eq. (38)
are already known. One can then accomplish Bayesian inference by extracting the joint posterior density or a
posterior density surrogate, its marginals and the corresponding QoI-expectations directly from the SLE.

4.2 Joint posterior density
We begin with the joint posterior density function and the model evidence. By plugging Eq. (36) in Eq. (1) one
simply obtains the “nonparametric” expression

π(x|y) =
1

Z

( ∑

α∈NM
bαΨα(x)

)
π(x). (39)

Due to the orthonormality of the basis, the model evidence is simply found as the coefficient of the constant
SLE term. This is easily verified by writing Eq. (2) as

Z = 〈1,L〉L2
π

=

〈
Ψ0,

∑

α∈NM
bαΨα

〉

L2
π

= b0. (40)
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The remarkably simple result in Eq. (40) completes the expression of the posterior density in Eq. (39). It is
interesting to note that the posterior density is of the form

π(x|y) = π(x)


1 +

∑

α∈NM\{0}
b−10 bαΨα(x)


 . (41)

In essence, the posterior density is here represented as a “perturbation” around the prior. The latter establishes
the leading term of the expansion and acts as the reference density. The expression in Eq. (41) is reminiscent
of an Edgeworth expansion for a density function in asymptotic statistics [111–113].

4.3 Quantities of interest
Based on the joint posterior density one can calculate the corresponding QoI-expectations in Eq. (6). At this
point, the identities in Eqs. (7) and (15) finally play a key role. They allow one to express and treat the posterior
expectation of a QoI with h ∈ L2

π(Dx) as the weighted projection onto the likelihood

E[h(X)|y] =
1

Z
E[h(X)L(X)] =

1

Z
〈h,L〉L2

π
. (42)

Let h =
∑
α∈NM cαΨα with cα = 〈h,Ψα〉L2

π
be the QoI representation in the polynomial basis used. The

general posterior expectation in Eq. (6) follows then from Eq. (42) by Parseval’s theorem

E[h(X)|y] =
1

b0

〈 ∑

α∈NM
cαΨα,

∑

α∈NM
bαΨα

〉

L2
π

=
1

b0

∑

α∈NM
cαbα. (43)

If the QoI h ∈ Pp is known by a multivariate monomial representation of finite order, then its representation in
the orthogonal basis can always be recovered by a change of basis. Examples that relate to the first posterior
moments are given shortly hereafter. In a more complex case the QoI is a computational model itself and one
would have to numerically compute a PCE surrogate. While Eq. (22) facilitates the propagation of the prior
uncertainty, Eq. (43) promotes the propagation of the posterior uncertainty.

4.4 Posterior marginals
Now the posterior marginals in Eq. (3) are derived. For some j ∈ {1, . . . ,M} let us introduce the new set of
multi-indices A(j) = {(α1, . . . , αM )|αi = 0 for i 6= j}. With a slight abuse of the notation, the sub-expansion of
the SLE that only contains terms with α ∈ A(j) is denoted as

Lj(xj) =
∑

α∈A(j)

bαΨα(x) =
∑

µ∈N
b(j)µ Ψ(j)

µ (xj), where b(j)µ = b(0,...,0,µ,0,...,0). (44)

It collects all the polynomials that are constant in all variables x∼j , i.e. they are non-constant in the single
variable xj only. In this sense the sub-expansion in Eq. (44) is virtually a function of xj only. For the posterior
marginal of the single unknown xj in Eq. (3) one can derive

π(xj |y) =
πj(xj)

Z

∫

Dx∼j

L(x)π(x∼j) dx∼j =
1

b0
Lj(xj)πj(xj). (45)

These equalities apply due to the independent prior π(x) = π(x∼j)πj(xj) in Eq. (12), the orthonormality of
the univariate polynomials in Eq. (16) and the tensor structure of the multivariate ones in Eq. (17). For a
pair j, k ∈ {1, . . . ,M} with j 6= k let us introduce yet another set of multi-indices A(j,k) = {(α1, . . . , αM )|αi =
0 for i 6= j, k}. The sub-expansion of the full SLE that only contains terms with α ∈ A(j,k) is denoted as

Lj,k(xj , xk) =
∑

α∈A(j,k)

bαΨα(x) =
∑

µ,ν∈N
b(j,k)µ,ν Ψ(j)

µ (xj)Ψ
(k)
ν (xk),

where b(j,k)µ,ν = b(0,...,0,µ,0,...,0,ν,0,...,0).

(46)
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Since it only contains terms that are constant in x∼j,k, the sub-expansion in Eq. (46) can be seen as a function
of xj and xk. The posterior density can then be marginalized as follows

π(xj , xk |y) =

∫

Dx∼j,k

π(x|y) dx∼j,k =
1

b0
Lj,k(xj , xk)πj(xj)πk(xk). (47)

Note that the dependency structure of π(xj , xk |y) in Eq. (47) is induced by those terms of Lj,k(xj , xk) that are
not present in Lj(xj) and Lk(xk), i.e. the terms b(j,k)µ,ν Ψ

(j)
µ (xj)Ψ

(k)
ν (xk) with µ, ν 6= 0.

4.5 First posterior moments
With the two marginalizations of the posterior density in Eqs. (45) and (47) one can calculate the entries
of the posterior mean in Eq. (4) and the covariance matrix in Eq. (5). Let {d(j)0 , d

(j)
1 } be defined such that

xj = d
(j)
0 Ψ

(j)
0 (xj) + d

(j)
1 Ψ

(j)
1 (xj). With this univariate representation and Eq. (45) one easily obtains

E[Xj |y] =
1

b0
〈xj ,Lj〉L2

πj

=
1

b0

(
d
(j)
0 b

(j)
0 + d

(j)
1 b

(j)
1

)
. (48)

Note that one actually has b(j)0 = b0 in this notation. Diagonal entries of the covariance matrix in Eq. (5) can
be similarly deduced. Let {e(j)0 , e

(j)
1 , e

(j)
2 } the coefficients of the univariate representation (xj − E[Xj |y])2 =∑2

µ=0 e
(j)
µ Ψ

(j)
µ (xj). Then one simply has

Var[Xj |y] =
1

b0

〈
(xj − E[Xj |y])

2
,Lj
〉
L2
πj

=
1

b0

2∑

µ=0

e(j)µ b(j)µ . (49)

Finally, let {e(j,k)0,0 , e
(j,k)
0,1 , e

(j,k)
1,0 , e

(j,k)
1,1 } be the coefficients of the bivariate PCE with (xj−E[Xj |y])(xk−E[Xk |y]) =

∑1
µ,ν=0 e

(j,k)
µ,ν Ψ

(j)
µ (xj)Ψ

(k)
ν (xk). For an off-diagonal entry of Eq. (5) one then finds

Cov[Xj , Xk |y] =
1

b0

1∑

µ,ν=0

e(j,k)µ,ν b(j,k)µ,ν . (50)

Notation-wise, Eqs. (48) to (50) may seem to be somewhat cumbersome. Nevertheless, they establish simple
recipes of how to obtain the first posterior moments by a postprocessing of the low-degree SLE terms in closed-
form. Higher-order moments could be obtained similarly. Some examples of how the corresponding QoIs can
be represented in terms of orthogonal polynomials can be found in the Appendix B.

4.6 Discussion of the advantages
In spectral Bayesian inference the posterior is genuinely characterized through the SLE and its coefficients.
The essential advantage of this approach is that all quantities of inferential relevance can be computed semi-
analytically. Simple formulas for the joint posterior density and the model evidence emerge in Eqs. (39) and (40).
They allow to establish Eq. (41) as the posterior density surrogate. General QoI-expectations under the posterior
are then calculated via Parseval’s formula in Eq. (43). The posterior marginals are obtained based on sub-
expansions of the full SLE in Eq. (45) and the first posterior moments have closed-form expressions in Eqs. (48)
to (50). These striking characteristics clearly distinguish spectral inference from integration and sampling
approaches where the posterior is summarized by expected values or random draws only. As for the latter,
one has to rely on kernel estimates of the posterior density and on empirical sample approximations of the
QoI-expectations. Also, the model evidence is not computed explicitly.

The practical computation of the SLE in Eq. (36) can be accomplished analogously to finding the PCE
approximation of the forward model in Eq. (20), e.g. by solving a linear least squares problem as in Eq. (30).
This allows one to draw on the vast number of tools that were developed for carrying out this well-known type
of regression analysis. An attractive feature of this procedure is that the prediction error of the obtained SLE
acts as a natural convergence indicator. We recall that the LOO error in Eq. (33) can be efficiently evaluated
as per Eq. (34), i.e. without the need for additional forward model runs or regression analyses. The existence of
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an intrinsic convergence criterion is an advantage over traditional MCMC techniques. Another advantage of the
formulation its amenability to parallel computations. While the workload posed by MCMC is inherently serial,
running the forward model for each input in the experimental design is embarrassingly parallel. Parallelization
is also possible on the level of the linear algebra operations that are necessary in order to solve the normal
equations.

4.7 Discussion of the shortcomings
The approximate nature of SLE computations is twofold, i.e. only a finite number of terms are kept in the
expansion and the coefficients are inexact. Unfortunately, a number of inconveniences may arise from these
inevitable approximations. The SLE and the correspondingly computed posterior density could spuriously take
on negative values. Also the estimated model evidence in Eq. (40) could take on negative values Z < 0. Still
note that the approximate posterior in Eq. (39) always integrates to one. For reasonably adequate SLEs, we
expect that negative values only occur in the distributional tails. Even so, the presence of negative values
hampers the interpretation of the obtained posterior surrogate as a proper probability density, e.g. it leads
to finite negative probabilities that are somehow irritating. From a more practical rather than a technical or
philosophical perspective, densities are ultimately instrumental to the evaluation of more concrete quantities
such as the expectations in Eq. (43). The severity of negative densities has thus to be judged with respect to
the distortions of these relevant values. As long as their accurate approximation is guaranteed, the possibility
of negative density values is an unavoidable artifact that can be regarded as a minor blemish. And the obtained
surrogate density still proves to be expedient to effectively characterize the posterior distribution. In this light,
it is more unpleasant that the a posteriori estimates of the model parameters may violate the restrictions that
were imposed a priori. In Eq. (48) it could indeed happen that E[Xj |y] /∈ Dxj . Estimations of the second
order moments in Eq. (49) could result in unnatural values Var[Xj |y] < 0, too. Although these problems
cannot be remedied unless one solves an appropriately constrained version of Eq. (30), they unlikely occur if the
SLE is sufficiently accurate. Anticipating outcomes from later numerical demonstrations, we remark that the
occurrence of negative density values is observed, while unphysical or unnatural estimates of the first posterior
moments are not found.

The SLE decomposition into a globally smooth basis of tensorized polynomials suffers from some other
intrinsic problems. Generally, there is the curse of dimensionality, i.e. the increase of the number of regressors
in Eq. (25). Furthermore, the SLE convergence rate in Eq. (27) depends on the regularity of the underlying
likelihood function. For discontinuous forward or error models the SLE approximation with smooth polynomials
converges only slowly. Likelihood functions often show a peaked structure around the posterior modes and a
vanishing behavior elsewhere. Hence, any adequate superposition of polynomials has to capture those two
different behavioral patterns through some kind of “constructive” and “destructive” interaction between its
terms, respectively. Due to their global nature, the employed polynomial basis may not admit sparse likelihood
representations. In turn, a high number of terms might be necessary in order to accurately represent even
simple likelihood functions. Especially in the case of high-dimensional and unbounded parameter spaces this
may cause severe practical problems. Of course, in Eqs. (36) and (37) one could expand the likelihood in a
different basis. Yet, note that the QoIs in Eq. (43) would also have to be expanded in that basis.

The role of the prior for spectral inference is manifold. Initially the posterior expectations in Eq. (6) have
been rewritten as the weighted prior expectations in Eq. (7). This formulation is accompanied by difficulties
in computing posteriors that strongly deviate from the prior. The same situation arises for crude MC inte-
gration and eventually motivates importance or MCMC sampling that allow to focus on localized regions of
high posterior mass. Those difficulties become manifest if the prior acts as the sampling distribution for the
experimental design. In this case, the SLE is only accurate over the regions of the parameter space that ac-
cumulate considerable shares of the total prior probability mass. Approximation errors of the SLE in regions
that are less supported by the prior then induce errors in the computed posterior surrogate. Note that this
difficulty is also encountered in MCMC posterior exploration with prior-based PCE metamodels. Also, the error
estimate in Eq. (34) then only measures the SLE accuracy with respect to the prior which may be misleading
for the assessment of the posterior accuracy. It is not clear how the errors of the likelihood expansion relate to
the induced errors of the posterior surrogate and the posterior moments. Moreover, since the prior acts as the
reference density of the posterior expansion in Eq. (41), the spectral SLE representation of significantly differing
posteriors requires higher order corrections. Otherwise put, SLEs are expected to perform better for posteriors
that only slightly update or perturb the prior.
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4.8 Change of the reference density
As just discussed, a major drawback of SLEs is their dependency on the prior π as the reference density
function. The errors are minimized and measured with respect to the prior and the posterior is represented
as correction of the standard reference. In case that high-order corrections are required, SLEs also suffer
from the curse of dimensionality. While fully maintaining the advantages of the spectral problem formulation,
these shortcomings can be remedied through the introduction of an auxiliary density g over the prior support
Dx that would optimally mimic the posterior in some sense. This reference density change allows for the
construction of auxiliary expansions that are more accurate with respect to the posterior and for a more
convenient series expansions of the joint posterior density. It is analogous to the adjustment of the integration
weight in importance sampling, where the average over a distribution is replaced by a weighted average over
another ancillary distribution. An iterative use of this reference change naturally allows for adaptive SLE
approaches.

Given that g(x) 6= 0 for all x ∈ Dx, one may define the auxiliary quantity G = Lπ/g. Under the additional
assumption that G ∈ L2

g(Dx), one can expand this quantity in terms of polynomials {Ψg
α}α∈NM that are

orthogonal with respect to the auxiliary reference. Analogous to the expansion of L ∈ L2
π(Dx) in Eqs. (36)

and (37), this is

G =
Lπ
g

=
∑

α∈NM
bgαΨg

α, with (51)

bgα = 〈G,Ψg
α〉L2

g
=

∫

Dx

G(x)Ψg
α(x) g(x) dx =

∫

Dx

L(x)Ψg
α(x)π(x) dx. (52)

The coefficients of this auxiliary SLE (aSLE) are denoted as {bgα}α∈NM . They equal the projections bgα =
〈L,Ψg

α〉L2
π
of the likelihood onto the polynomials Ψg

α. Note that if the new reference g = π equals the prior,
then G = L is simply the likelihood and the formulation remains unchanged. If the density g = π(·|y) equals
the posterior, then the quantity G = Z equals the model evidence. In this case the aSLE G = bg0Ψg

0 = bg0 is
a constant with a single nonzero term. If g ≈ π(·|y) only applies in an approximate sense, then one may still
speculate that the aSLE is sparser than the corresponding SLE.

As in importance sampling, one can then rewrite the expectation values under π in Eqs. (2) and (7) as
expectations under g. Similar to Eq. (40), the model evidence then emerges again as the zeroth expansion term

Z =

∫

Dx

G(x) g(x) dx = bg0. (53)

Let h =
∑
α∈NM cgαΨg

α with cgα = 〈h,Ψg
α〉L2

g
be the auxiliary expansion of a QoI. Similar to Eq. (43), for general

QoI posterior expectations one may then write

E[h(X)|y] =
1

Z

∫

Dx

h(x)G(x) g(x) dx =
1

bg0

∑

α∈NM
cgαb

g
α. (54)

In accordance with the aSLE in Eqs. (51) and (52) the joint density of the posterior distribution is obtained
as the asymptotic series

π(x|y) =
G(x)g(x)

Z
=

1

bg0

( ∑

α∈NM
bgαΨg

α(x)

)
g(x) = g(x)


1 +

∑

α∈NM\{0}

bgα
bg0

Ψg
α(x)


 . (55)

As opposed to Eq. (41) where the posterior density is represented around the prior π, in Eq. (55) the posterior
is expanded about the new reference g. If the latter resembles the posterior adequately well, the formulation
only calls for small corrections.

5 Numerical examples
Next, the potential and the difficulties of the theory presented in the preceding section are investigated. The
goal is to give a proof of concept for the basic feasibility of spectral Bayesian inference. It is verified that the
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theory can be successfully applied in practice and further insight into its functioning is obtained. Moreover,
it is learned about its current shortcomings. Four instructive calibration problems from classical statistics
and inverse modeling are solved for these purposes. The analysis is confined to problems with low-dimensional
parameter spaces. First, the mean value of a normal distribution is inferred with random data under a conjugate
normal prior. Second, the mean and standard deviation of a normal distribution are fitted for a joint prior with
independent and uniform marginals. Third, an inverse heat conduction problem in two spatial dimensions with
two unknowns is solved. Finally, a similar thermal problem with six unknowns is considered. Synthetically
created pseudo-data are used in all these example applications.

As it turns out, one can gain valuable insights into the characteristics of likelihood expansions and posterior
emulators by way of comparison. Therefore, the analyses for the first three examples proceed analogously.
For rich experimental designs, the convergence behavior of high-degree SLEs is studied by reference to the
LOO error. More importantly, the capability of lower-degree SLEs to accurately capture the posterior QoI-
expectations is explored for scarcer experimental designs. Eventually, aSLE-based posterior surrogates are
investigated in order to mitigate the curse of dimensionality. All results are compared to reference solutions.
Where possible, the exact solutions from a conjugate Bayesian analysis are used to this effect. Otherwise,
corresponding approximations are computed via classical MCMC sampling.

The uncertainty quantification platform UQLab [114, 115] is used throughout the numerical demonstrations.
It provides a flexible environment for the uncertainty analysis of engineering systems, e.g. for uncertainty
propagation. In this context it ships with a range of regression tools that allow one to easily compute PCEs.
These tools can be directly applied to the likelihood function in order to compute SLEs. OLS is employed as
the standard solving routine in the following examples.

5.1 1D normal fitting
First of all, we consider the problem of fitting a Gaussian distribution N (yi |µ, σ2) to random realizations yi
with i = 1, . . . , N . The goal is to estimate the unknown mean µ whereas the standard deviation σ is assumed
to be already known. Given a Gaussian prior, this one-dimensional normal model with known variance exhibits
a Gaussian posterior density. Moreover, a closed-form expression for the model evidence can be derived. Since
this offers the possibility of comparing the SLE results with analytical solutions, this simple statistical model is
used as a first SLE testbed. Let the data y = (y1, . . . , yN )> be comprised of N independent samples from the
normal distribution. For the observational model one may then write

Y |µ ∼
N∏

i=1

N (yi |µ, σ2), with known σ2. (56)

Consequently, the likelihood function can be simply written as L(µ) =
∏N
i=1N (yi |µ, σ2). A Bayesian prior

distribution π(µ) captures the epistemic uncertainty of the true value of µ before the data analysis. For the
posterior distribution, that aggregates the information about the unknown after the data have been analyzed,
one then has π(µ|y) = Z−1L(µ)π(µ).

The conjugate prior for the data model in Eq. (56) is a Gaussian π(µ) = N (µ|µ0, σ
2
0). Its mean µ0 = E[µ]

and variance σ2
0 = Var[µ] have to be conveniently specified by the experimenter and data analyst. This prior

choice ensures that the posterior is a Gaussian π(µ|y) = N (µ|µN , σ2
N ) whose parameters µN = E[µ|y] and

σ2
N = Var[µ|y] are easily found as

µN =

(
1

σ2
0

+
N

σ2

)−1(
µ0

σ2
0

+
Ny

σ2

)
, σ2

N =

(
1

σ2
0

+
N

σ2

)−1
. (57)

Here, y = N−1
∑N
i=1 yi is the empirical sample mean of the data. Likewise, an explicit expression for the

model evidence Z =
∫
R

(
∏N
i=1N (yi |µ, σ2))N (µ|µ0, σ

2
0) dµ can be derived. Let y2 = N−1

∑N
i=1 y

2
i denote the

sample mean of the squared observations. A straightforward calculation based on simple algebra and a Gaussian
integral then yields

Z = σ−10

(
σ
√

2π
)−N ( 1

σ2
0

+
N

σ2

)−1/2
exp

(
−1

2

(
µ2
0

σ2
0

+
Ny2

σ2
−
(

1

σ2
0

+
N

σ2

)−1(
µ0

σ2
0

+
Ny

σ2

)2
))

. (58)

For the following computer experiment, the parameters of the data distribution in Eq. (56) are specified
as µ = 10 and σ = 5, respectively. In the course of the procedure only the mean is treated as an unknown,
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whereas the standard deviation is assumed to be known. We consider a situation where N = 10 samples are
randomly drawn from the data distribution. For the numerical experiment, the pseudo-random numbers y =
(8.78, 4.05, 12.58, 3.60, 11.05, 8.70, 20.80, 1.23, 19.36, 12.07)> are used as synthetic data. The prior distribution
is set to be a Gaussian π(µ) = N (µ|µ0, σ

2
0) with µ0 = 11.5 and σ0 = 1.5.

5.1.1 Posterior density

In order to better understand the principles of spectral Bayesian inference we now proceed as follows. Spectral
expansions L̂p of the likelihood function L defined above are computed and compared for experimental designs
of varying size K and polynomial terms of varying degree p. Hermite polynomials are used in combination
with an appropriate linear transformation to standardized variables ξµ ∈ R with a Gaussian weight function
N (ξµ |0, 1). Accordingly, the unknown can be represented as µ = µ0 + σ0ξµ. The experimental designs are
one-dimensional Sobol sequences that are appropriately transformed.

First the convergence behavior and the accuracy of the likelihood approximation are analyzed. For a rich
experimental design with K = 5 × 104, SLEs are computed for an increasing order up to p = 20. The
normalized empirical error εEmp and the normalized LOO error εLOO are monitored over these computations.
While the former can be directly computed according to its definition, the computation of the latter relies on
the reformulation in Eq. (34). This serves the purpose of assessing the prediction accuracy of the computed
SLE as a function of the degree p. The results are plotted in Fig. 1. It can be seen how the error estimates
approach zero, i.e. the SLE converges to the likelihood function. For p = 20 the empirical error amounts to
εEmp = 1.05× 10−12 and the LOO amounts to εLOO = 1.82 × 10−10. These small error magnitudes show that
the likelihood function L can be indeed spectrally expanded in a Hermite basis.
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Figure 1: 1D normal fitting: Convergence of the SLE.

The functional likelihood approximation L̂p provided by the most accurate SLE with p = 20 is visualized in
Fig. 2. Moreover, the plot shows a low-order SLE with p = 5 and K = 1 × 102 for which the error estimates
εEmp = 2.61 × 10−4 and εLOO = 8.41 × 10−4 are obtained. For the sake of comparison the exact likelihood
function L is shown as well. It can be seen that the SLEs are able to accurately represent the likelihood around
its peak, i.e. roughly speaking in the interval µ ∈ [8, 15] for p = 5 and in µ ∈ [5, 18] for p = 20. Note that these
regions accumulate the largest proportions of the total prior probability mass. Outside of these ranges, however,
the SLEs L̂p start strongly deviating from L and taking on negative values. These phenomena can be attributed
to an imperfect polynomial cancellation of the finite series approximation of the likelihood in the regions of the
parameter space that are only sparsely covered by the experimental design. Indeed, for unbounded parameter
spaces it is clearly hopeless to achieve a global net cancellation of a finite polynomial expansion that is necessary
in order to emulate the vanishing behavior of the likelihood far from its peaks. The extent to which this impacts
on the approximation of the posterior density and its first moments is investigated next.

Expanding the likelihood function is only a means to the end of surrogating the posterior density. Approx-
imations of the posterior density π(µ|y) ≈ b−10 L̂p(µ)π(µ) are computed from the SLEs with p = 5 and p = 20
through Eqs. (39) and (40). The results are plotted in Fig. 3. In addition to the SLE approximations, the
prior density π(µ) = N (µ|µ0, σ

2
0) and the exact solution π(µ|y) = N (µ|µN , σ2

N ) from a conjugate analysis
based on Eq. (57) are shown. The posterior surrogate for p = 5 shows minor deviations from the the analytical
result, while the approximation for p = 20 perfectly matches the true density. It is noted that the discrepancies
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between L̂p and L shown in Fig. 2 are attenuated. The underlying reason is that for large enough |µ| → ∞
the exponential decay of the Gaussian prior π(µ) ∝ exp(−(µ − µ0)2) dominates the polynomial increase of
L̂p(µ) =

∑p
α=0 bαΨα(µ) in the sense that L̂p(µ)π(µ) → 0. This absorbs the effects of the SLE approximation

that is increasingly inadequate for large values of |µ|. In this sense, the prior reference density guards the
posterior surrogate against the inadequacies of the SLE. Therefore, the posterior emulation may very well be
more accurate than the SLE approximation of the likelihood.
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Figure 2: 1D normal fitting: Likelihood function.
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Figure 3: 1D normal fitting: Posterior density.

5.1.2 Quantities of interest

Commonly one employs posterior means as parameter estimates and posterior standard deviations as measures
of the estimation uncertainty. In order to investigate how well one can approximate the model evidence together
with these meaningful quantities in spectral Bayesian inference, SLEs are computed for experimental designs of
varying size K and for a selection of expansion orders p. The corresponding SLE-based approximations of the
model evidence Z, the posterior mean µN and the standard deviation σN are then computed from Eqs. (40), (48)
and (49). Note that the effects of the transformation to standard variables have to be appropriately taken care
of at this place. This happens via Eq. (19). The SLE approximations can then be compared to the analytical
solutions that are obtained from the conjugate analysis in Eqs. (57) and (58). In Table 2 the results of this
procedure are summarized. Note that all the SLE estimates attain admissible values, e.g. the model evidence is
non-negative. Furthermore, it is noticed that Z, µN and σN can be recovered with high accuracy even for very
scarce experimental designs and low-order SLEs, say for K = 1× 103 and p = 10. It is concluded that, in some
sense, the accurate estimation of the model evidence and the first posterior moments require significantly less
computational effort than the accurate estimation of the posterior density.

Table 2: 1D normal fitting: Statistical quantities.

K p εLOO Z [10−15] µN σN

SL
E

1× 102 5 8.41× 10−4 3.71 10.85 0.92
5× 102 8 2.49× 10−4 3.75 10.91 1.14
1× 103 10 2.58× 10−5 3.74 10.90 1.07
5× 103 12 8.21× 10−6 3.74 10.89 1.09
1× 104 15 3.84× 10−7 3.74 10.89 1.09
5× 104 20 1.82× 10−10 3.74 10.89 1.09

Exact results 3.74 10.89 1.09

5.2 2D normal fitting
Next, we consider the problem of fitting both the unknown mean µ and the standard deviation σ of a Gaussian
distribution N (yi |µ, σ2). A number of independent samples yi with i = 1, . . . , N from the normal distribution
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constitute the available data y = (y1, . . . , yN )>. The data model for this situation is written as

Y |µ, σ ∼
N∏

i=1

N (yi |µ, σ2). (59)

For the likelihood function one then has L(µ, σ) =
∏N
i=1N (yi |µ, σ2). Given a Bayesian prior π(µ, σ), the

posterior distribution is π(µ, σ |y) = Z−1L(µ, σ)π(µ, σ). This distribution aggregates the information about the
two unknowns after the data have been analyzed.

The true values of the mean and standard deviation are set as µ = 30 and σ = 5, respectively. These
values are treated as unknowns in the further course of the computer experiment. We consider a situation
where N = 10 samples are randomly drawn from the distribution in Eq. (59). The pseudo-random numbers
y = (31.23, 27.50, 24.91, 25.99, 32.88, 36.41, 27.81, 25.19, 37.96, 34.84)> are used as synthetic data. We consider
an independent prior π(µ, σ) = π(µ)π(σ) with uniform marginals π(µ) = U(µ|µ, µ) and π(σ) = U(σ |σ, σ) over
bounded supports Dµ = [µ, µ] = [20, 40] and Dσ = [σ, σ] = [2, 10]. As opposed to the conjugate example above,
this two-dimensional model does not permit a closed-form expression of the posterior density and the model
evidence.

5.2.1 Posterior density

Now we proceed analogously to the investigation of the normal model with known variance. Expansions L̂p
of the likelihood L are computed and contrasted for different experimental designs of size K and different
polynomial orders p. An appropriate linear transformation to uniform standardized variables is applied such
that the unknowns are represented as µ = (µ − µ)/2 · ξµ + (µ + µ)/2 and σ = (σ − σ)/2 · ξσ + (σ + σ)/2,
respectively. Here, ξµ, ξσ ∈ [−1, 1] are the corresponding standardized variables with a uniform weight function.
Accordingly, tensorized Legendre polynomials form the trial basis. Two-dimensional Sobol sequences are utilized
as uniformly space-filling experimental designs.

As before, the speed of convergence and the prediction accuracy of the SLE are analyzed first. The normalized
empirical error εEmp and the normalized LOO error εLOO are therefore monitored throughout a series of runs
that are conducted for an experimental design of the fixed size K = 1×105 and for an increasing expansion order
up to p = 50. In Fig. 4 a corresponding plot is shown, where the convergence of the SLE L̂p to the likelihood
function L is diagnosed. The reason that εEmp and εLOO do not significantly differ is that the large size of the
experimental design prevents overfitting. For p = 50 the normalized empirical error and the normalized LOO
error are found as εEmp = 5.56 × 10−11 and εLOO = 6.05 × 10−11, respectively. This shows that the likelihood
function L can be indeed expanded in the Legendre basis. For the uniform prior distribution that is used here,
the normalized SLE errors effectively measure the errors of the posterior density.
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Figure 4: 2D normal fitting: Convergence of the SLE.

Now the joint posterior density π(µ, σ |y) is computed and plotted in Fig. 5. For comparison purposes the
posterior is sampled by means of MCMC simulation first. A simple random walk Metropolis (RWM) sampler
with a Gaussian instrumental distribution is utilized. With this algorithm an unusually large number of 107

MCMC samples is drawn from the posterior. This serves the purpose of providing very accurate results that
act as references for the SLE-based estimates. In Fig. 5a a normalized histogram of the obtained RWM sample
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is shown. Next, the joint posterior density π(µ, σ |y) ≈ b−10 L̂p(µ, σ)π(µ, σ) is computed via Eqs. (39) and (40).
The SLE L̂p(µ, σ) with p = 50 that features the lowest LOO error is used. In Fig. 5b the posterior surrogate
that arises from the SLE is plotted. For a later comparison with the heat conduction example, in Fig. 5c the
SLE posterior surrogate from Fig. 5b is plotted again from a different angle. By visual inspection the obvious
similarity between the density π(µ, σ |y) sampled by MCMC and emulated by the SLE is noticed.

(a) MCMC reference sample. (b) SLE with p = 50.

(c) SLE with p = 50.

Figure 5: 2D normal fitting: Joint posterior.

Now the posterior marginals π(µ|y) and π(σ |y) are computed from the joint posterior. On the one hand,
samples from the posterior marginals are obtained by restricting the analysis to the corresponding components of
the joint MCMC sample. On the other hand, functional approximations of the posterior marginals are extracted
based on sub-expansions L̂µ,p(µ) and L̂σ,p(σ) of a joint SLE L̂p(µ, σ) as in Eqs. (44) and (45). For the SLEs
with p = 9 and p = 50 the results are visualized in Fig. 6. Histogram-based MCMC sample representations
and functional SLE approximations of the marginal densities are shown, too. As it can be seen, the marginal
posteriors as obtained by MCMC and the SLE with p = 50 exactly match each other. For p = 9 the posteriors
marginals display some wavelike fluctuations in their tails.

5.2.2 Quantities of interest

Since the posterior density itself is of little inferential use, the model evidence and the first posterior moments
are computed for a selection of SLEs with varying size of the experimental design K and degree p. According to
Eqs. (40) and (48) to (50), the SLE estimates of these quantities are obtained from the expansions coefficients.
In Table 3 a summary of the results is given. Compliant with Eq. (40) the SLE estimates of the model evidence
Z are obtained as the coefficient of the constant expansion term. According to Eqs. (48) and (49), the SLE
estimates of the posterior mean E[µ|y] and the standard deviation Std[µ|y] = Var[µ|y]1/2 of the location
parameter µ are computed. Likewise, the corresponding estimates for the spread parameter σ follow through
a simple postprocessing of the low-order expansion coefficients. The SLE estimates of the linear coefficient of
correlation ρ[µ, σ |y] = Cov[µ, σ |y]/Std[µ|y]/Std[σ |y] are computed based on Eq. (50). Additionally, the LOO
error εLOO is listed to indicate the SLE prediction accuracy. Note that all those estimates comply with the
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Figure 6: 2D normal fitting: Posterior marginals.

natural bounds and restrictions of the estimated quantities, e.g. the posterior means comply with the prior
bounds.

For the sake of comparison, associated results are listed for the simulated MCMC sample, too. These MCMC
results are simply obtained as the corresponding sample approximations. The reference estimate of the model
evidence is obtained by crude MC simulation instead, i.e. the arithmetic mean of the likelihood is computed for
a number of 108 independent draws from the prior. It is interesting to note that the SLEs can reproduce the
MCMC results for moderate experimental designs and degrees, say for K = 5× 103 and p = 21. Even though
a large number of input samples and a large polynomial degree is necessary to reproduce the shape of the joint
posterior density, significantly smaller experimental designs and polynomial orders suffice to reproduce the first
posterior moments.

Table 3: 2D normal fitting: Statistical quantities.

K p εLOO Z [10−14] E[µ|y] E[σ |y] Std[µ|y] Std[σ |y] ρ[µ, σ |y]

SL
E

5× 102 5 4.24× 10−1 1.19 30.34 5.57 2.03 1.39 0.18
1× 103 9 1.19× 10−1 1.20 30.39 5.54 2.01 1.41 0.08
5× 103 21 9.64× 10−4 1.18 30.48 5.56 1.79 1.38 −0.01
1× 104 32 5.86× 10−6 1.18 30.47 5.56 1.81 1.38 0.00
5× 104 45 1.30× 10−9 1.18 30.47 5.56 1.81 1.38 −0.00
1× 105 50 6.05× 10−11 1.18 30.47 5.56 1.81 1.38 −0.00

(MC)MC 1.18 30.47 5.56 1.81 1.38 −0.00

5.3 2D inverse heat conduction
Finally, an inverse heat conduction problem (IHCP) is considered. The heat equation is a partial differential
equation (PDE) that describes the distribution and evolution of heat in a system where conduction is the
dominant mode of heat transfer. We consider a stationary heat equation of the form

∇ · (κ∇T̃ ) = 0. (60)

The temperature is denoted as T̃ and the thermal conductivity is denoted as κ. Commonly one is interested
in the solution of the boundary value problem that is posed when Eq. (60) is satisfied over a physical domain
subject to appropriate boundary conditions. We consider the steady state situation in two spatial dimensions.
The Euclidean coordinate vector is denoted as r = (r1, r2)> in the following.

It is dealt with the identification of thermal conductivities of inclusions in a composite material with close-
to-surface measurements of the temperature. The setup of the simplified thermal problem is visualized in Fig. 7.
The thermal conductivity of the background matrix is denoted as κ0, while the conductivities of the material
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inclusions are termed as κ1 and κ2, respectively. It is assumed that the material properties are not subject to a
further spatial variability. At the “top” of the domain a Dirichlet boundary condition T̃1 is imposed, while at the
“bottom” the Neumann boundary condition q2 = −κ0 ∂T̃ /∂r2 is imposed. Zero heat flux conditions ∂T̃ /∂r1 = 0
are imposed at the “left” and “right” hand side.

We consider the IHCP that is posed when the thermal conductivities κ = (κ1, κ2)> are unknown and
their inference is intended. With this in mind, a number of N measurements T = (T (r1), . . . , T (rN ))> of
the temperature field at the measurement locations (r1, . . . , rN ) is available. The forward model M : κ 7→ T̃
establishes the connection between the data and the unknowns. It formalizes the operation of solving Eq. (60)
for T̃ as a function of κ. Measured temperatures T = T̃ + ε consist of the corresponding model response
T̃ = M(κ) and a residual term ε. The latter accounts for measurement uncertainty and forward model
inadequacy. We consider residuals that are distributed according to a Gaussian N (ε|0,Σ) with covariance
matrix Σ. In compliance with Eq. (9) the likelihood function is given as L(κ) = N (T |M(κ),Σ). Provided
that a prior distribution π(κ) can be elicited, the posterior is given as π(κ|T ) = Z−1L(κ)π(κ).

The thermal conductivity of the background matrix is set to κ0 = 15 W/m/K, while the thermal con-
ductivities of the inclusions are specified as κ1 = 32 W/m/K and κ1 = 28 W/m/K. The material properties
of the inclusions are treated as unknowns subsequently. Moreover, the boundary conditions T̃1 = 200 K and
q2 = 2000 W/m2 are imposed. A finite element (FE) model is used to solve a weak form of the governing PDE.
The FE solution for the experimental setup described above is shown in Fig. 8. We consider a uniform prior
distribution π(κ) = π(κ1)π(κ2) with independent marginals π(κ1) = U(κ1 |κ1, κ1) and π(κ2) = U(κ2 |κ2, κ2).
The prior bounds are chosen as κ1 = κ2 = 20 W/m/K and κ1 = κ2 = 40 W/m/K, respectively. A number of
N = 12 close-to-surface observations is analyzed. Their measurement locations are indicated by the black dots
in Fig. 7. Independent Gaussian measurement noise with Σ = σ2

T1 and σT = 0.25 K is considered. Based on
this setup, synthetic data are simulated for conducting the computer experiment. This means that the forward
model responses T̃ for the true parameter setup are computed and pseudo-random noise is added in order to
obtain T .

Figure 7: 2D IHCP: Heat conduction setup. Figure 8: 2D IHCP: Steady state solution.

5.3.1 Posterior density

The analyses proceed analogously to the preceding section. By comparing the present IHCP and the non-
conjugate Gaussian example, that have a two-dimensional parameter space and uniform priors in common, one
can gain interesting insight into spectral Bayesian inference. First, the convergence behavior of the SLE is
investigated. Spectral expansions L̂p of the likelihood L are therefore computed for an experimental design of
size K = 1 × 105 and candidate bases with polynomials up to degree p = 50. All practical issues are handled
analogously to the procedure in the non-conjugate Gaussian example. In Fig. 9 the normalized versions of
the empirical error εEmp and the LOO error εLOO are shown as a function of p. Comparing these results to
Fig. 4 reveals that the convergence rate of the SLE L̂p is considerably slower than the corresponding one for
the Gaussian example. For the SLE with p = 50 the error estimates amount to εEmp = 6.26 × 10−4 and
εLOO = 7.56× 10−4. These errors are around seven orders of magnitude higher than the errors observed for the
Gaussian example. The difference in the SLE convergence rate presumably originates from a difference in the
underlying likelihood functions and posterior densities. This is now investigated in more detail.
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Figure 9: 2D IHCP: Convergence of the SLE.

A RWM approximation with 107 samples and the SLE-based emulation with p = 50 of the posterior density
π(κ1, κ2 |T ) ≈ b−10 L̂p(κ1, κ2)π(κ1, κ2) are depicted in Fig. 10. In order to reduce the numerical cost of MCMC
sampling, the FE model M is replaced by a PCE surrogate M̂p. For i = 1, . . . , N , separate PCEs M̂i,p of
the temperature T̃i = Mi,p(κ1, κ2) at the location ri are fitted as a function of the unknown conductivities.
After an appropriate transformation to standardized variables, tensorized Legendre polynomials up to degree
p = 10 act as the trial basis. Based on an experimental design of the size K = 103, the LOO errors of the
regressions amount to about εLOO ≈ 10−10. Accordingly, the PCE is considered an adequate replacement of
the full FE model. Note that it would be also possible to use M̂p as a forward model surrogate during the
likelihood training runs.

The posteriors in Fig. 10 can be compared to the posteriors of the Gaussian example in Fig. 5 of the
previous section. Relative to the respective prior, the posterior of the thermal problem π(κ1, κ2 |T ) contains
more information than the posterior of the normal problem π(µ, σ |y), i.e. the likelihood L(κ1, κ2) has a slightly
more peaked and localized structure than L(µ, σ). In order to capture these different behaviors nearby and
far from the posterior mode, the SLEs L̂p(κ1, κ2) and L̂p(µ, σ) require a different number of expansions terms.
The more localized the posterior modes are with respect to the prior, the more terms are required in order to
achieve the cancellation in the tails. Moreover, as opposed to π(µ, σ |y) the posterior π(κ1, κ2 |T ) exhibits a
pronounced correlation structure. In turn, this requires non-vanishing interaction terms. As a consequence, the
SLE L̂p(κ1, κ2) of the IHCP example is less accurate than the SLE L̂p(µ, σ) of the Gaussian example. This is
also reflected in the fact that the posterior surrogate fluctuates and takes on negative values around the points
[κ1, κ2] and [κ1, κ2]. In order to see this more clearly, the SLE posterior surrogate from Fig. 10b is plotted again
from a different angle in Fig. 10c. A small wavelike posterior structure spans the parameter space between these
corners. These artifacts stem from an imperfect polynomial cancellation of the finite series approximation.
This stands in contrast to the posterior of the Gaussian example in Fig. 5c where these phenomena were not
observed.

Via Eq. (45) the posterior marginals π(κ1 |T ) and π(κ2 |T ) can be extracted from the joint SLEs. The
resulting densities are shown in Fig. 11 together with a histogram-based MCMC sample representation. As it
can be seen, for p = 50 the marginals are captured fairly well, while the moderate-order surrogate for p = 21 still
exhibits discrepancies at the bounds of the parameter space. The approximation of the posterior marginals by
sub-SLEs seems to be more accurate, at least in the sense of the maximum deviation, than the approximation
of the joint posterior π(κ1, κ2 |T ) by the full SLE in Fig. 10c. This phenomenon can be explained through the
absence of all non-constant polynomial terms in the variables that are marginalized out.

5.3.2 Quantities of interest

Now we investigate how well one can extract the statistically interesting quantities. Results from SLEs with vary-
ing K and p are compared with the results from MCMC sampling. A summary of the findings is provided in Ta-
ble 4. The LOO error εLOO of various SLEs is shown together with some basic posterior characteristics obtained
by a postprocessing of the SLE coefficients. For j = 1, 2 the posterior mean E[κj |T ] and the standard deviation
Std[κj |T ] = Var[κj |T ]1/2 of the posterior distribution are given in physical units of W/m/K. In addition, the
model evidence Z and the linear coefficient of correlation ρ[κ1, κ2 |T ] = Cov[κ1, κ2 |T ]/Std[κ1 |T ]/Std[κ2 |T ] are
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(a) MCMC reference sample. (b) SLE with p = 50.

(c) SLE with p = 50.

Figure 10: 2D IHCP: Joint posterior.
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(a) Thermal conductivity κ1.
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(b) Thermal conductivity κ2.

Figure 11: 2D IHCP: Posterior marginals.
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specified. In comparison to Table 3, where the results for the non-conjugate normal example are listed, the SLE
results for the IHCP match their MCMC counterparts less accurately. Nevertheless, it can be observed that the
lowest-degree quantities of inferential interest can be extracted with a comparably small experimental design
and relatively low number of regressors, say with K = 1 × 104 and p = 29. Note that all the estimates attain
admissible values.

Table 4: 2D IHCP: Statistical quantities.

K p εLOO Z [10−1] E[κ1 |T ] E[κ2 |T ] Std[κ1 |T ] Std[κ2 |T ] ρ[κ1, κ2 |T ]

SL
E

5× 102 5 8.24× 10−1 8.45 31.33 28.36 1.74 1.33 0.28
1× 103 9 6.08× 10−1 7.81 31.40 28.22 2.02 1.53 0.15
5× 103 21 1.50× 10−1 7.47 31.32 28.13 2.16 1.61 0.34
1× 104 29 5.79× 10−2 7.21 31.56 28.30 1.61 1.39 −0.05
5× 104 35 1.63× 10−2 7.18 31.62 28.34 1.24 1.08 −0.75
1× 105 50 7.56× 10−4 7.18 31.62 28.33 1.26 1.10 −0.68

(MC)MC 7.17 31.62 28.33 1.26 1.09 −0.68

5.4 6D inverse heat conduction
In the previous sections it was demonstrated that likelihood functions can be indeed spectrally expanded and
that the posterior density with its moments can be computed accordingly. For low-dimensional problems the
SLE convergence behavior up to a high degree was studied by monitoring the LOO error. It was shown that the
expansion error can be arbitrarily reduced by increasing the order of the expansion and adding samples to the
experimental design. While this is reassuring to know, it does not help in solving higher-dimensional problems
for which the computation of high-order expansions is exacerbated by the curse of dimensionality. Hence, now
we want to investigate the applicability of SLEs and aSLEs in an inverse problem of moderate dimension.

An IHCP in two spatial dimensions with six unknown conductivities is considered in this section. The setup
of the problem is shown in Fig. 12. The M = 6 unknown conductivities κ = (κ1, . . . , κ6)> are inferred with
N = 20 noisy measurements T = (T1, . . . , T20)> of the temperature field T̃ . We set κ0 = 30 W/m/K and
κ = (20, 24, . . . , 40)>W/m/K. The prior is set to a multivariate lognormal distribution π(κ) =

∏6
i=1 π(κi) with

independent marginals π(κi) = LN (κi |µ0, σ
2
0) with µ0 = 30 W/m/K and σ0 = 6 W/m/K. These parameters

describe the mean µ0 = E[κi] and standard deviation σ0 = Std[κi] of the lognormal prior. They are related
to the parameters of the associated normal distribution N (log(κi)|λ0, ς20 ) via µ0 = exp(λ0 + ς20/2) and σ2

0 =
(exp(ς20 )−1) exp(2λ0+ς20 ). Otherwise than that, the problem setup is exactly as described in the previous section,
i.e. the likelihood function is given as L(κ) = N (T |M(κ),Σ). In accordance with this setup, in the following
synthetic data are simulated and analyzed in order to compute the joint posterior π(κ|T ) = Z−1L(κ)π(κ).

Figure 12: 6D IHCP: Heat conduction setup.
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5.4.1 Posterior density

The unknowns are represented as κi = exp(λ0+ς0ξi) in terms of the standardized variables ξi ∈ R with Gaussian
weight functions N (ξi |0, 1). A spectral expansion L̂p in tensorized Hermite polynomials is then computed for
p = 5 and K = 5 × 104. The errors of the likelihood approximation are estimated as εEmp = 8.81 × 10−1

and εLOO = 9.14 × 10−1. As compared to the low-dimensional examples that were studied before, these are
large errors. An auxiliary reference density g(κ) =

∏6
i=1 g(κi) is then constructed as a multivariate lognormal

with independent marginals g(κi) = LN (κi |µi, σ2
i ). The parameters of the latter are chosen as the means

µi = E[κi |T ] and standard deviations σi = Std[κi |T ] of the posterior surrogate corresponding to the coefficients
of SLE L̂p. We remark that this is a simple two-step procedure and that a more refined usage of the reference
change would certainly lead to more sophisticated approaches. Subsequently, an aSLE Ĝp with p = 5 and
K = 5× 104 is computed. The errors amount to εEmp = 4.81× 10−1 and εLOO = 6.24× 10−1. Notwithstanding
that these errors are smaller than the corresponding errors of the SLE, they are still large as compared to the
previous examples. Since these errors are now measured with respect to the auxiliary density which is expectedly
closer to the true posterior than the prior is, the aSLE presumably leads to a more accurate posterior surrogate.

From the previously computed SLE L̂(κ) and the aSLE Ĝp(κ) approximations of the joint posterior den-
sity are computed via Eqs. (39) and (55). The obtained surrogates π(κ|T ) ≈ L̂p(κ)π(κ)/b0 and π(κ|T ) ≈
Ĝp(κ)g(κ)/bg0 are now compared to each other. We start with the one-dimensional marginals that can be com-
piled by collecting terms from the full expansions based on Eq. (45). For j = 1, . . . , 6 the marginals π(κj |T )
that are extracted that way are shown in Fig. 13. The marginal priors π(κj) and the auxiliary densities g(κj) are
shown, too. While the marginals that are taken from the SLE slightly deviate from their MCMC counterparts,
the marginals based on the aSLE match their references perfectly well. The reason is that the posterior can be
easier represented as a small adjustment of the auxiliary density than as a large correction to the prior. Thus,
with the same expansion order the posterior is more accurately represented through the aSLE than through
the SLE. Regarding the size of the error estimates, it is surprising that the marginals can be retrieved that
well with the aSLE. Even though the SLE-based posterior approximations can hardly be interpreted as proper
probability densities, i.e. they conspicuously take on negative values, the moments are recovered sufficiently well
for the construction of the auxiliary reference density.

On the basis of Eq. (47) the two-dimensional posterior marginals π(κj , κk |T ) can be constructed from the
full expansions. For j = 3 and k = 4 the posterior marginal for the SLE L̂p is shown in Fig. 14a. The same
two-dimensional distribution is depicted in Fig. 14b for the aSLE Ĝp. A histogram of the MCMC sample is
provided in Fig. 14c as a reference. As already found in Figs. 13c and 13d for instance, in Fig. 14 the aSLE-based
surrogate appears to be almost exact whereas the SLE-based one is flattened out. Since the aSLE captures the
true posterior density more accurately than the SLE, we expect similar findings for the posterior moments.

5.4.2 Quantities of interest

Finally we compute the model evidence and the first posterior moments with the aid of Eqs. (40) and (53) and
Eqs. (48) to (50). For the aSLE Ĝp the analysis proceeds analogously to the SLE L̂p. In Table 5 a summary of
the results is given. As it can be taken from the table, the aSLE consistently gives more accurate estimates of
the reference values. This fulfills our earlier expectations. Regarding the inaccuracy of the SLE-based posterior
marginals and the concerns about interpreting them as probability densities, the quality of the SLE-based
estimates of the moments surpasses our expectations. In particular, the estimated standard deviations are more
accurate than the surrogate marginals suggest, e.g. the ones shown in Figs. 13a and 13f. Similar as for the
posterior density, we have to conclude that the normalized LOO error does not give conclusive information
about the accuracy of the first posterior moments. Nevertheless, it is remarked that the use of resampling
methods still ensures a robust fit, i.e. it protects against overfitting.

6 Concluding remarks
A spectral approach to Bayesian inference that focuses on the surrogate modeling of the posterior density was
devised. The likelihood was expanded in terms of polynomials that are orthogonal with respect to the prior
weight. Ensuing from this spectral likelihood expansion (SLE), the joint posterior density was expressed as
the prior that acts the reference density times a polynomial correction term. The normalization factor of the
posterior emerged as the zeroth SLE coefficient and the posterior marginals were shown to be easily accessible
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Figure 13: 6D IHCP: Posterior marginals.
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(a) SLE with p = 5. (b) aSLE with p = 5.

(c) MCMC reference sample.

Figure 14: 6D IHCP: Posterior marginals.

Table 5: 6D IHCP: Statistical quantities.

Z [10−3] E[κ1 |T ] E[κ2 |T ] E[κ3 |T ] E[κ4 |T ] E[κ5 |T ] E[κ6 |T ]

SLE 4.04 21.42 24.86 28.79 28.45 34.43 37.27
aSLE 3.68 21.53 24.48 29.16 28.57 34.59 36.95

(MC)MC 3.65 21.52 24.57 29.11 28.56 34.64 37.00

Std[κ1 |T ] Std[κ2 |T ] Std[κ3 |T ] Std[κ4 |T ] Std[κ5 |T ] Std[κ6 |T ] ρ[κ1, κ2 |T ]

SLE 1.95 3.43 2.63 2.43 3.96 3.13 −0.40
aSLE 1.94 3.56 2.61 2.33 3.62 2.99 −0.44

(MC)MC 1.93 3.48 2.56 2.31 3.64 3.00 −0.47

ρ[κ1, κ3 |T ] ρ[κ1, κ4 |T ] ρ[κ1, κ5 |T ] ρ[κ1, κ6 |T ] ρ[κ2, κ3 |T ] ρ[κ2, κ4 |T ] ρ[κ2, κ5 |T ]

SLE 0.19 −0.39 −0.28 0.05 −0.40 −0.18 −0.30
aSLE −0.01 −0.29 −0.03 0.10 −0.48 −0.17 −0.28

(MC)MC −0.02 −0.32 −0.03 0.09 −0.48 −0.17 −0.31

ρ[κ2, κ6 |T ] ρ[κ3, κ4 |T ] ρ[κ3, κ5 |T ] ρ[κ3, κ6 |T ] ρ[κ4, κ5 |T ] ρ[κ4, κ6 |T ] ρ[κ5, κ6 |T ]

SLE −0.09 −0.00 0.22 −0.22 −0.20 0.24 −0.11
aSLE −0.13 0.11 −0.02 −0.32 −0.24 0.13 −0.24

(MC)MC −0.16 0.10 −0.03 −0.34 −0.26 0.12 −0.24
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through sub-expansions of the SLE. Closed-form expressions for the first posterior moments in terms of the low-
order spectral coefficients were given. Posterior uncertainty propagation through general quantities of interest
was established via a postprocessing of the higher-order coefficients. The semi-analytic reformulation of Bayesian
inference was founded on the theory and practice of metamodeling based on polynomial chaos expansions.
This allows one to compute the SLE coefficients by solving a linear least squares problem. An analysis of
the advantages and disadvantages of the proposed method eventually motivated a change of the reference
density. While the expansion of the posterior in terms of the prior may require substantial modifications, its
representation with respect to an auxiliary density many only require minor tweaks.

The possibilities and difficulties that arise from the problem formulation were exhaustively discussed and
numerically demonstrated. Fitting a parametric distribution to random data and identifying the thermal prop-
erties of a composite material served as benchmark problems. These numerical experiments proved that spectral
Bayesian inference works in principle and they provided insight into the mechanisms involved. The convergence
behavior of the SLE was studied based on the leave-one-out error. It was found that high-degree SLEs are neces-
sary in order to accurately represent the likelihood function and the joint posterior density, whereas lower-order
SLEs are sufficient in order to extract the low-level quantities of interest. A change of the reference density
allowed for reducing the order of the corrections required in order to represent the posterior with respect to the
prior. This helped in alleviating the curse of dimensionality to some extent.

In turn, a number of follow-up questions were given rise to. While the leave-one-out error performs well
in quantifying the prediction errors of the SLE, it turned out to be of limited use with regard to the errors of
the corresponding posterior surrogate and its marginals. A critical question thus relates to a means to assess
the errors of these quantities and to diagnose their convergence. This would assist in choosing experimental
designs of a sufficient size. Also, it would be desirable to quantify the estimation errors of individual expansion
coefficients. This would support the assessment of the efficiency and scalability of the approach and the fair
comparison with Monte Carlo, importance and Markov chain Monte Carlo sampling. Another question is
whether a constrained optimization problem can be formulated that naturally respects all prior restrictions. This
would remedy the potential problem of illegitimate values of the posterior moments. In order to handle a broader
spectrum of statistical problems, SLEs would have to be extended to dependent prior distributions and noisy
likelihood functions. For increasing the computational efficiency beyond the change of the reference density, it
is conceivable to deploy advanced techniques from metamodeling and machine learning. This includes piecewise
polynomial models, expansions in a favorable basis and the use of sparsity-promoting regression techniques.
Yet another important issue concerns the practical applicability of the presented framework to problems with
higher-dimensional parameter spaces. In future research efforts we will try to address the abovementioned issues
and to answer this principal question.

Appendix

A Univariate polynomials
The main properties of two classical orthogonal families of polynomials were shortly summarized in Table 1,
i.e. the domain of definition, the associated weight function and the norm. Their first six members of these
univariate Hermite polynomials {Hα}α∈N and Legendre polynomials {Pα}α∈N are listed in Table 6. Higher
order members can be defined via recursive or differential relations. These polynomials can be used for the
construction of the multivariate polynomial basis {Ψα}α∈N in Eq. (17). Note that this orthonormal basis is
normalized via Ψα = Hα/

√
α! or Ψα = Pα/

√
1/(2α+ 1).

Table 6: Low-order polynomials.

α Hα(x), x ∈ R Pα(x), x ∈ [−1, 1]

0 1 1
1 x x
2 x2 − 1 (3x2 − 1)/2
3 x3 − 3x (5x3 − 3x)/2
4 x4 − 6x2 + 3 (35x4 − 30x2 + 3)/8
5 x5 − 10x3 + 15x (63x5 − 70x3 + 15x)/8
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B Low-order QoIs
The representation of six low-order QoIs in terms of the normalized Hermite and Legendre polynomials is given
in Table 7 below. Those expansions can be used in order to compute the first posterior moments, e.g. as shown
in Eqs. (48) to (50). Note that the representations in the orthonormal bases directly follow from a change of
basis and the substitutions Hα =

√
α!Ψα and Pα =

√
1/(2α+ 1)Ψα.

Table 7: Low-order QoIs.

QoI Hermite expansion Legendre expansion

1 Ψ0 Ψ0

x Ψ1 Ψ1/
√

3

x2
√

2Ψ2 + Ψ0 (2Ψ2/
√

5 + Ψ0)/3

x3
√

6Ψ3 + 3Ψ1 (2Ψ3/
√

7 + 3Ψ1/
√

3)/5

x4 2
√

6Ψ4 + 6
√

2Ψ2 + 3Ψ0 (8Ψ4/3 + 20Ψ2/
√

5 + 7Ψ0)/35

x5 2
√

30Ψ5 + 10
√

6Ψ3 + 15Ψ1 (8Ψ5/
√

11 + 28Ψ3/
√

7 + 27Ψ1/
√

3)/63
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